FPGA Debug Using Configuration Readback

Mike Dini DINI Group

Overview of topics

- The FPGA world as of Nov'15
 - The HW
 - Xilinx, Altera/Intel, others(?)
 - The SW, at least the third party tools
 - Synopsys, Mentor, et al.
- FPGA Debug
 - Overview of existing products
 - Why this is not a 'rich' selection products
 - Identify, ILA/ChipScope, SignalTap, ProtoLink, Certus
 - New variations such as Exostiv
- Remember to disable everything before shipping ...

FPGAs ...

- Moore's Law?
 - Certainly not healthy
- FPGAs no longer a growing market
 - Classically maturing
 - Down in revenue year-to-year
 - 6%-20% depending on how you count
 - Some segments growing
 - Emulation/prototyping
- Both Altera and Xilinx expanding into niches
 - Automotive
 - Embedded systems
 - Data Center

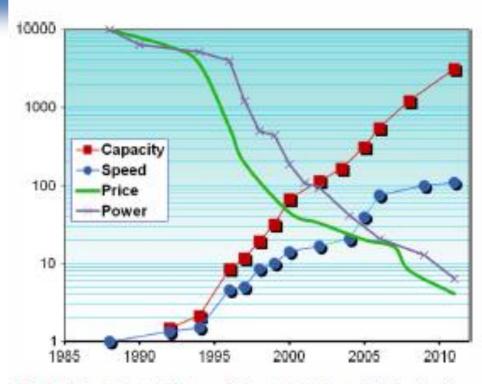


Fig. 1. Xilinx FPGA attributes relative to 1988. Capacity is logic cell count. Speed is same-function performance in programmable fabric. Price is per logic cell. Power is per logic cell. Price and power are scaled up by 10 000×. Data: Xilinx published data.

> Figure 1 from Three Ages of FPGAs: A Retrospective on the First Thirty Years of FPGA Technology Steve Trimberger (March 2015)

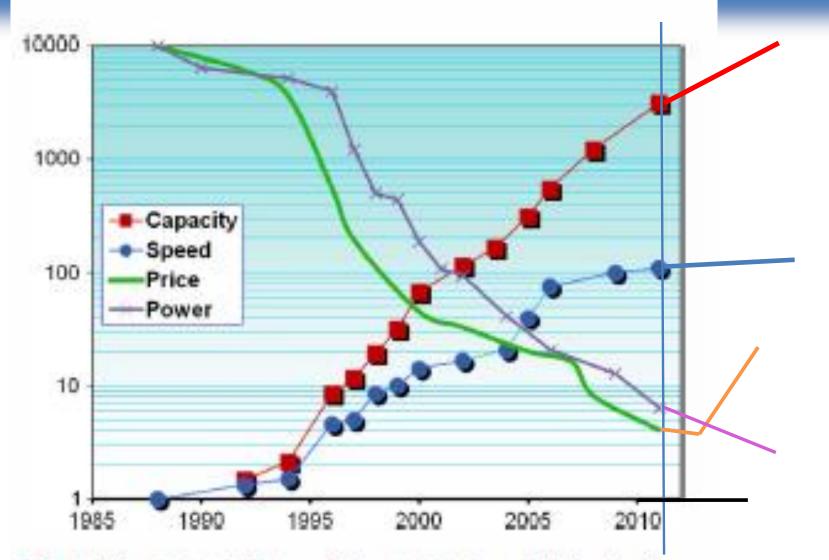


Fig. 1. Xilinx FPGA attributes relative to 1988. Capacity is logic cell count. Speed is same-function performance in programmable fabric. Price is per logic cell. Power is per logic cell. Price and power are scaled up by 10 000×. Data: Xilinx published data.

accelle

SYSTEMS INITIATIVE

Figure 1 from Three Ages of FPGAs: A Retrospective on the First Thirty Years of FPGA Technology Steve Trimberger (Match 2015)

Xilinx

- In the midst of rolling out 20nm generation: UltraScale
 - Kintex/Virtex UltraScale, Zynq
 - Clear leader for the large FPGAs used in prototyping
 - Not the leader elsewhere ...
- **MASSIVE** consequential reorganization early in 2015 ...
 - Great turmoil
- Announced and claims to have shipped UltraScale+
 - TSMC 16 nm
 - Full roadmap not disclosed as of Nov'15
 - Changed the terminology (...again...) 'system logic cell'

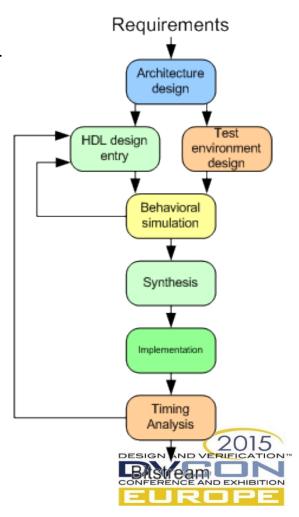
Altera (Intel...)

