Fault Effect Propagation using Verilog-A for Analog Test Coverage

Aishwarya Prabhakaran
Ahmed Sokar
Jaafar Mejri
Agenda

1. Analog Fault Simulation
2. Modeling Methodology overview
3. Test Circuits and results
4. Future Work and Conclusion
<table>
<thead>
<tr>
<th></th>
<th>Agenda</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Analog Fault Simulation</td>
</tr>
<tr>
<td>2</td>
<td>Modeling Methodology overview</td>
</tr>
<tr>
<td>3</td>
<td>Test Circuits and results</td>
</tr>
<tr>
<td>4</td>
<td>Future Work and Conclusion</td>
</tr>
</tbody>
</table>
Motivation

› Several field returns (metal shorts, opens), which were not detected by the ATE test program

› Optimize test time and cost for circuits by evaluating the test program in regard of over-testing and under-testing

› Formally report and proof test coverage to customers

› Compliance to IEEE standard (working group IEEE p2427)

Example: Field return
Side Benefits

› In the functional safety domain, inject the defects in the fault catalog and check whether the safety mechanisms are excited
› Qualify the Design For Test (DFT) circuitry with defect coverage metric
› Testbenches qualification in mixed-signal verification
First Preliminary Flow Proposal

- **DUT**
- **Test-benches**
- **Defect Extraction**
- **Defect List**
- **Smart Simulation Engines**
- **Detected Faults Statistics**

Adaptations at each step.
Fault models

Schematic

- Transistor
 - Stuck-at-on
 - Stuck-at-off
- Resistance
 - Short
 - Open
- Cap
 - Short
 - Open
- User Defined Faults
- Parametric defects

Layout

- Parasitic based fault extraction

Potential short circuit

Potential open circuit
Why is there no analog test coverage?

› A high side switch contains around 100k Transistors was examined in Infineon

› According to IEEE standard draft, open and short circuits are mandatory to simulate

› After excluding some complex blocks, all the digital part, and some metal layers and vias, total number of possible defects was over 50k.

› One simulation takes ~8 hours

„50,000 defects → years of simulations and high licenses cost”
Simulation speed up

› Parallel Defect Simulation
› Fault Collapsing
› Random Sampling of the defects to estimate the coverage with certain confidence.
› Fault Sensitivity Analysis (FSA)
› Define levels of detectability
 – Undetected, detected, and undetectable defects
 – Find worst corner for Process Voltage Temperature variation
› Start with the defects that have more likelihood and stop after a sufficient coverage is reached
› Simulating defects in abstract-level surrounding[Model the surrounding blocks where a defect is injected]
Using Models in AFS context

Definitions:

› Block under Test
 ▪ Source block into which faults are injected

› Defect effect propagation path
 ▪ From the source block to the observation point

› Blocks on the propagation path
 ▪ Abstract models capable of propagating fault effect

Can the abstract models propagate the fault effect?
Overview of the Methodology

Augment a shell to the model that covers the fault effects

\[\text{Accuracy (in \%)} = \frac{\text{Measure}_{\text{Transistor model}} - \text{Measure}_{\text{Abstract model}}}{\text{Measure}_{\text{Transistor model}}} \times 100 \]

\[\text{Speedup Factor} = \frac{\text{Simulation Time}_{\text{Transistor model}}}{\text{Simulation Time}_{\text{Abstract mode}}} \times 100 \]
Overview of the Methodology

- Fault injection on the source block
 - To identify the fault effects to propagate
- Target block Model abstraction
 - Model augmented with fault effects
- Fault simulation
 - With source block and abstract models to speed up the simulation
Fault Injection

› Fault model

› Fault injection flow

› Fault extraction from the transistor level
 - Large number of faults

› Possible faults extracted from the layout

› Batch mode simulation in Regression environment
Fault list generation and reduction

- Bandgap Reference
- Voltage to current conversion
- Current controlled Oscillator

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Parallel simulation</td>
<td>40</td>
</tr>
<tr>
<td>Number of faults simulated</td>
<td>375</td>
</tr>
<tr>
<td>Fault type</td>
<td>Short</td>
</tr>
<tr>
<td>Fault resistance</td>
<td>10 Ω</td>
</tr>
</tbody>
</table>

- Percentage of faults that lead to performance deviation: 18%
- Percentage of faults that has no effect on the performance: 82%
Model abstraction in steps

› One target block at a time to model

- Level 1
 - Source
 - Target
 - Fault effect propagation with shell appended VA model

- Level 2
 - Source
 - Target

- Level n
 - Source
 - Target
 - Observation point
Exclude some blocks

- Do all the target blocks require shell to include fault effects?
 - Target circuit selection
- Some circuits propagate faults without any shell
 - Analog switch
Model abstraction

Fault Simulation

Record Faulty response

Generate Fault List

VDD

Out

In1

In2

Fault Injection

VDD

Out

In1

In2

Measurement setup

M1 = Maximum(Out)

M2 = Minimum(Out)

Script

Regression tool

Script

VDD

T

In

Out

Source

Circuit to Model

Script

Circuit to Model

Script

VDD

T

In

Out

Measurement setup

M1 = Maximum(Out)

Mn = Frequency(Out)
Mapping with Look-Up Tables

Measurements are done on the continuous signals
• Need for interpolation (in the case of slight variation in the input value)
Agenda

1. Analog Fault Simulation
2. Modeling Methodology overview
3. Test Circuits and results
4. Future Work and Conclusion
Experiment Result

