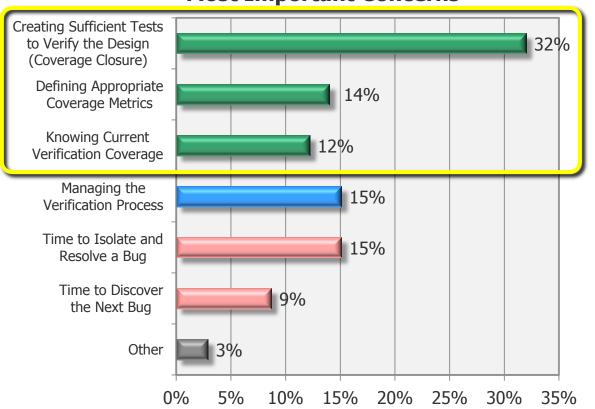


Expediting the Code Coverage Closure Using Static Formal Techniques – A Proven Approach at Block and SoC Levels

Questa Formal team and friends

2015 DVCon India D1A2.1-DV

Agenda

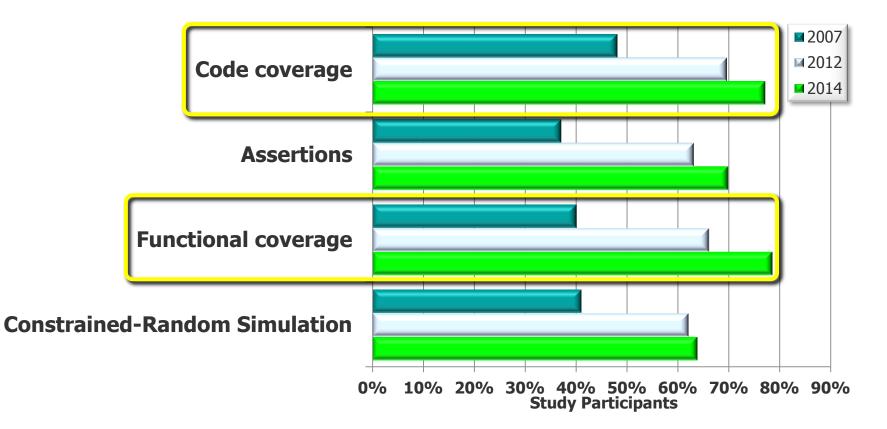

Introduction

- Coverage Backgrounder
- Targeting Unreachable Coverage with Formal
- Reaching Coverage Closure Faster
- Conclusion

Functional Verification Challenges

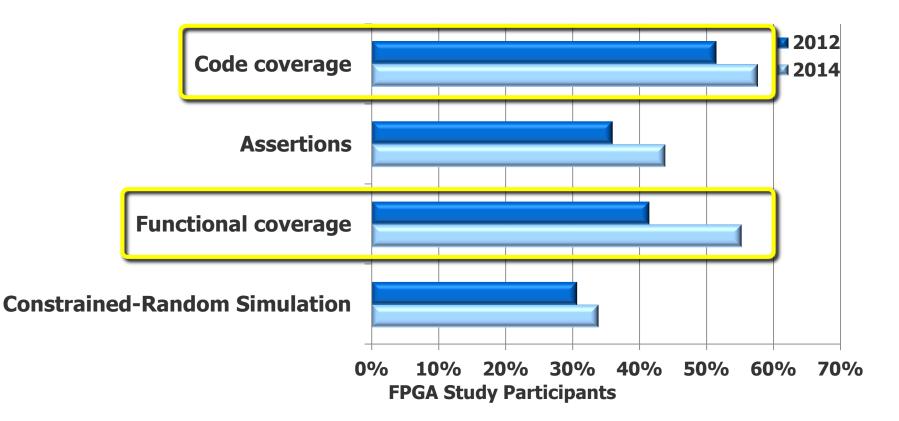
Coverage Ranks at the Top of Project Management's Concerns

Most Important Concerns


Source: Wilson Research Group and Mentor Graphics, 2014 Functional Verification Study

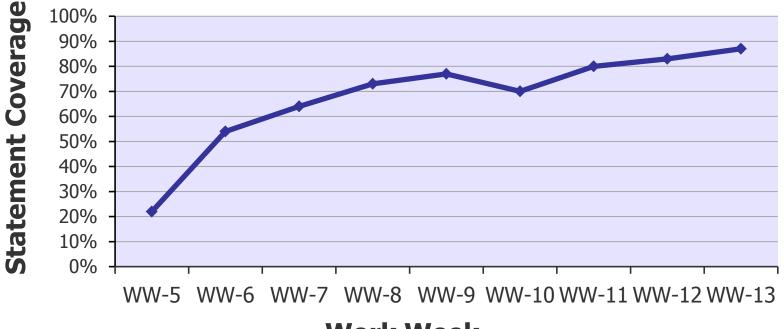
© Mentor Graphics Corp. Company Confidential **www.mentor.com**

Wilson Research Group 2010 Functional Verification Study


Industry Trends: ASIC D&V Use of Code Coverage

Source: Wilson Research Group and Mentor Graphics, 2014 Functional Verification Study

FPGA Verification Technique Trends



Source: Wilson Research Group and Mentor Graphics, 2014 Functional Verification Study

Code Coverage Challenge

Are we there yet?

Work Week

Data & graph from 2011 customer paper

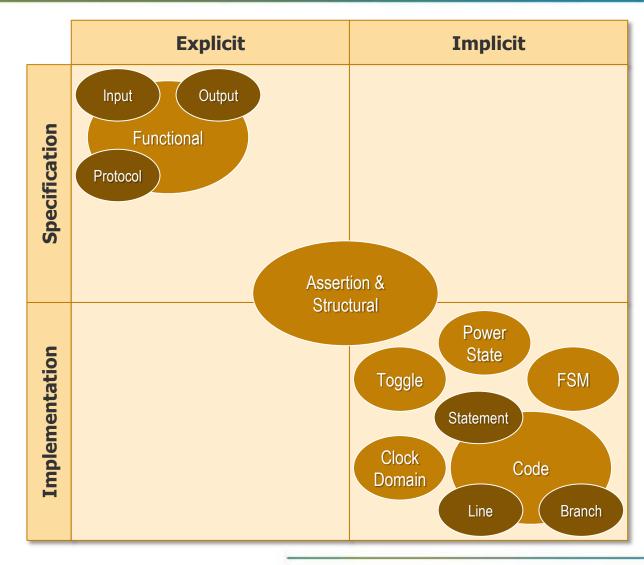
- ✓ 270 man weeks to do coverage waiver analysis for one design
- 180 man weeks to write missing tests
- That's almost 9 man-years!

