FPGA Implementation Validation and Debug

Rohit Goel FPGA Solutions R&D Systems Design Division Mentor Graphics

Co Authors:

Rakesh Jain FPGA Solutions Marketing Systems Design Division Mentor Graphics Aman Rana FPGA Solutions R&D Systems Design Division Mentor Graphics Ankit Goel FPGA Solutions R&D Systems Design Division Mentor Graphics

© 2015 Mentor Graphics Corp. Company Confidential

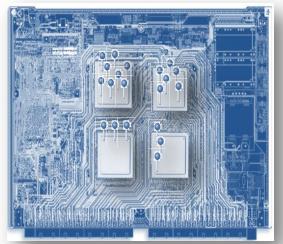
AGENDA

Validation Challenge

- Existing Methodology
- Improved Methodology
- Design for Validation Assisted Debug Flow
- Introduction to *Precise-Validate*

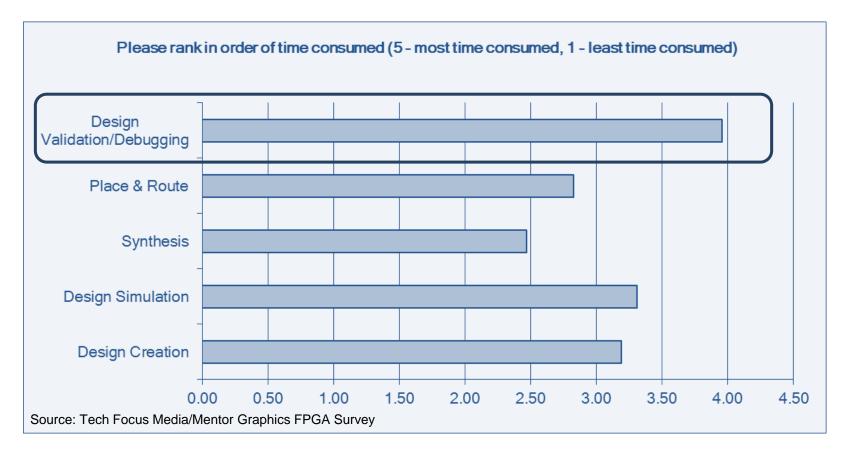
What is a Successful FPGA Design?

- Large Complex FPGA Designs <> NOT Push-Button
 - Extensive Verification Cycle
 - Multiple Implementation Iterations
- Performance and Area Requirements Met
 - Now What?
- System Integration Testing
 - What if the design does not work?
 - Where to start looking?
 - How to find the problem?

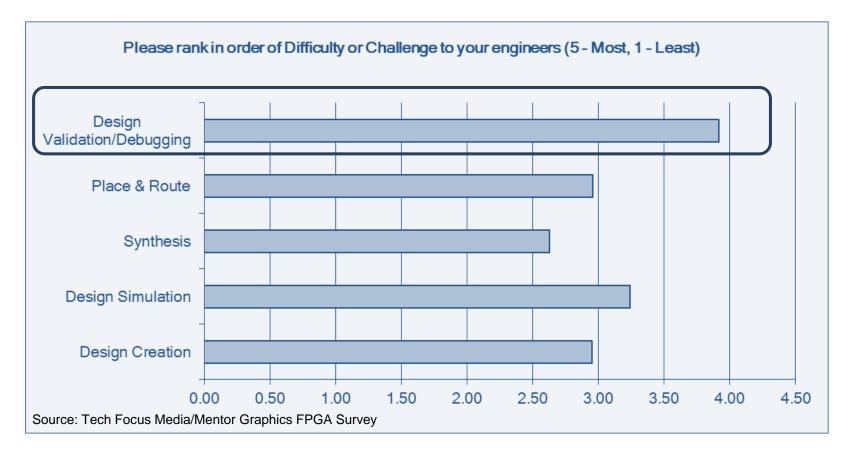


System Validation

- Challenge
 - Quickly & easily instrument validation structures to resolve system design issues in large complex FPGA
- Solution
 - Instrument Validation IP as part of Design
 - In-system FPGA Validation Framework
 - Design for validation
 - Probe for a variety of issues
 - Functional issues
 - Performance issues
 - FPGA-PCB integration issues....
 - Fast iteration cycles