- Intel acquiring Altera for nearly \$17N (\$USD)
 - At a VERY high price
 - This is ... puzzling ... Datacenter?
- Stumbling a bit last 2 years
 - Switch to 14 nm Intel fab has not gone smoothly
- ARM in Altera FPGAs? As an Intel company?
- Don't have pricing yet on Stratix-10, but it looks very good.

Everybody else ...

- MicroSemi
 - Anti fuse, flash-based, some mixed signal
- Lattice
- Startups
 - Flex Logic got funded for some reason.
 - Tabula went down in a big ball of flame.
 - Achronix still stumbling around

FPGA SW


- Synopsys
 - Synplify Pro/Premier
 - Suite
 - Certify -> ProtoCompiler
 - Partitioning
- Mentor is doing, uhh, something
 - Acquired: (Aspey, FlexRAS), Certus
 - Precision
- Startups
 - Plunify

Let's discuss some philosophy

- FPGAs and ASICs share a very similar design methodology:
 - Describe the design
 - RTL: Verilog VHDL, or some new fangled abstracted method such as OpenCL
 - Simulate
 - Verification
 - Place/route and/or fab
 - Debug
- If ASIC: you'd better get it correct the first time
- If FPGA, I suggest you not
 - So you are going to debug

Market conditions for debug tools ...

- Market is stagnant and might be nonexistent...
 - Good reasons
- ChipScope/ILA, SignalTap
 - Are essentially free leaving no market opportunity
 - Productivity enhancement is notoriously difficult to sell
- Performance issues ... Resource issues ...

FPGA Debug – The Basics

- Once configured, in internal workings of an FPGA are opaque
 - So to debug, we need methods to gain internal visibility
- In the ancient times, we routed signal to pins and hooked up a logic analyzer
 - If you are REALLY old, you used an oscilloscope.
 - Still a valid mythology
- Now, we embed the logic analyzer in the FPGA
 - This is invasive its presence affects to logic we are trying to view.
 - It turns most, if not all, approaches are invasive
- Seems like this is a market opportunity ...

How are the data captured? How do we get the data?

- This is where debug products start to differ
 - -Where are the data stored?
 - On chip
 - Off chip
 - -How are the data retrieved?
 - JTAG
 - Custom Interface
 - High-speed serial Interface

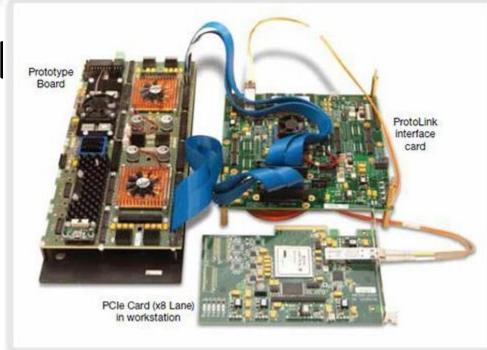
Xilinx ChipScope Pro/ILA

- ILA Integrated as part of Vivado tools
 - ChipScope is Virtex-7 and prior
- Standard embedded logic analyzer

Altera SignalTap II

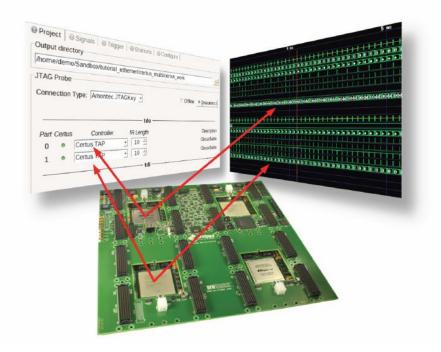
- Integrated as part of Quartus
- Standard embedded logic analyzer

Synopsys Identify


- Bridges2Silicon acquired by Synplicity (2002)
 - Synplicity acquired by Synopsys
- Standard embedded logic analyzer
 - Very good integration into design flow.

Synopsys Protol

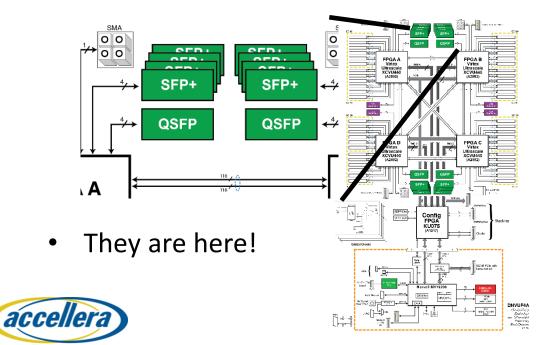
- Proprietary connector added to UUT
 - 40+ pins required
- Custom HW cabled to this connector
 Plugged into PCIe
- Allows for deep trace lengths.
 - Generally used for uP debug



Certus (now from

- Startup (Veridae) -> Tektronix -> Mentor
- Embedded Logic analyzer
 - External connection is JTAG
- Allows visibility for thousands of signals
 - Adds compression
 - Dramatically reduces cycle time
 - Multiple FPGAs

