
1 11

Exploring New Frontiers of High-
Performance Verification with UVM-AMS

Tim Pylant, Cadence Design Systems, UVM-AMS WG Vice-Chair

2 22

What Does DMS/AMS Refer To?

• AMS: Mixed signal with electrical (includes schematics/Spice, Verilog-AMS,
Verilog-A) – Spectre and Xcelium
• DMS: Mixed signal with discrete real numbers (no electrical) – Xcelium only
• Pure Digital: Only logic (SystemVerilog/Verilog/VHDL) – Xcelium only

VHDL

Spectre
SPICE

Verilog SystemC
SystemVerilog

Verilog-AMS

Virtuoso AMS Designer Simulator
Spectre (in AMS-Spectre mode)

APS (in AMS-APS mode)
Xcelium

Digital Engine

Ansi-C/C++

Matlab/
Simulink

Specman

VHDL-AMSVerilog-A

3 33

Traditional MS Design

4 44

Cadence View of Mixed-signal Verification Issues

• Mixed-signal verification issues in today’s flow
• Performance vs. accuracy of analog models

• Transistor models execute too slow for SoC verification
• Verilog behavioral models have higher performance but do not accurately represent analog

models
• Verilog model not kept in sync with analog model

• Working with digital designs
• Connectivity errors not being caught
• Spec assumptions not verified between analog and digital
• Lack of coverage of the analog design across MS boundary

5 55

Real-wire Coercion
• When a wire or interconnect is connected to a net of the type wreal,

SystemVerilog real, or VHDL real, it is coerced (forced) to wreal
• Coercion can occur across multiple hierarchical levels
• The coercion process allows a

seamless connection of devices
without worrying about the
interconnects and their types
• Different configuration or

interconnect might be used to
connect electrical ports
• It allows for different design/

model abstractions without
recoding interconnects

All nets are coerced to
wreal

Testbench

Wreal port

Wire in
.vams
module

real in
.vhd
module

real in
.sv
module

6 66

Auto-Inserted Connect Modules (AICM)

• The concept of automatic inserted connect modules applies
• Between discrete (logic and real) and continuous, such as electrical domain

(E2L/L2E, R2E/E2R)
• Between two discrete domains, such as real to logic connection (R2L/L2R)

• CMs allow design blocks to be seamlessly switched without needing to
recode the interconnect
or port types. It supports
multiple power supply
sensitivities used in value
conversion Analog

Block
Digital
Block

Hand-coded conversion

electrical MixedSig
Conversion

Block
logic

Analog
Block

Digital
Block

AICM

Auto-Inserted Connect Module

electrical logic

7 77

Disciplines

• Continuous disciplines
• electrical

• Potential and flow
• Kirchhoff’s laws KCL/KVL

• voltage
• Only potential

• Discrete disciplines
• logic

• Discipline resolution algorithm
• Incompatible boundaries have CM/IEs auto-inserted during elaboration phase
• Types of IEs: E2R/R2E, L2R/R2L, E2L/L2E, Bidirectional RNM, Bidirectional

conservative flow

SPICE

electrical

electrical

electrical

electrical

A

A

D

D

Event Driven

real

logic

real

logic

A

D

A

D

E2R

E2L

R2E

L2E

1.6 1.6

1.6 1’b1

1.0 1.0

1.8 1’b1

8 88

AMS Xcelium Use Model

• Sign off analog IP with AVUM flow
• Schematics => Generate SPICE netlist
• Plug and play into SV UVM testbench (TB re-use)
• Verify critical path scenarios, i.e. POR, timing, dynpower, power seq, etc..

