FPGA Debug Using Configuration Readback

Mike Dini
DINI Group
Overview of topics

• The FPGA world as of Nov’15
 – The HW
 • Xilinx, Altera/Intel, others(?)
 – The SW, at least the third party tools
 • Synopsys, Mentor, et al.

• FPGA Debug
 – Overview of existing products
 • Why this is not a ‘rich’ selection products
 • Identify, ILA/ChipScope, SignalTap, ProtoLink, Certus
 – New variations such as Exostiv

• Remember to disable everything before shipping …
FPGAs ...

• Moore’s Law?
 – Certainly not healthy

• FPGAs no longer a growing market
 – Classically maturing
 – Down in revenue year-to-year
 • 6%-20% depending on how you count
 • Some segments growing
 – Emulation/prototyping

• Both Altera and Xilinx expanding into niches
 – Automotive
 – Embedded systems
 – Data Center

Figure 1 from Three Ages of FPGAs: A Retrospective on the First Thirty Years of FPGA Technology
Steve Trimberger (March 2015)
Figure 1. Xilinx FPGA attributes relative to 1988. Capacity is logic cell count. Speed is same-function performance in programmable fabric. Price is per logic cell. Power is per logic cell. Price and power are scaled up by 10,000. Data: Xilinx published data.
Xilinx

• In the midst of rolling out 20nm generation: UltraScale
 – Kintex/Virtex UltraScale, Zynq
 – Clear leader for the large FPGAs used in prototyping
 • Not the leader elsewhere ...

• MASSIVE consequential reorganization early in 2015 ...
 – Great turmoil

• Announced and claims to have shipped UltraScale+
 – TSMC 16 nm
 – Full roadmap not disclosed as of Nov’15
 – Changed the terminology (...again...) ‘system logic cell’
Altera (Intel...)

• Intel acquiring Altera for nearly $17N ($USD)
 – At a VERY high price
 • This is ... puzzling ... Datacenter?

• Stumbling a bit last 2 years
 – Switch to 14 nm Intel fab has not gone smoothly

• ARM in Altera FPGAs? As an Intel company?

• Don’t have pricing yet on Stratix-10, but it looks very good.
Everybody else ...

- **MicroSemi**
 - Anti fuse, flash-based, some mixed signal

- **Lattice**

- **Startups**
 - Flex Logic got funded for some reason.
 - Tabula went down in a big ball of flame.
 - Achronix still stumbling around
FPGA SW

• Synopsys
 – Synplify Pro/Premier
 • Suite
 – Certify -> ProtoCompiler
 • Partitioning

• Mentor is doing, uhh, something
 – Acquired: (Aspey, FlexRAS), Certus
 • Precision

• Startups
 – Plunify
Let’s discuss some philosophy

• FPGAs and ASICs share a very similar design methodology:
 – Describe the design
 • RTL: Verilog VHDL, or some new fangled abstracted method such as OpenCL
 – Simulate
 – Verification
 – Place/route and/or fab
 – Debug

• If ASIC: you’d better get it correct the first time
• If FPGA, I suggest you not
 – So you are going to debug
Market conditions for debug tools ...

- Market is stagnant and might be nonexistent...
 - Good reasons

- ChipScope/ILA, SignalTap
 - Are essentially free leaving no market opportunity
 - Productivity enhancement is notoriously difficult to sell

- Performance issues ... Resource issues ...
FPGA Debug – The Basics

• Once configured, in internal workings of an FPGA are opaque
 – So to debug, we need methods to gain internal visibility

• In the ancient times, we routed signal to pins and hooked up a logic analyzer
 – If you are REALLY old, you used an oscilloscope.
 – Still a valid mythology

• Now, we embed the logic analyzer in the FPGA
 – This is invasive – its presence affects to logic we are trying to view.
 – It turns most, if not all, approaches are invasive

• Seems like this is a market opportunity ...
How are the data captured? How do we get the data?

- This is where debug products start to differ
 - Where are the data stored?
 - On chip
 - Off chip
 - How are the data retrieved?
 - JTAG
 - Custom Interface
 - High-speed serial Interface
Xilinx ChipScope Pro/ILA

• ILA Integrated as part of Vivado tools
 – ChipScope is Virtex-7 and prior

• Standard embedded logic analyzer
Altera SignalTap II

- Integrated as part of Quartus
- Standard embedded logic analyzer
Synopsys Identify

• Bridges2Silicon acquired by Synplicity (2002)
 – Synplicity acquired by Synopsys

• Standard embedded logic analyzer
 – Very good integration into design flow.
Synopsys ProtoLink

- Proprietary connector added to UUT
 - 40+ pins required

- Custom HW cabled to this connector
 - Plugged into PCIe

- Allows for deep trace lengths.
 - Generally used for uP debug
Certus (now from Mentor)

- Startup (Veridae) -> Tektronix -> Mentor

- Embedded Logic analyzer
 - External connection is JTAG

- Allows visibility for thousands of signals
 - Adds compression
 - Dramatically reduces cycle time
 - Multiple FPGAs
• Connects to high-speed serial interface
 – SFP, SATA et al.
• High performance to FPGA
• Large memory depth: 8GB

They are here!
Configuration Readback

- Xilinx (and soon Altera) allow readback of the internal FFs.
 - This can then be correlated with the nets and displayed

- If careful about what is read, this is non-invasive
Example: DNV7F4A
DN Readbacker – Key Features

• Noninvasive real time readback of FPGA register state
 – 100% coverage of FPGA registers
 – 1 complete readback/second (depending on FPGA size)
 – Running clock or single step
 – Works on all DINI Group Xilinx-based FPGA boards:
 • Xilinx UltraScale, Virtex-7/Kintex-7, Virtex-6
 • Stratix-10 when available
 – Output to standard .vcd file and displayed in GTKWave
 – No RTL support required
 – Noninvasive observation of all FPGA registers
 – Not necessary to redo synthesis or place/route
Disadvantages

• Unless clock stopped you don’t get a frozen snapshot

• Slow: ~1Hz

• No understanding of clock domains