Verification Management Challenge

What You Will Learn Today

- Primer on coverage types and how coverage is recorded
- How to rapidly identify "unreachable" coverage areas
- How to reach your coverage goals faster

Agenda


Introduction

- Coverage Backgrounder
- Targeting Unreachable Coverage with Formal
- Reaching Coverage Closure Faster
- Conclusion

Types of Coverage

- Origin of Source
 - Specification
 - Implementation
- Method of Creation
 - Explicit
 - Implicit
- Both are Required
 - Functional
 - Structural

Coverage: Implementation

What areas of the design have been touched by verification

Code Coverage

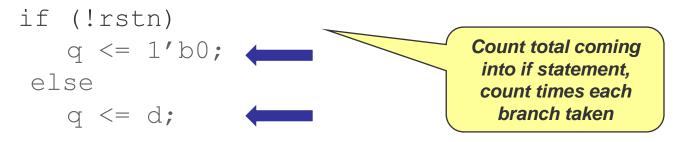
- Did these lines/branches of code get exercised?
- Automated in the simulation environment
- One of the basic design verification signoff metrics
- A basic measure with little correlation to functionality

FSM Coverage

- Did all the states and transitions get exercised?
- Automated in the simulation environment
- One of the basic design verification signoff metrics
- Typically included with code coverage

Code Coverage: Statement (s)

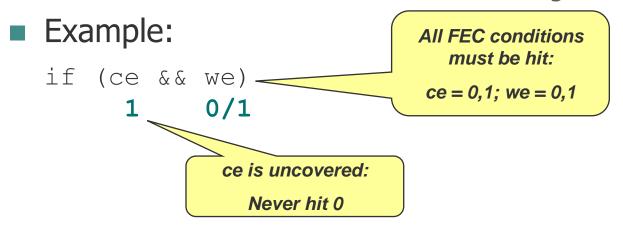
Counts the execution of each statement on a line
 — Even if multiple statements


Example:

always @(posedge	clk or	negedge	rstn) 🗲	-		
•••						
reg <= dat;	I			the statements the number of		
C <= A && B;	I		times	each one is hit		
Report style based on number of Statements						
Enabled Coverage	Active	e Hits	Misses	% Covered		
		·				
Stmts	415	387	28	93.2		

Code Coverage: Branch (b)

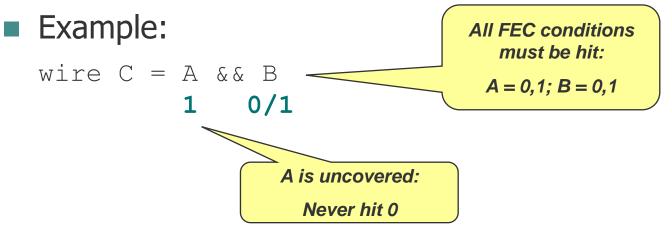
- Counts the execution of each conditional "if/then/else" and case statement
 - All true and false branches are considered
 - Each (if/else if/else | case) element counts as a branch
- Example (if statement):


Report style based on number of Branches

Enabled Coverage	Active	Hits	Misses % Covered
Branches	47	45	2 95.7

Code Coverage: Condition (c)

Analyzes the decision made in "if" and ternary statements
 — Considered extension of branch coverage

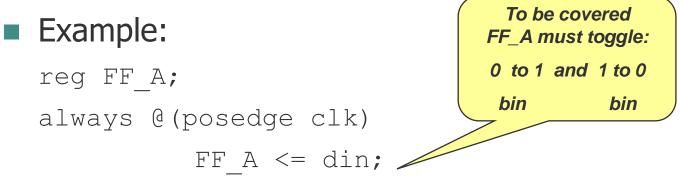

Report style based on Focused Expression Coverage

Enabled Coverage	Active	Hits	Misses	% Covered
FEC Condition Terms	16	13	3	81.2

Code Coverage: Expression (e)

 Analyzes expressions on the right hand side of an assignment

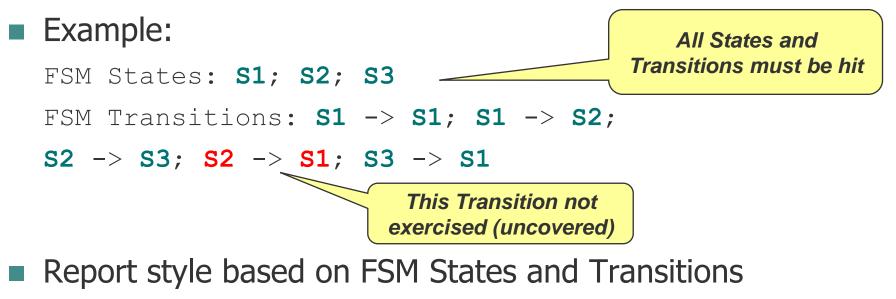
Report style based on Focused Expression Coverage


Enabled Coverage	Active	Hits	Misses	% Covered
FEC Condition Terms	25	14	11	56.0

15

Code Coverage: Toggle (t)

Counts each time a logic node transitions one state to another


Report style based on Toggle Bins

Enabled Coverage	Active	Hits	Misses	% Covered
Toggle Bins	356	351	5	98.5

Code Coverage: FSM (f)

Counts the states and transitions of a FSM

Enabled Coverage	Active	Hits	Misses	% Covered
States	3	3	0	100.0
Transitions	5	4	1	80.0

Coverage: Structural

How much verification has stressed the design

Assertion Coverage

- How many times did the assertion get evaluated, pass, fail
- Automated in the simulation environment
- Doesn't answer the questions:
 - Is the assertion implemented correctly? (check anything of value)
 - Are there enough assertions?

Structural Coverage

- Measures corner case type activity
 - How many times was my FIFO empty, full, hit high water mark
- Implementation specific, can be automated with assertions
- How well is the TB environment stressing the design?

Cover Statements/Properties

Properties and Sequences can be "covered"

Useful for checking temporal behavior of your design

- SVA/PSL designed for describing temporal behavior
- Cover statements typically target a sequence of events
 - Can also target single cycle events
 - Simulation will count the number of occurances
 - Formal will tell you if it's reachable or unreachable

Examples:

cov_sm_trans: cover property (@(posedge clk) cstate == TRANS); cov_ddr_wr: cover property (@(posedge clk) ddr_act ##[1:20] ddr_wr); sequence apb_wr;

pselx && pwrite && !penable ##1 pselx && pwrite && penable; endsequence

```
cov_b2b_wr: cover property (@(posedge clk) apb_wr ##1 apb_wr);
cov_seq: cover property (@(posedge clk) a ##2 b ##[1:3] c[*4] ##1 a );
```


Coverage: Functional

What features of the design have been tested

Transactional Coverage

- Measures interface type transactions
 - Have I covered all my AHB/AXI transactions?
- Typically implemented with cover groups/points
- Often used with complex TB environments (TLA, CR, iTBA)

Functional Coverage

- Measures occurrence of functional events
 - Did my design do back-to-back writes?
- Typically implemented with cover groups and cover directives
- Used in complex TB environments, correlate function to spec

20

Functional Coverage

- Must be specified by the user and cannot be automatically inferred from design
- Validates actual functionality
- Formal specification of verification plan

 Direct correlation between requirements and verification
- Measures verification completeness against specification
 - Have I verified all functional requirements?
 - Have I covered the entire verification plan?
 - Are my tests adding values to my verification goal?
 - Have I exercised all corner cases in my design?
 - Am I done?
- Counts how many times "interesting" things occur

CoverGroups

System Verilog CoverGroups

- coverpoints and coverbins used to categorize/display data
- Must be instantiated

■ Example: CG in module module cover_pci_master32_sm (input clk_in, input [3:0] cur_state); covergroup cg_cur_state @ (posedge clk_in); cp: coverpoint cur_state { bins s_idle = {1}; bins s_tran = {4}; bins s_end = {8}; endgroup : cg_cur_state; cg_cur_state cg_cur_state_inst = new; endmodule

