
Fast, Flexible, Timing-accurate and Open-Source
Performance Modeling Method for Compute Accelerators

Vishal Chovatiya, Infineon Technologies, Bangalore, India

Andrew Stevens, Infineon Technologies, Munich, Germany

Snehith Shenoy, Infineon Technologies, Bangalore, India



Motivation – why?
• Complex Accelerator Modelling

• Traditional discrete-event and TLM methods need detailed micro-architectural modeling

High modelling complexity, cost, and limited flexibility for design space exploration

• Existing Architecture Description Language(ADL) Limitations
• Behavioral ADLs lack concurrency & dependency modeling

Mixed ADLs tightly couple functional and timing aspects

• Examples: nML, ISDL, LISA, EXPRESSION, MADL, Sparta



Motivation – how?
• Flexible Framework

• Reduce dependency on detailed hardware models for faster exploration

Separate functional and timing concerns

Abstract timing to balance accuracy and simulation speed

• Enable Faster & Accurate Simulation
• Extending CorePerfDSL's novel approach to accelerators

• Faster and accurate simulation and architectural exploration for accelerators



CorePerfDSL Method

• Dedicated language for modeling CPU

pipeline timing

• Opportunity to extend to accelerators

like NPUs for similar benefits

“CorePerfDSL: A Flexible Processor Description Language for Software Performance Simulation”
Conrad Foik, et al., FDL, 2022.



mini-NPU Physical Pipeline



mini-NPU (Virtual) Instruction Pipeline

ALU

Fetch

Generic

Streamer

Weight

Streamer

Activation

Streamer

Output

Pre-Act

Re-scaling

Activation

Function

Post-Act

Re-scaling
Clipping Write



Performance Modelling Method (PMM)

mini-NPU

Performance

Model

mini-NPU

Functional

Model
Virtual Instruction Trace

Generator
Monitor

Instruction Trace

Execution

Build-up

Code Generator

Scheduling Functions

External

Model

Pipeline

Model

Micro-arch Model

(CorePerfDSL

Description)

Instruction

Mapping

Design Space

Exploration

Compile & Link

Timing

Trace

Data

Trace

Power

Trace



PMM: Build-up Phase

• Micro-architectural Model

• Depicts architecture containing pipeline, stages and

microaction(along with dependency) mapped to stages

• Instruction Mapping

• Maps stages(and thereby respective microactions) to be

activated as instruction passes through pipeline

Code Generator

Scheduling Functions

External

Model

Pipeline

Model

Micro-arch Model

(CorePerfDSL

Description)

Instruction

Mapping

• Code Generator that generates -

• Scheduling Functions

• Timing function that calculates and update the pipeline stages

• Pipeline Models

• Structural hierarchy that keeps track instruction timing

• External Models

• Captures dynamic latency not directly represented in the CorePerfDSL



PMM: Execution Phase

• mini-NPU `Functional` Model

• Functionally accurate virtual model of hardware.

• Includes a Virtual Instruction Trace Generator that creates a sequence of instructions that would be executed by the actual

hardware when running target neural network workloads.

• Monitor

• A pluggable hook to the functional model that captures and supplies instruction traces to the performance model.

• mini-NPU `Performance` Model

• CorePerfDSL generated model that accepts instruction traces as input and generates comprehensive timing traces.

mini-NPU

Performance

Model

mini-NPU

Functional

Model
Virtual Instruction Trace

Generator
Monitor

Instruction Trace

Timing

Trace

Data

Trace

Power

Trace



Target hardware: mini-NPU
SoC VP with integrated NPU

CPU

DMA

NPU Functional Model

Bus

Master

2

Bus

Slave

Cache

Data

Streamer

Weight

Streamer

Bias

Steamer

Input

Pre-scalar
ALU

FFT Block
Configuration

Registers

AFU

Control

Block

IRQs

Triggers

IRQs

Triggers

Bus

Master

1
ROM

SW

RAM

Trained

NN Model

NPU functional model
• Mimics HW without involving any

timing detail or delay
• Used as peripheral in SoC to

accelerate the AI/ML operations
• Helps in developing embedded AI

toolchain early & efficiently

• CPU, DMA, Memories
• RAM for trained model
• ROM for eSW
• NPU accelerator functional model



Results

source: https://mlcommons.org/benchmarks/inference-

tiny/



Benefits

• HW ↔ SW co-design
• Enables early development, testing, and debugging of target SW
• Hardware designers simultaneously validate & optimize their design based

on software feedback

• Architecture Exploration
• Code generator enables quick generation of different micro-architecture

variants from CorePerfDSL description
• Enables parameter based simulation sweeps



Benefits

• Accurate Timing Model
• Separation of micro-architecture (through CorePerfDSL) model from

functional model enables tuning timing detail independent of functionality

• Faster Regressions
• Since functional and performance models are two different entities, performance

model can be used adjunct to functional model

• During regression run we can plug out the performance model to increase the
simulation speed



Future Work
• Utilization Graph

• Resource utilization graph generation
• Identify bottleneck or under-utilized components/modules in design

• Dynamic Power Estimation
• Power estimation using UPF gives relative and dynamic power estimates b/w

different variants
• Application based dynamic power estimation e.g. ResNet vs VGGNet

• Crypto Accelerator
• Trying out method for crypto accelerators e.g. AES/DES accelerator



Questions?