› Experiment setup

![Diagram of the experiment setup]

› Parameters chosen for measurements

<table>
<thead>
<tr>
<th>Input Parameters</th>
<th>Output Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>Frequency</td>
</tr>
<tr>
<td>Temperature</td>
<td>Duty cycle</td>
</tr>
<tr>
<td>Input reference current</td>
<td>Phase</td>
</tr>
<tr>
<td>Load resistance</td>
<td>Rise time</td>
</tr>
<tr>
<td></td>
<td>Fall time</td>
</tr>
<tr>
<td></td>
<td>Average output voltage</td>
</tr>
</tbody>
</table>

› Oscillator model with Look-Up Tables

![Diagram of the oscillator model with Look-Up Tables]
Model parameters distribution vs defects

- The distribution of Oscillator input current and its frequency for faults injected in Bandgap Reference Circuit
Equivalence Checking

Transistor Model Test bench
Out_param_1
Out_param_2
...
Out_param_n

Abstract Model Test bench
Out_param_1
Out_param_2
...
Out_param_n

Secondary Test bench
measure(out_param_1, out_param_1)
measure(out_param_2, out_param_2)
...
measure(out_param_n, out_param_n)

Regression Tool
Experiment Result

- **Oscillator input current**

- **Oscillator Frequency**

- **Oscillator Dutycycle**

- **Oscillator Phase**

Copyright © Infineon Technologies AG 2018. All rights reserved.
Interpolation accuracy for the input reference current sweep with step size 1uA
Experiment Result

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transient simulation time</td>
<td>3 us</td>
</tr>
<tr>
<td>Time step</td>
<td>100 ps</td>
</tr>
<tr>
<td>Number of Parallel simulation</td>
<td>40</td>
</tr>
<tr>
<td>Number of faults simulated</td>
<td>375</td>
</tr>
<tr>
<td>Fault type</td>
<td>Short</td>
</tr>
<tr>
<td>Fault resistance</td>
<td>10 Ω</td>
</tr>
</tbody>
</table>

Simulation time: Transistor model vs Abstract model

- Speedup = 4.608

Storage: Oscillator's Schematic vs its Model with LUTs
The voltage-to-current takes two inputs from Bandgap Reference circuit and outputs a current that controls the Oscillator.
Using the Abstract Models for fault injection

- To speed up the process of generating abstract models (target blocks)

![Diagram of abstract models for fault injection](image-url)
Modified Flow and its Result

Flow to generate Fault model of a circuit

Experimental results

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Faults simulated</td>
<td>100</td>
</tr>
<tr>
<td>Simulation time</td>
<td>50 us</td>
</tr>
<tr>
<td>Time step</td>
<td>100 ps</td>
</tr>
<tr>
<td>Number of parallel runs</td>
<td>40</td>
</tr>
<tr>
<td>Speed up</td>
<td>10x</td>
</tr>
</tbody>
</table>

Storage of CSV files
Fault Simulation – Full chain

Blocks on the target path

Experiment Setup

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transient simulation time</td>
<td>5 us</td>
</tr>
<tr>
<td>Time step</td>
<td>100 ps</td>
</tr>
<tr>
<td>Number of Parallel simulation</td>
<td>40</td>
</tr>
<tr>
<td>Number of faults simulated</td>
<td>375</td>
</tr>
<tr>
<td>Fault type</td>
<td>Short</td>
</tr>
<tr>
<td>Fault resistance</td>
<td>10 Ω</td>
</tr>
</tbody>
</table>

![Bar chart showing simulation time comparison between Transistor model and Abstract model with a speedup of 10.39x]
Fault Simulation – Experiment Result

Fault detection results

- Percentage of faults that are detectable: 36%
- Percentage of faults whose effect deviate by 10% from the fault-free case: 13%
- Percentage of faults that produce the same effect as the fault-free case: 51%

Parameter	**Value**
Transient simulation time | 20 us
Time step | 100 ps
Number of Parallel simulation | 40
Number of faults simulated | 375
Fault type | Short
Fault resistance | 10 Ω

Distribution of the average current measured at the load

- Full simulation time – 35 mins (app)

- 36% - faults dropped
- 64% - Different test pattern must be chosen to detect these faults

Copyright © Infineon Technologies AG 2018. All rights reserved.
Agenda

1. Analog Fault Simulation
2. Modeling Methodology overview
3. Test Circuits and results
4. Future Work and Conclusion
Conclusion and Future Work

› AFS at the system level

› Abstract models to speed up AFS

› Fault effect propagation with shell appended behavior models
 - Performance metrics mapped to faulty inputs using LUT
 - Multi-dimensional mapping
 - Applicable to Closed-loop systems

Performance results
 - A simple, multi-dimensional, LUT mapping with interpolation
 - Speedup of about 10 times
 - Accuracy close to 100%
 - Storage size in few KBs

Future Work
 › Propagation path tracing using Sensitivity analysis
 › Fault collapsing using clustering algorithms
 › Automation of Model abstraction and Fault simulation at the System level
References

Part of your life. Part of tomorrow.
Closed loop system

Modeling the transient response as a time series
- Inefficient

Performance modeling

I_{ref} affects the performance of the Op-Amp
Closed loop system - Experiment Result

Equivalence checking

[Graph showing experimental results]
Closed loop system - Experiment Result

Op-Amp output voltage with faults injected in Bandgap Reference circuit

Storage space of Op-Amp
Schematic vs Model