Digital Design Verification

SPICE

A

Analog/AMS Design Verification

Testbench
(verilog)

Digital
Blocks

(verilog)

Analog
Design

(SPICE) A

SV RNM

A

SV RNM

A

SV RNM

D

VHDL

D

verilog

D

SV

A

9 99

AMS Control File (amsd block)
The “heart of the AXUM flow” ease of use

• Create and configure with the AMS Control file(amscf.scs)
• Spice block substitution (portmap card)
• Cell, instance Bindings (config card)
• Interface element declarations (ie card)
• Multiple supplies (ie card)
• Verilog-Spice-Verilog sandwiching(use=spice, use=hdl)
• Includes Spice file pointers and analog control file

• Read directly by xrun:
% xrun amscf.scs <other_files_and_options>

• amsd block settings assign cell and instance bindings using AMS xrun
binding engine

10 1010

If we have automated technologies
that take care of coercion and
inter-discipline connections,

why do we need UVM-AMS?

11 1111

MS-SoC: Mixed simulation env using RNMs & analog models

Real/Wreal Model
Spice Model

Analog/Mixed-signal
Custom Digital
Digital

vPlan Plan

VHDL

Verilog/SV/e

MS Testbench – e/SV/SystemC, wreals

FM
Receiver/

Transmitter

PLL

Audio
RF

Receiver/
Transmitter

TV

LCD Driver

PMU

Bluetooth

w
real

wreal

w
real

w
real

w
real

MS verification
metric

MS Assertions

12 1212

Top

uvm_agent (UVC)

in
tf

driver

monitor

sequencer

config in
tf

DUT

registers

Classical UVM Example

13 1313

• Define a way to extend UVM to AMS/DMS
• Modular and reusable testbench components
• Sequence-based stimulus
• Take advantage of UVM infrastructure as much as possible

• Reuse as much UVM as possible as DUT is refined from digital to AMS
• Use extension/factory as much as possible
• Support UVM architecture for DMS/AMS DUT from the start

• Define standard architecture for D/AMS interaction
• Minimize traffic across the boundary
• Enable development of D/AMS VIP libraries and ecosystem

What Is UVM-MS?

14 1414

• An analog signal that is not simple DC or a slow-changing signal must be a
periodic waveform like a sine wave, a sawtooth, or some composition of
such sources.
• For example, a signal generator for a sine wave can

be controlled by four control values, determining
the freq(1/λ), phase(Ф), amplitude(A), and
DC bias(ν) of the generated signal.
• The properties of the analog signal being driven

are controlled by real values generated by the sequencer.
• A UVM sequence_item contains fields for all the control parameters.
• The driver converts the transaction to a setting for the signal generator.

Generating/Driving Continuous Analog Signals

15 1515

• Minimal changes to UVC to add MS capabilities (driver, monitor, sequence item)
that can be applied using set_type_override_by_type
• Define analog behavior based on a set of parameters defined in a sequence item

and generate that analog signal using an analog resource (MS Bridge)
• Measure the properties of the analog signal, return them to a monitor, and

package those properties into a sequence item
• Drive and monitor configurations, controlled by dedicated sequence items and

support easy integration into multi-channel test sequences
• Controls can also be set by way of constraints for pre-run configurations.
• Collect/check coverage in the monitor based on property values returned from

the analog resource or add checkers in the analog resource

Requirements

16 1616

EEnet Modeling

17 1717

• Definition of “nettype” construct applicable to any datatype
• Application to real datatype provides construct equivalent to VAMS “wreal”

• Cadence package “cds_rnm_pkg” defines nettypes for SV identical in name &
operation to VAMS wreal flavors: wreal1driver, wreal4state, wrealavg, wrealsum, etc

• User Defined Type (UDT) can use a struct of multiple values to define a net
• User Defined Resolution (UDR) functions can define how the net should

merge multiple drivers of the UDT format to define the resultant net value
• This extends the possibilities of how interfaces between blocks are defined

• Cadence “EE_pkg” defines a nettype to define an electrical interface
• Multiple drivers can each drive the net with voltage or current and resistance values
• Resolution function computes resulting net voltage

SystemVerilog 2012 Extended Nettype Capabilities
Blk1 Blk2net

18 1818

• The “EEnet” UDT specifies three fields:
• V = voltage driving net
• I = current driving the net
• R = resistance driving the net

• This allows lots of options for how the net can be driven:
• Specify V and R with I=0 for voltage with series resistance
• Specify I and R with V=0 for current with parallel resistance
• Specify V with R=0 for ideal voltage source
• Specify I with R=`wrealZState for ideal current source

• Resolution with included UDR function provides:
• V = resolved node voltage, or `wrealXState if multiple ideal voltage drivers
• I = 0 normally, or current through voltage source if driven by ideal voltage source
• R = effective impedance at node (parallel combination of all connected resistances)

• Re-evaluated whenever any driver changes

How Is an EEnet Defined?