CoverGroups Example: FSM, Arbiters

```
covergroup cg cstate @ (posedge clk);
  cp: coverpoint cstate {
       bins s valid [5] = {1,2,4,8,16};
       bins s illegal = {0,3,5,6,7,[9:15]}; }
endgroup : cg cstate;
cg cstate cg cstate inst = new;
                                           Ŧ
                                            G
wire [1:0] enables = {wr en,rd en};
wire en = $changed(enables);
req len;
always @*
if (!clk) len <= en;</pre>
wire gclk = clk & len;
covergroup cg enables @ (posedge gclk);
  cp: coverpoint enables {
       bins reads = \{1\};
       bins writes = \{2\};
       illegal bins bad = {3};
       bins idle = default; }
endgroup : cg enables;
cg enables cg enables inst = new;
```

🔀 Covergroups 🖂 🚽 👘					
Name	Coverage	Goal	% of Goal	Status	Inc
🚊 🧾 TYPE cg_cstate	83.3%	100	83.3%		
🗊 🗾 CVP cg_cstate::cp	83.3%	100	83.3%		
🚊 🗾 💵 Vtb_axi4lite_2_ap	83.3%	100	83.3%		
🚊 🗾 СVР ср	83.3%	100	83.3%		
B bin s_valid[0]	189	1	100.0%		_√
B bin s_valid[1]	7	1	100.0%		_√
B bin s_valid[2]	8	1	100.0%		-√
B bin s_valid[3]	8	1	100.0%		_√
B bin s_valid[4]	8	1	100.0%		-√
🔤 bin s_illegal	0	1	0.0%		
🚊 🛒 TYPE cg_enables	100.0%	100	100.0%		-√
🛓 🗾 CVP cg_enables::arb	100.0%	100	100.0%		_√
🚊 🗾 💵 Vtb_axi4lite_2_ap	100.0%	100	100.0%		_√
🚊 🛒 CVP arb	100.0%	100	100.0%		
B illegal_bin bad	0	-	-		 Image: A second s
B bin reads	8	1	100.0%		
📲 🕒 bin writes	8	1	100.0%		
B default bin idle	17	-	-		- 🗸

Coverage: Metrics

- Basic: Code/FSM/Assertion Coverage
 - Checks that all RTL has been exercised
 - All assertions have been exercised
- Semi-Automated: Transaction/Structural Coverage
 - Checks that all types of transactions have occurred
 - Ensures that the tests have sufficiently stressed the design
- Advanced: Functional Coverage
 - Checks that all the requirements for the design have been tested
 - Does the design work in all scenarios?
- All these coverage types are measured and tracked to determine when verification is complete and the chip can tape out

Coverage: Metric Holes

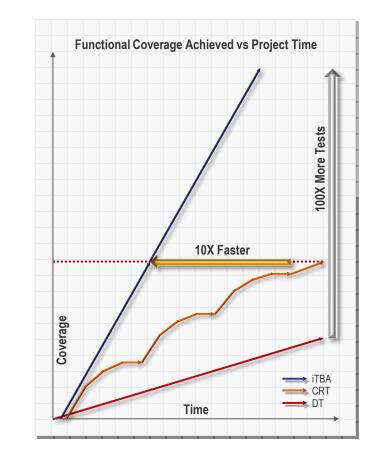
- Code/FSM/Assertion Coverage
 - Functional dead code and unreachable FSM states/transitions
 - Modes of the design that create dead code
 - Time can be wasted trying to hit these holes!
- Transaction/Structural Coverage
 - TB doesn't stress the design enough
 - Incomplete models don't exercise all transactions
- Functional Coverage
 - Incomplete spec or planning, lack of knowledge/time
- Proper test planning can mitigate some of these challenges
- Making use of automated formal techniques such as Questa CoverCheck can minimize time to closure

Common Methods to Achieve Coverage

Directed Tests

- Can target specific areas
- Less setup typically

Constrained Random Tests


- More sophisticated setup
- More automated to coverage

Intelligent Testbench Automation

- >10X Faster Coverage Than CRT
- >100X More Tests Than DT

Goals

- Achieve total coverage faster
- With fewer resources
- In less time

Typical Coverage Closure Methods

- Fix design issues that prevent code coverage from being achieved
- Run more vectors to hit missing code coverage
 - Directed tests
 - Constrained random
 - Intelligent test bench generation
 - Spend a lot of time analyzing and applying new vectors
- Apply formal methods to determine coverage reachability
- Add exclusions by hand
 - Sometimes the simulator can add automated exclusions
- Use an automated flow to generate exclusions for unreachable coverage elements

Coverage Backgrounder Summary

- There is no "silver bullet" structural and functional coverage methodology or metric
- Multifaceted simulation and formal-based automation, guided by the D&V engineer's judgment, is required


Agenda

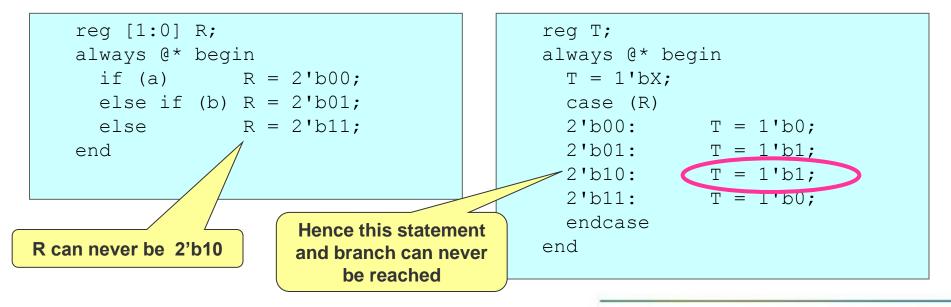
Introduction

- Coverage Backgrounder
- Targeting Unreachable Coverage with Formal
- Reaching Coverage Closure Faster
- Conclusion

Coverage Closure Challenges

Today coverage-driven verification is a well established methodology

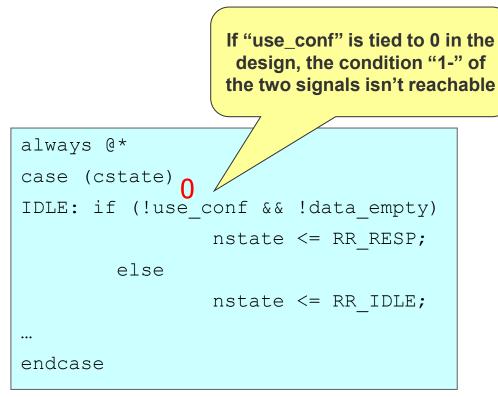
Question: What if certain parts of the design simply cannot be reached?


Answer: You will run extra constrained-random tests to try to cover these parts

This can lead to a lot of wasted effort!