4

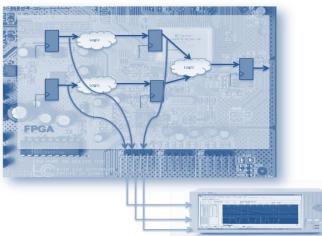

Considerable Time Spent on Debugging

© 2015 Mentor Graphics Corp. Company Confidential

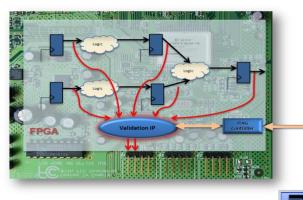
Difficulty or Challenge Ranking

AGENDA

- Validation Challenge
- Existing Methodology
- Improved Methodology
- Design for Validation Assisted Debug Flow
- Introduction to *Precise-Validate*

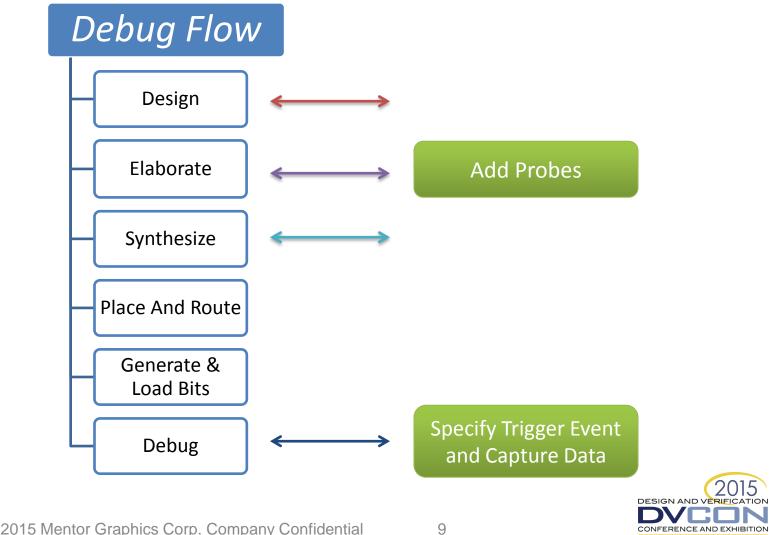


Existing Methodology


Traditional FPGA Debug

- Using Oscilloscope
- Internal Signals are pulled to I/O
- Signals are monitored using oscilloscope

Existing methodology


- Using Desktop/Laptop
- Using Validation IP
- Internal Signals are connected to validation IP
- JTAG is used to interface with Validation IP

DESIGN AND

Existing Methodology – Broader View

20

NDIA

Shortcoming of Existing Methodology

- Lack of Seamless Push-Button Flow
- Difficulty in Specifying hardware event
- Lack of Vendor Independence
- Limited FPGA resources

Lack of Seamless Flow

- Changes the HDL (Not for all methodologies)
 - Manual change in HDL is required
 - Desired signals have to be pulled out for connection
- Limited signal visibility
 - Generate statements
- Some tools exist to automate this
 - Automate pulling out of signals and connection
 - You can also write scripts to do it
 - However issue with such approach is language support

Difficulty in Specifying H/W Event

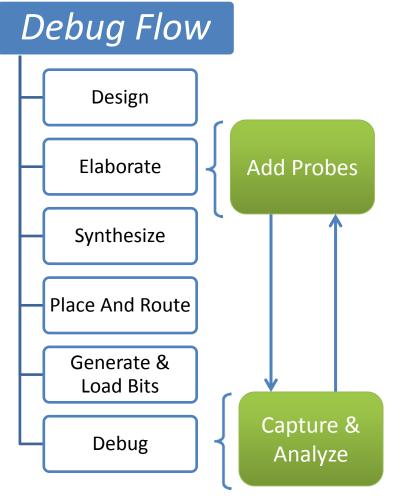
- What is an Event ?
 - An event in hardware is a point where a potential issue might occur
- How can I specify Event ?
 - Every tool has its own way of specifying Event
- Can I correlate with Hardware cycles ?
 - No, because every Event is seen as an isolated event
 - No way of correlating even if multiple events are specified using separate validation IP