’{V,I,R}

Format of EEnet Driver
Definition

19 1919

Simple example of an EEnet driver code: V+R driving a node
import EE_pkg::*; // access the definitions in EE_pkg

 module myVRdrv(// declare the voltage+resistance driver
 inout EEnet P, // EEnet pin is inout to allow both read & write
 input real Vval, // voltage value to drive to net
 input real Rval, // resistor value to drive to net
 output real Imeas // measured current from pin thru V+R to ground
);

 assign P = ’{Vval,0.0,Rval}; // drive voltage & resistance onto net
 assign Imeas = (Rval==0)? P.I : (P.V-Vval)/Rval; // measure current
 endmodule

+_

Rval

Vval

P.V

Imeas

20 2020

Simple RC response using CapGeq model

+_

R=1K

Vin

Vout

C=40pF

• Sample rate of t/4 generates points typically within 0.1% of analog waveform

• Sample rate equal to t still has well-controlled error considering large step size

Vin (with 10ns rise/fall times)

Vout (electrical)

Vout (EEnet, Ts=10ns=t/4)

Vout (EEnet, Ts=40ns=t)

21 2121

import EE_pkg::*; // access the definitions in EE_pkg

 module i2c_target (

 inout EEnet SDL, // I2C SDA pin

 inout EEnet SDL // I2C SCL pin

);

 assign SDA = ’{Vval,0.0,Rval}; // drive voltage & resistance onto net

 assign SCL = ’{Vval,0.0,Rval}; // drive voltage & resistance onto net

 endmodule

I2C example Using EEnet

22 2222

• Cannot create analog behaviors from UVM class-based objects

• Need mechanism to control analog parameters
• Parameters not part of interface

Why Do We Need UVM-MS for I2C?

23 2323

Applying UVM-MS to EEnet Model

24 2424

uvm_ms_agent (UVC)

in
tf

driver

monitor

sequencer

config

MS Bridge

DUT

in
tf

• MS Bridge is the proposed layer that sits between the UVC and the (A)MS DUT
• MS Bridge is a SV module that consists of a proxy API, SV interface, and an analog resource

module
• The ‘proxy’ is an API that conveys analog attributes between the UVC and the MS Bridge
• The SV ‘intf’ passes digital/discrete signal values (logic, real, nettype/RNM) between UVC and

MS Bridge
• The analog resource (SV, Verilog, or Verilog-AMS)

Overall UVM-MS Methodology

analog resource

pr
ox

y

pr
ox

y

DUT

25 2525

• MS testbench may require the behavior and presence of analog components that a typical
UVM-RTL testbench could not include. These could be:
• Capacitors, Resistors, Inductors, Diodes, current/voltage sources etc. Or a complex passive network for

multiple DUT pins.
• A piece of Verilog-AMS code
• Such components will be used to model the analog behavior of PADs, lossy transmission lines,

loads/impedances, or any other voltage/current conditioning required to accurately model the signals
connecting to the ports of DUT

• Those components can be placed inside the analog resource to be controlled by proxy.