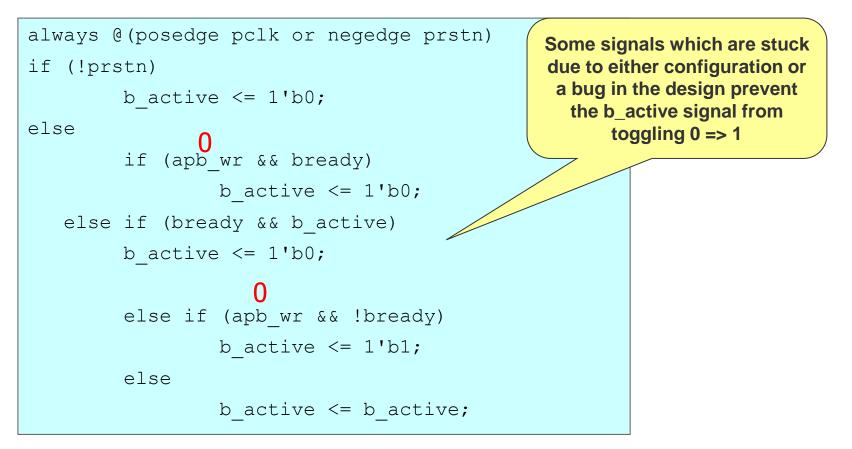
Example: Branch/Statement Coverage

- Dead code easily slips into the design
 Especially after changes are made
- Dead code often identifies incorrect assumptions
 - Leading to critical bugs due to differing interpretation of design requirements
- Possibly synthesizes into logic that is not needed

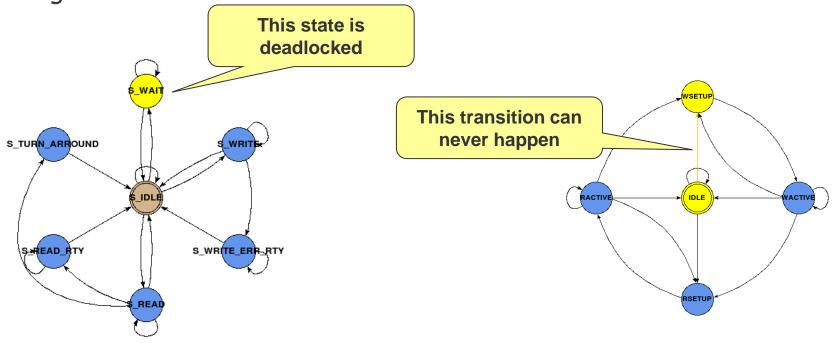


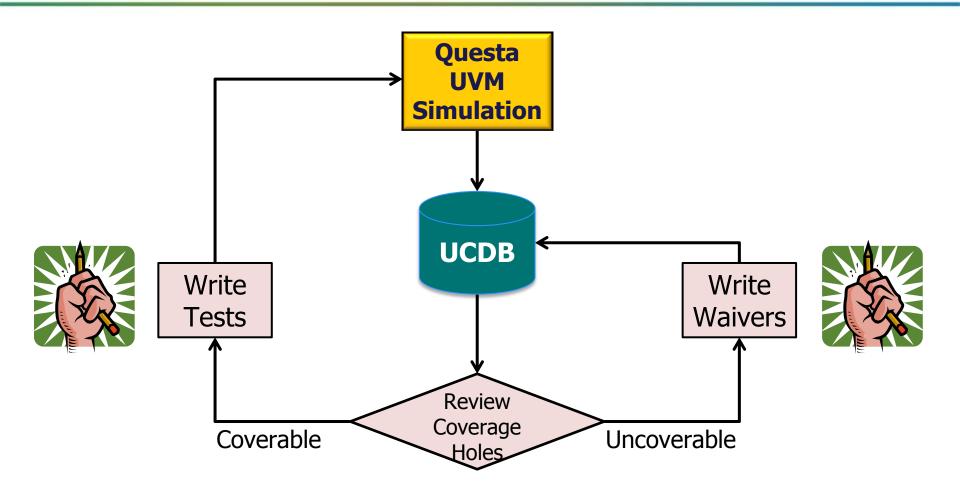
Example: Condition/Expression Coverage

Design configuration can have a large impact here

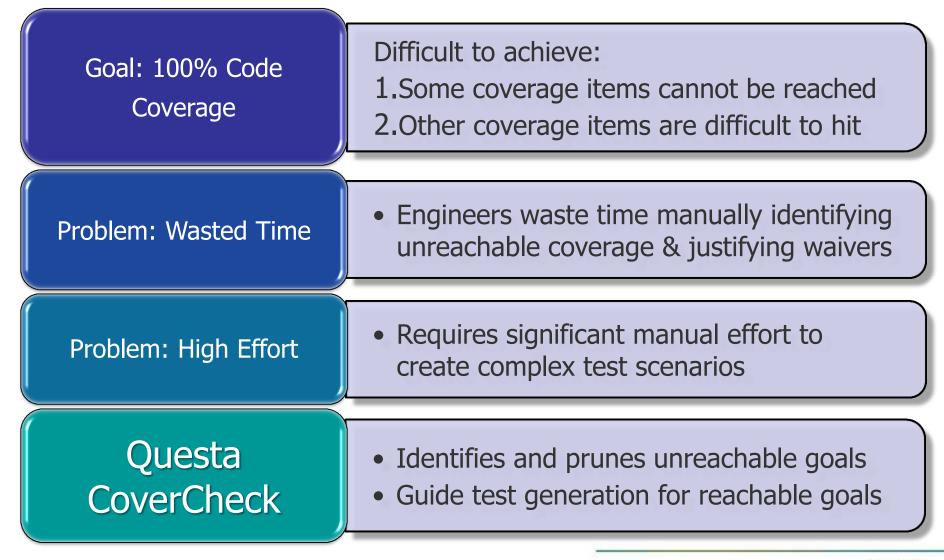

- Has every combination of signals been exercised?
- Is every combination of signals possible?

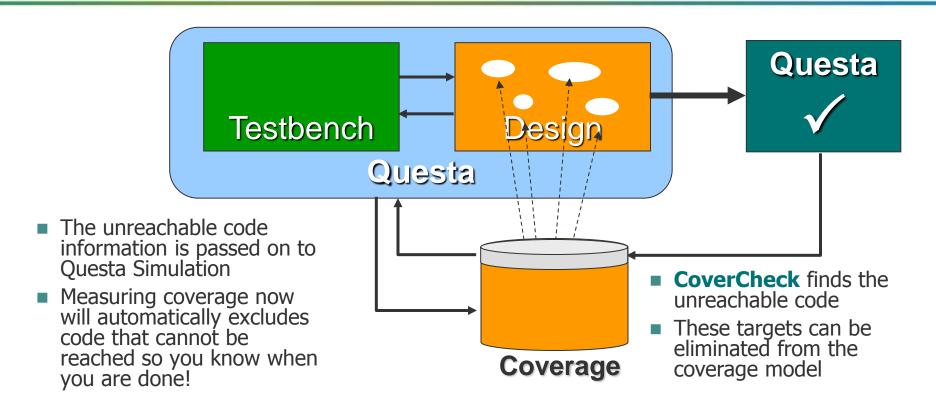
Example: Toggle Coverage


Typically registers and signals can't toggle due to configuration or some other constraint/bug in the design


Example: FSM Coverage

- Indicates an over specified state machine
 May lead to unused logic
- Easily overlooked in simulation
 - Info is passed to simulation for exclusion in the set of coverage goals