Limited FPGA Resources

- Limited resources
 - Slices, Flops and RAMs
- Number of FPGA I/O Pins are also limited
 - Only a handful of pins are available as GPIO on board
 - It means only a small set of signals can be seen at a given time hence more iterations
- Can degrade design
 - Routing internal signals to validation IP or I/O pins
 - Routing signal from different part of FPGA to a common block

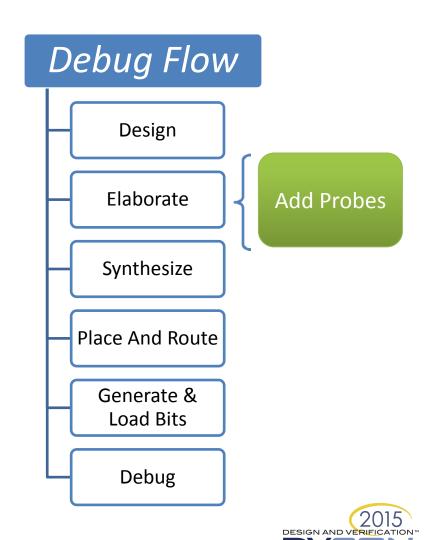
Lack of Vendor Independence

- Solutions commonly used today are vendor dependent
- Requires training and expertise development on different flows
- Every solution has a different flow
 - Adding Signals for Probing
 - Specifying Validation IP behavior
 - Specifying and capturing trigger **Events**


AGENDA

- Validation Challenge
- **Existing Methodology**
- **Improved Methodology**
- **Design for Validation Assisted Debug Flow**
- Introduction to *Precise-Validate*

Improved Methodology


- Debug flow is tightly integrated with synthesis tool
- Leverages synthesis tool capabilities

Seamless Flow

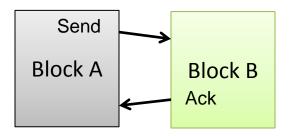
- Signals are selected after elaborate stage
 - Names are preserved or similar to HDL names
 - Gives almost 100% visibility
- No HDL change
 - Signals selected for probing are connected during **Synthesis**

Easy Specification of H/W Event

Allows user to write expression like normal HDL expression

(signal_a == 1'b1 || signal_b == 2'b00) && signal_c == 3'b101

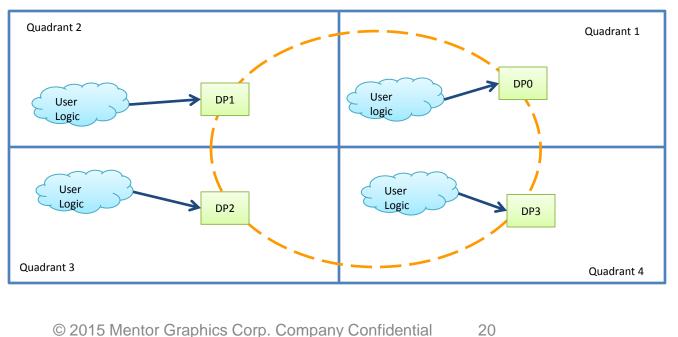
- Possible by using the language parser of synthesis tool
- Expression written in Verilog specific format
- Allows user to write expression using actual signal name
- Ease of use
 - Helps user in writing better expression suited to his needs



Easy Specification of H/W Event (cont'd)

- Correlation of events with actual design run-time.
 - Events will no longer be treated as isolated events
 - Tells exact design time or clock count at which a particular events occur
 - A simple yet powerful attribute which can help in lot of different ways
 - Example usage
 - A simple handshaking Protocol

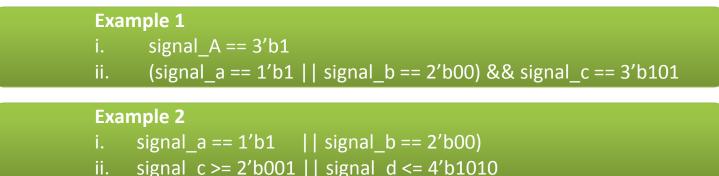
Event 1 : Block A transmit Send Event 2 : Block A receives Ack


Efficient use of FPGA Resources

• Using localize debug points.