UVM-MS Analog Resource
uvm_ms_agent (UVC)

in
tf

driver

monitor

sequencer

config

MS Bridge

DUT

in
tf

pr
ox

y

pr
ox

y analog resource

27 2727

UVC package
class i2c_bridge_proxy extends uvm_ms_proxy;
...

pure virtual function void set_capitance(…);
...

int delay;
...
endclass

module top;
…

i2c_bridge i2c_bridge(.sda, .scl);
…

initial begin
uvm_config_db#(osc_bridge_proxy)::set(null,"*12c*","bridge_proxy",top.i2c_bridge.__uvm_ms_proxy);
run_test();

end
endmodule

module osc_bridge(...);
...
osc_bridge_core #(...) core (...); // AMS model
...
class proxy extends osc_bridge_proxy;

...
function void set_capitance(input real cap_val);

core.cap_val = cap_val;
endfunction

endclass

proxy __uvm_ms_proxy = new();
...
always_comb

__uvm_ms_proxy.delay = core.delay;
...
endmodule

Implement

UVM config setting

Proxy Template (API)

Proxy instance in MS Bridge module

Passes values to analog resource to
“program” waveform

Instance of analog
resource

Proxy “Hook-Up”

Passes values to UVC component to
”monitor” waveform

28 2828

Push

Pull

Monitored

Proxy ßà Analog Resource

class i2c_proxy ... ;
 function void push_Vsup(input real Vsup);
 core.Vsup = Vsup;
 endfunction
endclass : i2c_proxy

class osc_proxy ... ;
 function void get_measures(...);
 ampl = core.ampl_out;
 bias = core.bias_out;
 phase = core.phase_out;
 freq = core.freq_out;
 endfunction

 int delay;
endclass : osc_proxy

MS Bridge

osc_bridge_core (...);
 ...
 real Vsup;

 analog begin
 vsin = (ampl_in * sin(`M_TWO_PI * freq_in * $abstime);
 ...
 end

 real ampl_out;
 real bias_out;
 real freq_out;
 real phase_out;

 Vsig = V(sig);
 if (Vsig > max_a)
 max_a = Vsig;
 else if (Vsig < min_a)
 min_a = Vsig;always_comb begin

 __uvm_ms_proxy.delay = core.delay;
end

Interpolated value

If target is different, it’s seen
as a D2A event

Analog generates update

29 2929

I2C DUT TOP
HWTOPSWTOP

I2C
INTF

REGISTER
DUT

SCL
SDA

I2C
UVC

sda_drive
scl_drive

OSC
INTF

FREQ_ADPT
DUT

OSC
UVC

30 3030

I2C DUT TOP
HWTOPSWTOP

OSC
INTF

FREQ_ADPT
DUT

OSC
UVC

I2C
INTF

REGISTERI2C
UVC

I2C Bridge

Analog
Resource

SCL
SDA

Proxy

sda_drive
scl_drive

push_V

SCL
SDA

31 3131

I2C Waveforms

Logic signals

EEnet signals

32 3232

Freq Adapter Waveforms

33 3333

Model of Frequency Adapter Ports in SV

module freq_adapter (

 output logic CLKOUT_P,CLKOUT_N; // differential output

 input logic CLK_IN; // clock input

 input logic sdl, sda; // I2C interface

 input logic [7:0] pw_adj, [1:0] sr_adj, ampl_adj;

);

uvm_agent (UVC)
in

tf

driver

monitor

sequencer

config

Top

in
tf

DUT (digital)

1 0 1 0 1 0 1 0

34 3434

Top

DUT (RNM/Elec)
MS Bridge

analog resource

in
tf

pr
ox

y

Model of Frequency Adapter Ports in SV RNM

module freq_adapter import cds_rnm_pkg::*; (

 output wreal4state CLKOUT_P,CLKOUT_N; // differential output

 input wreal4state CLK_IN; // clock input

 input EEnet sdl, sda; // I2C interface

 input logic [7:0] pw_adj, [1:0] sr_adj, ampl_adj;

);

uvm_agent (UVC)
in

tf

driver

monitor

sequencer

config

1 0 1 0 5V 0V 5V 0V

RNM uses event solver so just need
to convert logic to real voltage

35 3535

Example Walkthrough
UVM digital to UVM-MS

36 3636

• Create Bridge module
• Contains Analog Resource and Proxy

• Extend classes for Driver
• Use set_type_override_by_type to use extended classes