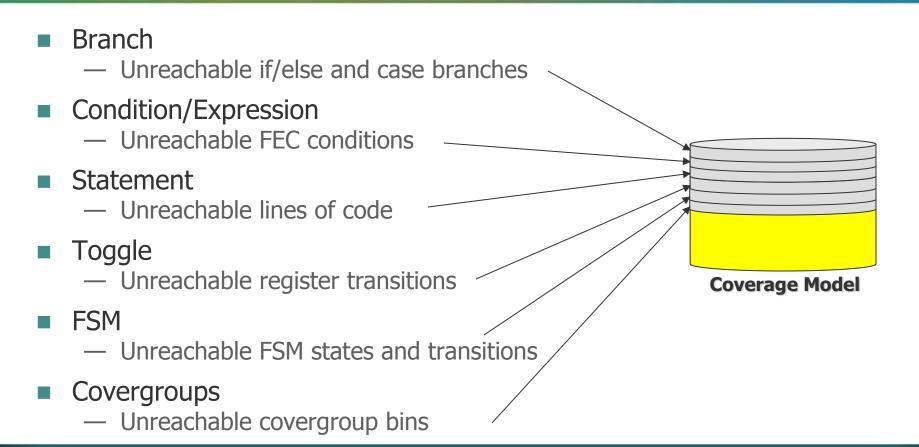

Traditional Coverage Closure



Questa CoverCheck

Automatic code coverage enhancement solution

The Questa CoverCheck Methodology

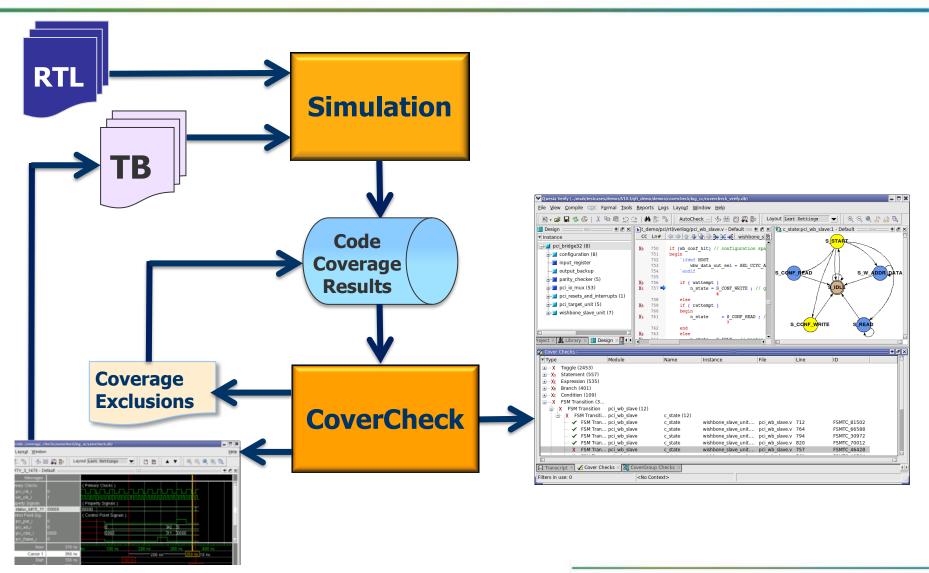

No more is time wasted to try to cover unreachable code

38 Code Coverage Closure Tutorial, DVCon 2015

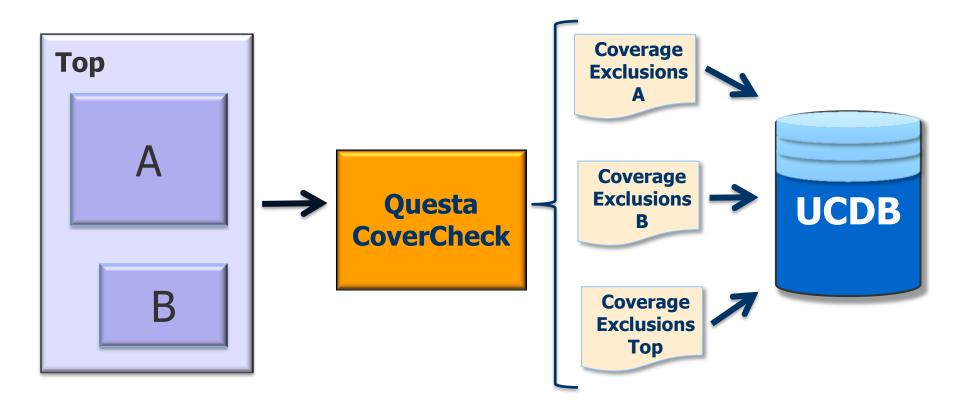
© Mentor Graphics Corp. Company Confidential **www.mentor.com**

Checks for Coverage Exclusions

Unreachable items are automatically excluded from your coverage model

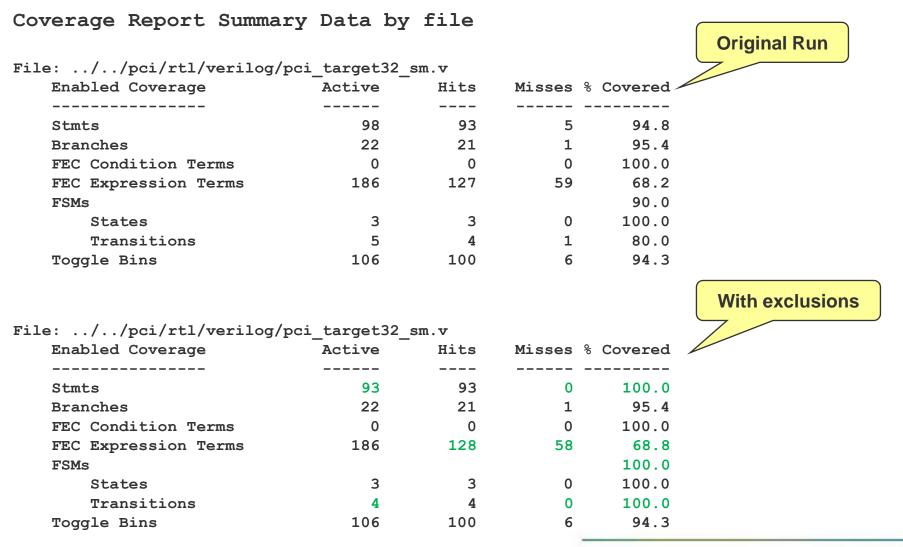

The Coverage Improvement Process

- 1. Generate Final UCDB file from simulations
- 2. Run Questa CoverCheck reading final UCDB
 - Target uncovered code coverage elements
 - Run major blocks
- 3. Generate the exclude file
- 4. Apply exclusions to your simulation results
 Update existing .ucdb file with exclude file
- 5. Report coverage
 - Track and manage coverage data


Questa CoverCheck Verification Flow

Use static analysis to improve simulation results!

