(2025

DESIGN AND VERIEICATION ™

DVLCOIN

CONFERENCE AND EXHIBITION

MUNICH, GERMANY
OCTOBER 14-15, 2025

FPGA Firmware Verification: a common approach
for simulation and hardware tests

S. Pavinato, E. D’Costa, S. Gabourin

European Spallation Source

Context

e ESS (European Spallation Source): the most powerful neutron source
ever built. (Lund, Sweden)

* FBIS (Fast Beam Interlock System): protects the machine gathering
signals sensor systems (FPGA and PLC based) and acts on actuators

* FPGA + VHDL: core of the FBIS

FBIS Architecture

B — L Y 7] | | ! — s 1T Y § [P s

* DLN(mTCA) -> Real logic

* SCU(cPCI) -> Interfaces sensor g é . gg qﬂ% Gl ol ol ol
systems i u- u&. w‘:/

@6@6@“
@

e ~30 different firmware. @

Gap between simulation & hw validation

Simulation Hardware validation
Unit/Integration/System (Factory) Acceptance Tests
Tests
UVM, VUnit, OSVVM, Cocotb Vendor tools, HIL, analyzers,

custom boards, high-level
framework(i.e. Python)

Test reuse difficult among the two environments.

Key Challenges

* Reduce gap between simulation <-> hardware
* Apply concepts from UVM & PSS
* Lower the entry barrier.

Our Approach

Shared Tests

4 W

Simulation Hardware
(Cocotb) (Pytest)

* Focus on common tests only

* Exploit the UVM modularity (driver, monitor, scoreboard,
environment)

* PSS inspired, stimuli portability
e Use python as glu

A \/ A 60_2\5

DESIGN AND VERIEICATION ™

NNNNNNNNNNNNNNNNNNNNNNN

Hardware Tester

* Inputs -> DLN/SCU FPGAs -> Outputs

* Ethernet, Profinet, Manchester Encoder, Aurora Cores, Access the FPGA
registers.

* EPICS. (software infrastructure used in building distributed control as
Particle Accelerators)

* |t allows to abstract data exchange with heterogeneous devices, regardless of
the drivers or protocols they interface with, as standardized process variables.
Thanks to this uniformity, high-level tools (Python) can interact with all
devices by the same mechanism.

* Pytest Automation

Cocotb & Pytest

e Cocotb 2.0 -> pytest style.
* Parametrization -> uniform testing
* CI/CD integration -> JunitXML reports

@cocotb.test()

@parametrize(a = [2,4,5]) @mark .parametrize("a" , [2,4,5])
async def test_dummy(dut, a): def test_dummy(a):
assert a ¥ 2 == 8, "Not even" assert a ¥ 2 == 0, "Not even"
Cocotb parametrized test. Pytest parametrized test.
<testsuites?
¢testsuite name="pytest® errors="0" failures="1" skipped="0" tests="3"»
{testcase classname="test" name="test dummy[2]" time="0.080"/»
<testcase classname="test" name="test_dummy[4]" time="@.000"/>
{testcase classname="test" name="test dummy[5]" time="©.081">
<failure message="AssertionError: Mot even assert (5 % 2) == 0"/
< ftestcase>
£ ftestsuite?
{/testsuites?

JUnit XML report.

(2025

DESIGN AND VERIEICATION ™

DVCCON

CONFERENCE AND EXHIBITION

UVM Concepts Applied

Testbench
r Tests ™ class Environment:
~Environment D — def __init__(self, driver_func, monitor_func, Scoreboard_class):
[) self.driver = driver_func
. D = self.monitcr = moniter_func
self.scoreboard = Scorehboard_class
3 -
= - - | . . .
- = <—> 0 i1f self.__class__.run_check_phase 1s Environment.run_check_phase:
= raise NotImplementedError(f"{self.__class__.__name__} must be overriden")
C r
. J def run_check_phase(self, %args, #%kwargs):
h .--"/ raise NotImplementedError("Subclasses must implement run_check_phase.")

e Same structure across simulation and hardware.
 Driver and Monitor tied to the environment. Same scoreboard.

* Factory mechanism -> override & inheritance.