Acce

SYSTEMS INITIATIVE


- Signals lying on different quadrant of FPGA should not be clubbed
- Validation IP pipelined to make sure design timing is not effected

Efficient use of FPGA Resources (cont'd)

- Highly optimized customizable monitors
 - More flexibility to control area utilization

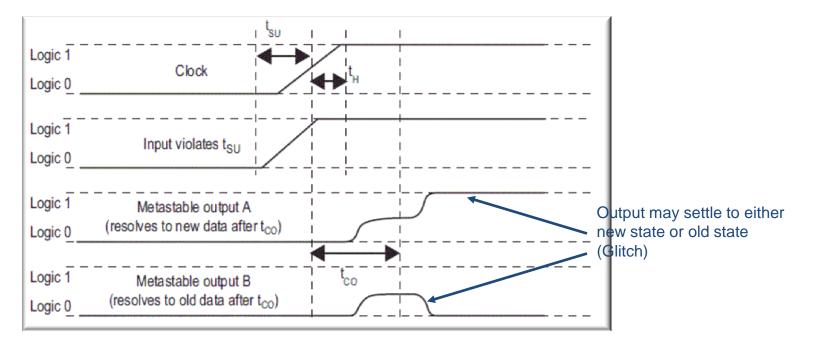
- Flexible use of RAM
 - No limitation on RAM size
 - Use of RAM is optional

Vendor Independence

- Validation IP is common for all vendors
- Using synthesis tool for instrumentation
 - Flow remains same for different vendors

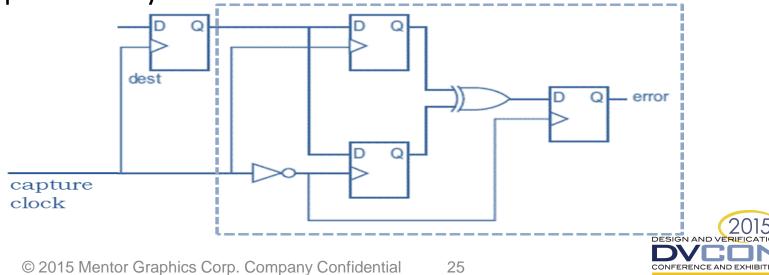
Metastability

Motivation


- Growing number of complex multi-clock domain designs finding their way into FPGAs
- Data transfer across different clock domains (CDC) requires careful handling at RTL level to avoid metastability issues
- Improper or insufficient timing constraints during implementation may also result in timing violations on board
- Functional issues due to metastability appear totally random and hence are hard to debug

Metastability

• Typical output of a metastable Flip-Flop


* Diagram from Altera White-paper

Metastability detector

- Existing solutions
 - Intuitive circuit that compares output at negative edge and next positive edge
 - Ineffective for scenarios where metastable output settles before negative edge
 - So probability of catching metastability is around ½ approximately

Proposed Metastability Detector

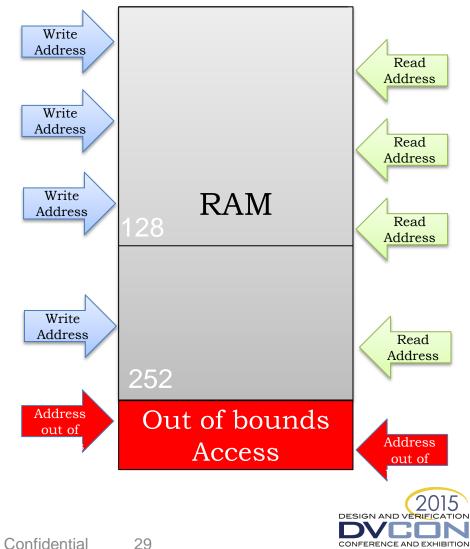
- Efficiency is independent of clock period
- All case where metastable output settles after negative edge of clock is detected
- Probability of catching metastable state when output settles before negative edge is high which is null for existing solutions
- Hence overall probability will be higher as compared to ½ for existing solutions