Scaling Unreachable Analysis to the SoC Level



Improved Code Coverage Scores

istance Coverage :====================================	Stmt count	Stmts hit	Stmt %	Stmt graph	Toggle nodes	Toggles hit	Toggle %	Toggle graph	States 호 States hi	t State %	State graph
/SYSTEM/bridge32_top/bridge/wishbone	130) 98	75.49	6	111	646	57.9%] 9	3 33.3	%
/SYSTEM/bridge32_top/bridge/i_pci_targ	. 397	, 111	289		78	i 9	1.15%		7	1 14.3	%_ <mark>_</mark>
/SYSTEM/bridge32_top/bridge/wishbone	58	3 56	96.69	6	621	508	81.2%		4	4 🔵 100'	%
/SYSTEM/bridge32_top/bridge/i_pci_targ	. 72	2 67	93.19	6	57) 497	87.2%] 3	3 100	%
/SYSTEM/bridge32_top/bridge/wishbone	3	3 3	100%	6	 i	3 3	37.5%		ן		
/SYSTEM/bridge32_top/bridge/wishbone	2	2 2	100%	6	144	46	31.9%		ן		
/SYSTEM/bridge32_top/bridge/wishbone	2	2 2	1009	6	144	49	34%		ן		
/SYSTEM/bridge32_top/bridge/wishbone	3	3 3	1009	6	39;	2 117	29.8%]		
/SYSTEM/bridge32_top/bridge/wishbone	1	1	1005	0	1) 8	80%		ן		
/SYSTEM/bridge32_top/bridge/wishbone	1	1	100%	6	-	8 8	100%		8		
/SYSTEM/bridge32_top/bridge/wishbone	1	1	100%	6	1) 6	60%]		
/SYSTEM/bridge32_top/bridge/wishbone	1	1	100%	6	-	36	75%]		
/SYSTEM/bridge32_top/bridge/wishbone	1	1	100%	6	1) 8	80%		ן		
/SYSTEM/bridge32_top/bridge/wishbone	1	1	100%	6	1) 8	80%]		
/SYSTEM/bridge32_top/bridge/wishbone	1	1	100%	6	1) 8	80%]		
/SYSTEM/bridge32_top/bridge/wishbone	1	1	100%	6	-	3 8	100%		8		
/SYSTEM/bridge32_top/bridge/wishbone	107	7 102	95.33	6	112	6 717	63.7%]		
/SYSTEM/bridge32_top/bridge/wishbone	4	4	100%	6	43) 246	56.4%]		
/SYSTEM/bridge32_top/bridge/wishbone	3	3 3	100%	6	21) 19	95%		0		
/SYSTEM/bridge32_top/bridge/wishbone	3	3 3	100%	6	21) 19	95%		0		
/SYSTEM/bridge32_top/bridge/wishbone	32	2 32	100%	6	14	6 140	95.9%		0		
/SYSTEM/bridge32_top/bridge/wishbone	4	4	100%	6	43	3 222	50.9%]		
/SYSTEM/bridge32_top/bridge/wishbone	3	3 3	100%	6	21) 19	95%		0		
/SYSTEM/bridge32_top/bridge/wishbone	24	L 21	87.5%	6	11) 106	96.4%		0		
/SYSTEM/bridge32_top/bridge/wishbone	3	3 3	100%	6	1) 15	93.8%]		
/SYSTEM/bridge32_top/bridge/wishbone	18) 18	1009	6	80) 717	89%]		
/SYSTEM/bridge32_top/bridge/wishbone	2	2 2	1009	6	I) 71) 3	4.29%		ן		
/SYSTEM/bridge32_top/bridge/wishbone	3	3 3	1009	6		3 3	50%		ן		
/SYSTEM/bridge32_top/bridge/wishbone	3	3 3	100%	6	_) 3	50%		ן		

Simulation Coverage Before/After Exclusions

CoverGroup Coverage Before/After Exclusion

Coverage Report Summary

TOTAL COVERGROUP COVERAGE: 28.18 COVERGROUP TYPES: 4

TOTAL ASSERTION COVERAGE: 80.0% ASSERTIONS: 5

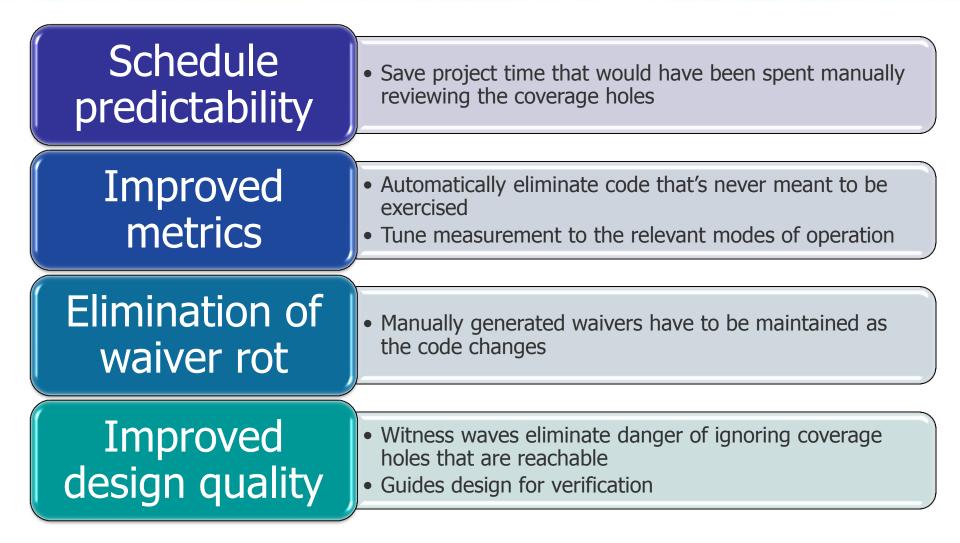
Total Coverage By File (code coverage only, filtered view): 39.1%

TOTAL COVERGROUP COVERAGE: 48.2% COVERGROUP TYPES: 4

TOTAL ASSERTION COVERAGE: 80.0% ASSERTIONS: 5

Total Coverage By File (code coverage only, filtered view): 42.3%

Original Run


With exclusions

Calculating Your ROI from Using CoverCheck

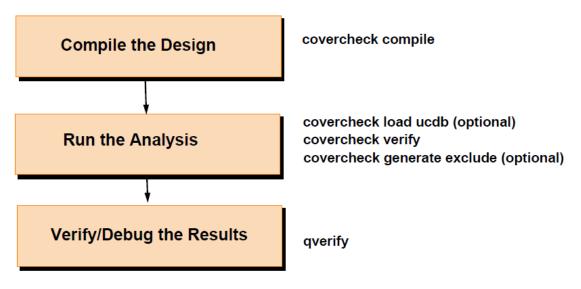
- Calculating the amount of time saved in your coverage closure flow by using CoverCheck is fairly easy:
 - N = the number of unreachable coverage elements
 - T = the time it would have taken you to manually analyze it
 - ROI = total amount of time saved automating your exclusion flow
 ROI = N x T
- Example: In one of the above examples there were over 3000 unreachable coverage elements in the design
 - Let's be generous and estimate it would have taken 15 minutes on average to analyze each unreachable item and exclude it
 - ROI = 3000 X 15 min
 - ROI = 45000 min (750 hr)
 - ROI = ~4.5 man months of effort saved

Summary: CoverCheck Benefits

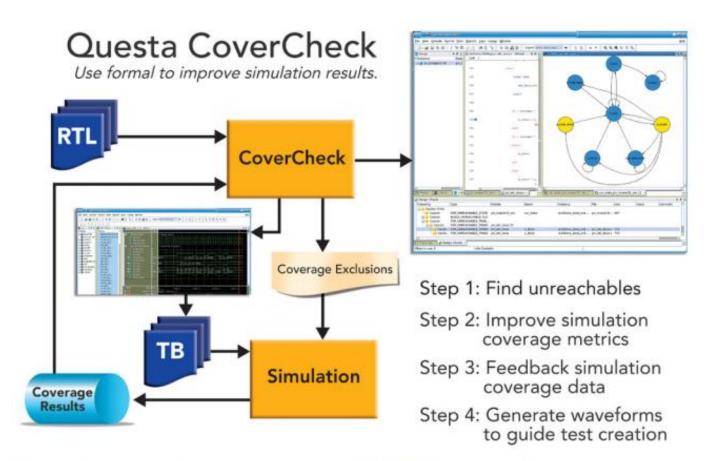
Using Questa CoverCheck To Speed Up RTL Freeze of PCIe IP

Sundararajan Haran Engineering Manager Microsemi

Section Agenda



- Questa Covercheck
- PCIe evaluation bench approach
- Results
- Benefits
- References


Questa CoverCheck Details

- CoverCheck analyzes coverage items that are found to be:
 - Unreachable through simulation using a QuestaSim Universal Coverage Database (UCDB)
 - Or through a formal analysis
- CoverCheck can run without a simulation UCDB
 - App automatically runs formal analysis on the entire design to determine and analyze the unreachable items
 - Downside: this takes a long time (several hours).