Steps to Create a UVM-MS UVC

37 3737

i2c_bridge

38 3838

i2c_driver à i2c_ms_driver
UVM UVM-MS

39 3939

freq_adpt_tb à freq_adpt_ms_tb
UVM UVM-MS

40 4040

Demo

41 4141

UVM Messaging

42 4242

• Debugging activity inside a large environment with many UVCs is critical
• Need to report:

• Errors
• Debug
• Progress

• Messages need to be categorized via severity:
• Fatal, Error, Warning, Info

• Need to link actions with messages
• Stop simulation on fatal or after four errors
• Summarize number of messages reported

• Need a different mechanism than simulator messages to avoid filtering effects

Messages for Debug and Error Reporting

43 4343

UVM Messaging System

44 4444

• UVM Reporting macros not supported in Verilog-AMS modules
• Take advantage of up-scoping to access SV bridge

• `include “uvm_ms.vamsh” in Verilog-AMS analog resource or
`include “uvm_ms.vdmsh” in SystemVerilog analog resource

• localparams to define UVM Verbosity levels as integers to match UVM enum
• Macros to wrap the uvm_ms_* reporting function calls defined in uvm_ms.svh

• `include “uvm_ms.svh” in MS Bridge (SV)
• Definitions of the functions called by analog resource
• Provides macros for `uvm_ms_[info|warning|error|fatal](…)
• Utilizes the “__uvm_ms_proxy” declaration as the originating path for analog

resource UVM messages

UVM Messaging from Analog Resource

45 4545

• Use analog domain to detect the issue and toggle a flag
• Flag is detected by absdelta to then report the message via the digital

engine
• Example

analog begin
 if((I_PLUS > 1.0) && !I_thr_triggered) I_thr_triggered = 1;
 else if(I_PLUS < 0.9) I_thr_triggered = 0;
end
//Convert the detection in the analog block to a UVM report.
string message;
always@(absdelta(I_thr_triggered,1,0,0,1)) begin
 $sformat(message,"The Current is above the thresholds @ %e",I_PLUS);
 if(I_thr_triggered) `uvm_ms_error(P__TYPE,message)
end

UVM Messaging Example for Verilog-AMS Resource

Up-scope function call

46 4646

UVM Message – Analog block

“uvm_ms.svh”

osc_core.vams

osc_bridge.sv

UVM_INFO ../uvc_lib/osc/vams/osc_bridge_core.vams(98) @ 52001.098068ns: top.detector_bridge
[FREQ_UPDATE] The Current is above the threshold @ 1.178812e+00A

“uvm_ms.vamsh” uvm_ms_info function is found via up-scope and executed from SV bridge
`define uvm_ms_info(id,message,uvm_verbosity) \

uvm_ms_info(id,message,uvm_verbosity,$sformatf(“%m”),`__FILE__ ,`__LINE__);

`include “uvm_ms.vamsh”
`uvm_ms_info("FREQ_UPDATE",$sformatf("freq=%e Hz period=%e ns", freq_in, out_period),\
UVM_MEDIUM)

function void uvm_ms_info(id,message,uvm_verbosity,uvm_path,`__FILE__ ,`__LINE__);
uvm_component CTXT;
CTXT=uvm_ms_get_bridge_path(uvm_path); // get path to uvm_component in top.bridge
CTXT.uvm_report_info(id,message,uvm_verbosity'(verbosity_level),file,line);

endfunction: uvm_info

`include “uvm_ms.svh”
`uvm_ms_reporter // instantiates uvm_ms_reporter component to be used with messaging

47 4747

• There is a need for more advanced, standard methodologies for scalable,
reusable and metric-driven mixed-signal (AMS/DMS) verification
• The UVM-AMS WG proposal addresses the gaps in current verification

methodology standards
• Extend UVM class-based approach to seamlessly support the module-

based approach (MS Bridge) needed for mixed-signal verification
• Targeting analog/mixed-signal contents (RNM, electrical/SPICE)
• Application and extension of existing UVM concepts and components

• Sequencer, Driver, Monitor
• MS Bridge / Analog resources
• UVM Messaging System

Conclusion

48 4848

Questions?