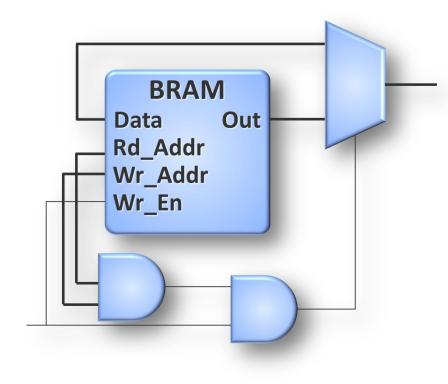
AGENDA

- Validation Challenge
- Existing Methodology
- Improved Methodology
- Design for Validation Assisted Debug Flow
- Introduction to *Precise-Validate*

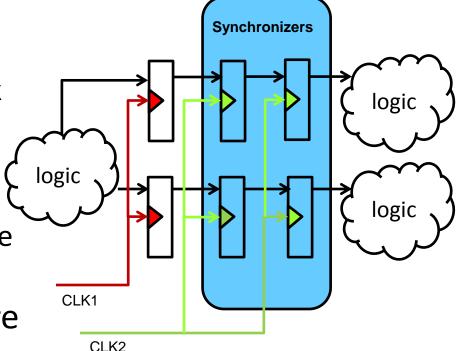
Design Validation – Assisted Debug Flow

- An unexplored area for FPGA validation
- Automatic identification of design issue areas
- Issues are sometime common across different design
 - If common issues are ironed out earlier design cycle get reduce
- Automatic instrumentation of validation IP for such issues
- Validates not only functionality but also quality of design




RAM Array bound

- RAM
 - Extensively used in the designs.
- RTL example
 - reg [7:0]RAM [0:252]
 - rd_addr [7:0]
 - wr_addr[7:0]
- Invalid data access


- RAM Rd/Wr Collision
 - FPGA architecture does not guarantee proper functionality
 - Synthesis adds logic to insure proper functionality
 - Logic adds extra area
 - Use instrumentation to prove functionality without extra logic

- Clock domain crossing
 - Signal transfer across clock domains requires proper synchronizers to avoid metastability
 - 2 or 3 flop synchronizers are commonly used
- All N-flop synchronizers are automatically detected
 - Metastability is checked at output of synchronizer

- Auto identification of common design issues
 - Array bound check
 - Ram Rd/Wr Collision
 - Metastability detector across clock domain crossing
- Automating the flow of instrumenting validation IP
 - All signals which are essential for design issues are automatically added as probe
 - All connections are made in memory and validation IP becomes part of design

AGENDA

- Validation Challenge
- Existing Methodology
- Improved Methodology
- Design for Validation Assisted Debug Flow
- Introduction to *Precise-Validate*

Introduction to *Precise-Validate*

- Vendor independent FPGA validation
- Seamless push-button instrumentation
 - No HDL modifications
- System speed FPGA validation
 - Real clock speed to catch real errors
- Dynamic trigger expression modification
- Virtually unlimited visibility
- User defined probe
- Automatic probe

-Probe Poi	nts	5				
Implement		Name 🛆	Туре	Status		
Yes	¥	Probe_1	PM	Disabled		
No	¥	Probe_2	PM	N/A		
Yes	¥	Probe_3	PM	Enabled		
Yes	¥	Probe_4	PM	Enabled		
Yes	¥	Probe_5	PM	Enabled		
No	¥	Probe_6	PM	N/A		
No	Ŧ	Probe_7	PM	N/A		
Yes	¥	Probe_8	PM	Enabled		
Yes	¥	Probe_9	PM	Enabled		