Out-of-the-Box CoverCheck Flow

Questa CoverCheck methodology. The tool applies formal methods to target code that's unreached by the simulator.

Section Agenda

- Questa Covercheck
- PCIe evaluation bench approach
- Results
- Benefits
- References

PCIe Evaluation Bench Approach

- We used PCIe block level environments for this exercise
- CoverCheck was chosen and used at the block level

Section Agenda

- Questa Covercheck
- PCIe evaluation bench approach

- Benefits
- References

CoverCheck was run on the final merged coverage database of PCIe block

▼ qautocheck_cmds.tcl (/verifyESS/trunk/main/scripts) - GVIM7
<u>F</u> ile <u>E</u> dit <u>T</u> ools <u>S</u> yntax <u>B</u> uffers <u>W</u> indow <u>H</u> elp
1 covercheck load ucdb//reports/final.ucdb
2 vlog -f/compileRTL. list
3 netlist clock clk 50mhz -period 20 ns -waveform 0 10 ns
4 netlist clock PCIE_CORE_CLK -period 4 ns -waveform 0 2 ns
5 netlist clock APB CLK -period 20 ns -waveform 0 10 ns
<pre>6 netlist clock AXI_AHB_CLK -period 8 ns -waveform 0 4 ns</pre>
7 covercheck compile -d pcie_system_top
8 <mark>n</mark> etlist constant LT TCK 0
9 netlist clock LT SCK -period 10 us
10 covercheck generate exclude covercheck_verify.db covercheck_exclude.do
11 covercheck verify -effort low -witness waveforms
12 covercheck verify -effort high -witness waveforms

CoverCheck generated the exclusion list after running formal analysis with UCDB and RTL

▼ cover_e	exclude_qautocheckrunk/main/scripts) - GVIM8 _ 🛛 🗸 🗸 🗸 🗸 🖉
<u>F</u> ile <u>E</u> dit	<u>T</u> ools <u>S</u> yntax <u>B</u> uffers <u>W</u> indow <u>H</u> elp
	- 二 二 今 (今) 米 雪 (論) 段 中 午) 🏣 🔛 拳 ! 🍕 🖩 🍬) 🔯 🔯
9591	<pre>coverage exclude -du pciexp64_multifunc_confctrl -fstate i</pre>
	<pre>ntb_sm int_state_intassert -comment "CoverCheck:FSM"</pre>
9592	<pre>coverage exclude -du pciexp64_multifunc_confctrl -fstate i</pre>
	<pre>ntb_sm int_state_inton -comment "CoverCheck:FSM"</pre>
9593	<pre>coverage exclude -du pciexp64_multifunc_confctrl -fstate i</pre>
	<pre>ntb_sm int_state_intdeassert -comment "CoverCheck:FSM"</pre>
9594	
	<pre>ntc_sm int_state_intassert -comment "CoverCheck:FSM"</pre>
9595	<pre>coverage exclude -du pciexp64_multifunc_confctrl -fstate i</pre>
	<pre>ntc_sm int_state_inton -comment "CoverCheck:FSM"</pre>
9596	<pre>coverage exclude -du pciexp64_multifunc_confctrl -fstate i</pre>
	<pre>ntc_sm int_state_intdeassert -comment "CoverCheck:FSM"</pre>
9597	<pre>coverage exclude -du pciexp64_multifunc_confctrl -fstate i</pre>
	<pre>ntd_sm int_state_intassert -comment "CoverCheck:FSM"</pre>
9598	<pre>coverage exclude -du pciexp64_multifunc_confctrl -fstate i</pre>
	<pre>ntd_sm int_state_inton -comment "CoverCheck:FSM"</pre>
9599	
	<pre>ntd_sm int_state_intdeassert -comment "CoverCheck:FSM"</pre>
9600	<pre>coverage exclude -du pciexp64_rxvc _fstate ct_sm ct_state_</pre>
	ct_proceed -comment "CoverCheck:FSM <mark>"</mark>
	9600,94 Bot

- Generated exclusion list was then reviewed by Design Team for Sign-off.
- Saved approx. 3 weeks which involves (reviewing the coverage database for each uncovered item.)

Section Agenda

- Questa Covercheck
- PCIe evaluation bench approach
- Results

References

The CoverCheck tool saved time in coverage exclusion analysis

- > It only took 3 hours to run
- But it saved ~3 weeks of analysis/debug and design team interaction effort!

Section Agenda

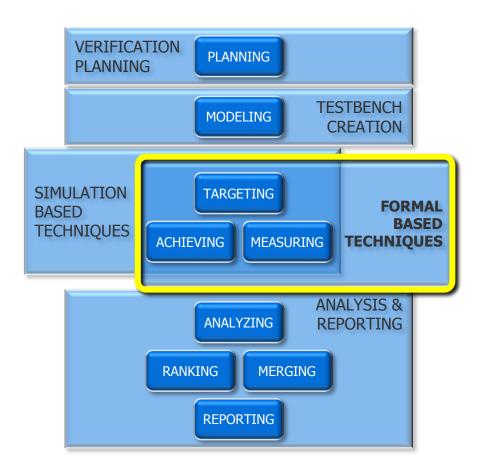
- Questa Covercheck
- PCIe evaluation bench approach
- Results
- Benefits

References

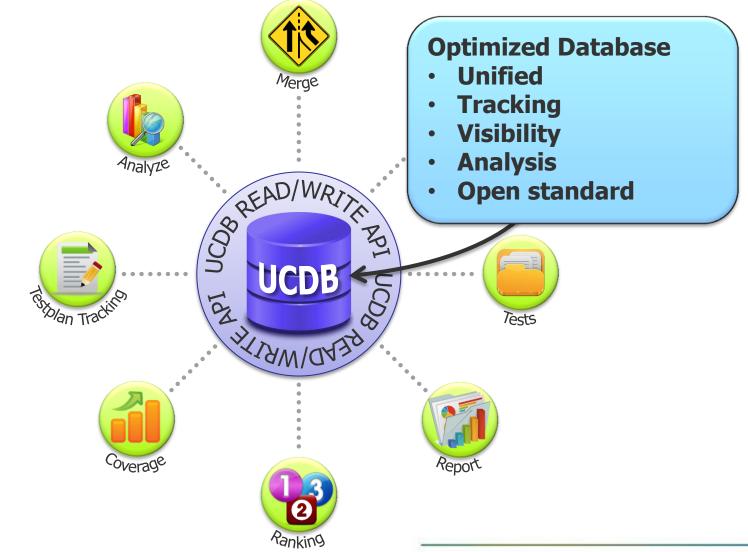
- PCIe block internal specification
- <u>http://www.mentor.com/products/fv/questa-formal/</u>
- Questa CoverCheck User Guide, v10.3a