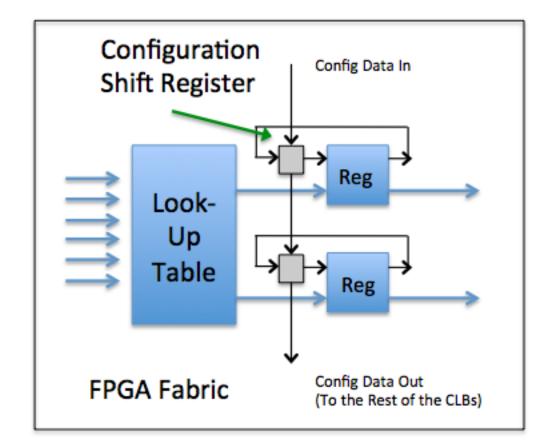
Certus™ Silicon Debug

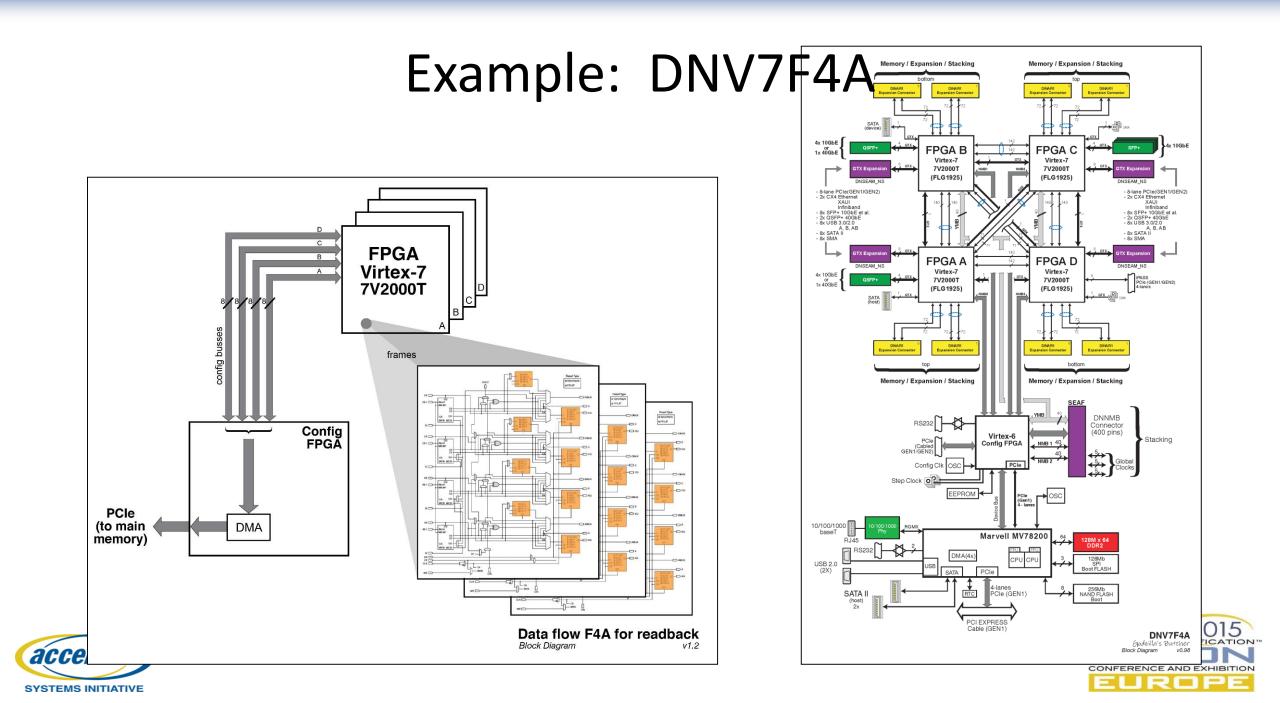


- Connects to high-speed serial interface
 - SFP, SATA et al.

SYSTEMS INITIATIVE

- High performance to FPGA
- Large memory depth: 8GB





Configuration Readback

- Xilinx (and soon Altera) allow readback of the internal FFs.
 - This can then be correlated with the nets and displayed
- If careful about what is read, this is non invasive

DN Readbacker – Key Features

- Noninvasive real time readback of FPGA register state
 - 100% coverage of FPGA registers
 - 1 complete readback/second (depending on FPGA size)
 - Running clock or single step
 - Works on all DINI Group Xilinx-based FPGA boards:
 - Xilinx UltraScale, Virtex-7/Kintex-7, Virtex-6
 - Stratix-10 when available
 - Output to standard .vcd file and displayed in <u>GTKWave</u>
 - No RTL support required
 - Noninvasive observation of all FPGA registers
 - Not necessary to redo synthesis or place/route

Disadvantages

- Unless clock stopped you don't get a frozen snapshot
- Slow: ~1Hz
- No understanding of clock domains