User Defined Probe Instrumentation

- Customizable monitors
- Pipelined architecture
- At-speed
- Pattern matcher
 - Simple Pattern
 - Simple Range
 - Complex Range
 - Edge Detector
- Metastability detector

Name DebugPoint	
Туре	
Pattern Matcher C Metastability Detector	
Pattern Type	
Simple Pattern (==, !=, !)	
Simple Range (<, <=, >, >=) Complex Range (<, <=, >, >=, <>)	Edge Detector
Maximum Pattern Count 4	
Maximum Hit Count 0 📝	
Trace Depth 1 K	
Trace Clock	
Name DCLK Edit	
Sensitivity @ Positive Edge @ Negative Edge	
Sensitivity Positive Edge C Negative Edge Frequency 50 MHz	
Frequency 50 MHz Trigger Signals	Add
Frequency 50 MHz	Add
Frequency 50 MHz Trigger Signals pseduo_random_gen_addr[9:0]	Add
Frequency 50 MHz Trigger Signals pseduo_random_gen_addr[9:0] pseduo_random_gen_ram_en[3:0]	Add
Frequency 50 MHz Trigger Signals pseduo_random_gen_addr[9:0] pseduo_random_gen_ram_en[3:0] pseduo_random_gen_ram_rd_en[3:0]	Add
Frequency 50 MHz Trigger Signals	Add
Frequency 50 MHz Trigger Signals	•
Frequency 50 MHz Trigger Signals	Add
Frequency 50 MHz Trigger Signals	•
Frequency 50 MHz Trigger Signals	•

Automatic Probe Instrumentation

- Probe points are automatically detected
- Controlled instrumentation
- Probe
 - For functionality
 - To validate performance

Operator Instance 🗸	Operator Type	Array Bound Che	ck	Read Write Collis	sion
MEM	Ram	Enabled		Not Applicable	~
MEM_10	Ram	Enabled		Not Applicable	7
MEM_11	Ram	Enabled		Not Applicable	7
MEM_12	Ram	Enabled	∇	Not Applicable	
MEM_13	Ram	Enabled	∇	Not Applicable	7
MEM_14	Ram	Enabled	∇	Not Applicable	

Dynamic Trigger Expression Configuration

- Re-configure trigger expression without reimplementation
 - Re-program FPGA through JTAG

Probe Console	_ & ×
Dynamic Attributes	_
🖸 Trigger Enable 🔄 Trace Enable 🔅 Repetitive Trigger	
Hit Count 1	
Trace Marker 1	
Trigger Expression	
Add	
 (coef_ld == 1'b1 && rd_out == 1'b1 && wr_in == 1'b1)	
	· · · · · · · · · · · · · · · · · · ·
Edit Save Cancel	

Trigger Monitor

- Gives bird-eye view for trigger status
- Provides multiple information for every debug point
 - Status
 - Triggers captured
 - Trigger time

			Trigger Monit	or			_ ć
me Unit 🛛 🔹							
			Debug	Points			
Name 🔽	Туре	Status	Trigger(s) Captured	First Trigger Time	Last Trigger Time	First Trigger Clk Count	Last Trigger Clk Cour
ram_1_inst.ram_3.MEM	RAM_AUTO	Idle	2	21588045900	21592417010	NA	NA
ram_0_inst.ram_3.MEM	RAM_AUTO	Idle	1	21585604610	21585604610	NA	NA
Training	PM	Idle	1	43163332620	43163332620	2158166631	2158166631
Trigger Search	n Criteria				Strategy		
Trigger(s) Count C Time	Clock Count		Name	Status	Trigger(s) Captured	First Trigger Time	Last Trigger Time
Start Value 1 E	nd Value 1		Array Bound Check	Idle	1	21592417010	21592417010
Start value I	ing value 1		Read Write Collision	Idle	1	21588045900	21588045900
			Nead Trike Compion	Pure		F1000040366	21000040300

DESIGN AND VERIE

Q&A

• Please email <u>Precise-Validate mktg@mentor.com</u> for any queries on methodologies/product.