(2025

DESIGN AND VERIEICATION ™

DVCCON

CONFERENCE AND EXHIBITION

PSS Concepts Applied

JSON Developer
Excel (Scenario) - Interpretation
Simulation Hardware
(Cocotb) Shared Python (Pytest)

Case Study: RISC-V Monitoring AN

Simulation Hardware

(Pytest)

U ,
“test_name": "DD5_21 S5 rflps",
I.da_tail: {

“input®: [

{ "name”: "slet™, “type”: "int", “domain™: [@, 1, 2, 3] |},
name”: “port”, “type”: "int", “"domain™: [@, 1] },
name”: “signal™, "type": “string", “"domain™: [“"EBeam Permit", "Redundant Beam Permit™]
name™: "slot_walue", "type": "string", "domain™: ["OK", "NOK"] },
name": "signal value", "type": “string", "domain™: ["OKE™, "NOK"] }1,

Pcocoth.test() @ppytest_mark. rflps
@parametrize((("scu™, “slot”, "port”), ru.get_system_params(RFLPS)), parametrize(serializer = [“Serializergé”],
slot_value = [OK, NOK], slot_wvalue = [OK, NOK],

signal = [“Beam Permit", "Redundant Beam Permit"],
signal value = [0OK, MOK])
async def DDS_21 5 rflpsidut, scu, slot, port, slot_walue, signal, signal_walue):
cshift = (port-1) *# B + ((get_data_type("scu_rflps_discrete_signals index™)[signal]l-1)+2)
swait environment.run_check_phass(slot, port, slot_value, signal_value, shift)

signal = [“Beam Permit”, “Redundant Beam Permit™],
signal_wvalue = [OK, NOK])
def ODS_21 5 rflps(self, serializer, scu, slot, port, slot_walue, signal, szignal wvalue):
translated_signal = get_data_type(“scu_discrete_signal_translator™)[signal]
test_environment.run_check_phase(scu,serializer,me_type,slot,port,translated_signal,s

(2025

DESIGN AND VERIEICATION ™

DVCCON

CONFERENCE AND EXHIBITION

Verification Metrics {\

Requirements SRS »DDs»Scena rio»Tests » Coverage

* Requirements Traceability Matrix (RTM)
e Scenario Coverage via parameterized tests.

* Adequate code coverage.

Transition simulation <-> hardware

Parametrized tests
Scenarios

Simulation: Hw validation:
- Full observability - Limited observability
- Code coverage - True timing of the system

- Validate test coverage - Requirements validation

Some Limitations

* JSON as DSL
* PSS not usable with cocotb
+ Cocotb 2.0 lacksverificationlibraries (2025-09-20)

e FAT relies on EPICS
 absence demands custom drivers and abstraction.

Benefits

* Reuse across simulation & hardware
* Improved FAT testing

* Common reporting & traceability

* Easier collaboration & understanding

(2025

DESIGN AND VERIEICATION ™

Conclusions

* Smooth transition simulation <-> hardware.
 UVM/PSS adopted, not imposed
« Common language, style, libraries, reports.

commony,,. .
uvm | Lo N e e
STS ems ~ m|ed .h‘.l\c'l

Questions e SR

,f:requlremen

& outputs_ 1

Q

oriolay,

L opportunity ||ke

SCGI’ICH’IOS

file metrics
- manual

3

siing I? Tt
g - esne © AN)ICOvVerdge..

Roy s ~unplcmcntdatggn scoreboard.. "I shared™,
Svalidationog g : ware
Tr|;1l|$|ﬁ - § e |ous|y(le“elopu1 . | s ,.;
de:élopment format™" Vot Q im “=I-"‘““°“"’" : ' mlmplemented ?
P dedlouled l]l]ll L s,,.ésw o
%p"y eS @ ooooo w“‘f@“]"’r“r"“}f Iangua e (ugs%ﬂgrdse

ﬁ.meliwro‘nment“
challenges ’!ﬂ!}rl(ggls |mplementat|anslo£gods|

a redundant =
caore o |
via 28
ers ae? el sequences wgnd % alwll[c
. le T
InCl Ude roan U wpasialy ‘oge 5 : i/ bt Mwbsest/bnckone v % o
ll]di.llille l‘;; el f! e S itams ahility (’a o
" . = /6. : 7
iem‘urf’srkﬁ(”ﬂn. g % may
...‘*1!(,'(£ : e g
0 exercised g workflows accaptance-' F b d rotection
? asedet
l:?s lmlq 1¢thC)(l()l()'l ies . . u :Lg_.g‘.l ility Componen S o

h? "‘,_,,._ﬁ s+er

“/a [;e,qm,,
cummummlmn

reU,sabIe run chiéek phise yoger

contlate

randomized

(2025

DESIGN AND VERIEICATION ™

DVCCON

CONFERENCE AND EXHIBITION

	Slide 1: FPGA Firmware Verification: a common approach for simulation and hardware tests
	Slide 2: Context
	Slide 3: FBIS Architecture
	Slide 4: Gap between simulation & hw validation
	Slide 5: Key Challenges
	Slide 6: Our Approach
	Slide 7: Hardware Tester
	Slide 8: Cocotb & Pytest
	Slide 9: UVM Concepts Applied
	Slide 10: PSS Concepts Applied
	Slide 11: Case Study: RISC-V Monitoring
	Slide 12: Verification Metrics
	Slide 13: Transition simulation <-> hardware
	Slide 14: Some Limitations
	Slide 15: Benefits
	Slide 16: Conclusions
	Slide 17: Questions