THANK YOU

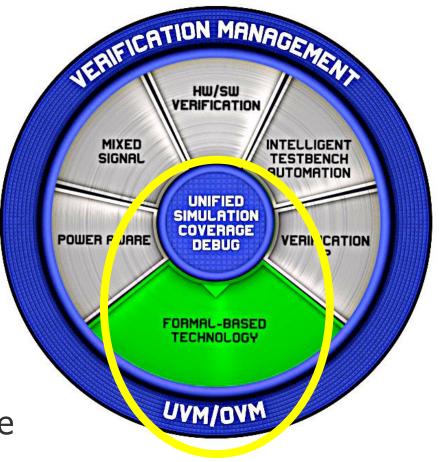
© 2011 Mentor Graphics Corp. **www.mentor.com**

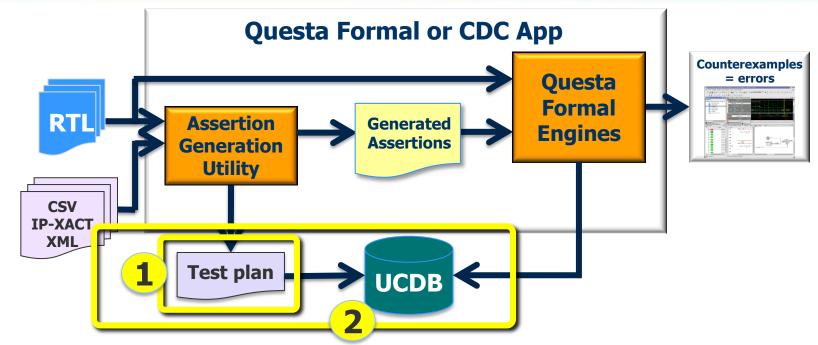

Agenda

- Introduction
- Coverage Backgrounder
- Targeting Unreachable Coverage with Formal
- Reaching Coverage Closure Faster
- Conclusion


Coverage Closure Process

- Verification Planning
 - Requirements Mapping
 - Coverage Planning
- Testbench Creation
 - Coverage Modeling
 - Stimulus Modeling
 - Verification IP
- Achieving Coverage
 - Regression Management
 - Simulation-Based Techniques
 - Formal-Based Techniques
- Analysis & Reporting
 - Analyzing
 - Ranking & Merging
 - Reporting

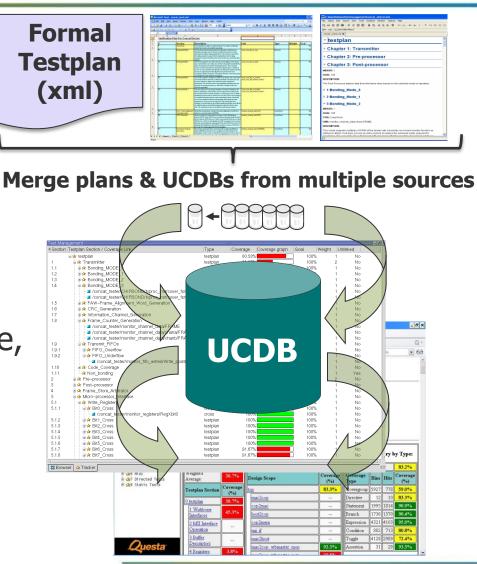

Coverage Data Management is the Key to Reaching Overall Coverage Closure Faster


Questa Verification Management *The intersection of Process, Tools and Data*

- Built around a high performance Unified Coverage Database
- Electronic Coverage Closure with Testplan Tracking
- Improve Regression time-to-debug with Results Analysis
- "Are we getting closer to done?" Trend Analysis
- Improve Regression Productivity with Run Management
- Improve Code Coverage Closure with Questa CoverCheck

Automated Test Plan Flow

Create a "test plan" from your spec


- 1. An XML file generated from your CSV/IP-XACT/XML containing test plan entries for all checks & coverage
- 2. Can be converted to a UCDB and viewed/merged into the Questa Verification Management environment

Formal Integration with Project Testplan

 Testplan flow provides [multi-tech] management, tracking, & analysis

✓ Formal data includes coverage, proofs, and property checks

Manage and Comprehend Volume of Results with **Powerful Analysis and Reporting Capabilities**

Code Coverage Analysis	+ @ ×			🐮 Covergroups 🖂 🔤			
3ranch Analysis - by instance (/concat_tester/CHIPBOND/postproc_		and the state state.	4 1	▼ Name	Coverage Go	oal % of Goal	Status
Post. vhd 66 if RESET = '0' then 58 elsif PRELOAD = '1' then 70 elsif DECREMENT = '1' then 73 if RESET = '0' then 75 elsif PRELOAD = '1' then 77 elsif DECRE Assertions	📕 Verification Test Analysis - Rai		testplan/Transn Coverage 15 67 72 72 72 73 73 73	 /concat_tester TYPE monitor_CRC TYPE monitor_tests TYPE monitor_chan CVP monitor_ch CVP monitor_ch 	33.3% 10 40.0% 10 87.5% 10 50.0% 10 100.0% 10	0 33.3% 0 40.0% 0 87.5% 0 50.0% 0 100.0%	
80 if RESET = 82 elsif PRELO 93 if RESET = 93 if RESET = 94 else 96 (POINTER(4) 98 else 101 if RESET = 101 if RESET =	<pre>datatests~SyncTe Randtest~12 datatests~FifoTe datatests~ModeTw goodseedtest~-17 Randtest~3</pre>	7 8 9 10 11 12	73	bin SEARCH	30664 1 11498 1 0 1 6126 1 0 - 100.0% 10	100.0% 100.0% 0.0% 100.0% - 0 100.0%	
 ▲ assert_pre_proc_ints_cpu_ret_	0 Concurrent 96 Concurrent 123 Concurrent 96 Concurrent 123 Concurrent 123 Concurrent	PSL PSL PSL PSL PSL PSL PSL	on on on on on	INST chance INST chance INST chance INST chance	47.2% 10 59.7% 10 63.8% 10	0 47.2% 0 59.7% 0 63.8%	

Eile Edit View Higtory Bookmarks	Tools Help									<u> </u>				
< • 🗼 • 🧭 😡 🚹 🗋 file:///ho	me/tellis/training/junk/ucdbs/	covhtmlrep	on/pages	/frameto	p.htm			• •] ∙ Google	Q.				
									🗿 Transcript :=					
<u>a</u> 🗆 🖻							# COVERGROUP COVERAGE:							
Testplan DesUnits	Questa Cov	erag	e S	umm	ary					#				
- ≝concat_tester ≝ SetTheSeedValue (no cover	Scope: /concat_test	ter/CHIP	BOND							#				
e- ⊒alloutputs e- ⊒CHIPBOND ⊒ mti fii (no coverage)	Coverage Summary	By Insta	ance:							# Coverpoint monitor charnel_data::FAW 50.0% 100 Uncove # covered/total bins: 3 6 # missing/total bins: 3 6				
testconcat_sv_unit (no coverag	Scope -	TOTAL 4	Cvg ∢	Cover 4	Statement 🛪	Branch 4	UDP Expression 4	UDP Condition 4	FEC Expression 4 C	# bin OUT OF SYNC 43646 1 Covere # bin SEEN ONCE 0 1 ZERO				
	TOTAL	74.06%		54.83%		90.47%			74.48%	# bin SEEN_TWICE 0 1 ZERO # bin IN SYNC 0 1 ZERO				
	CHIPBOND	87.98%			100.00%	100.00%			65.11%	# bin MISSED ONCE 7 1 Covere				
	control INST	71.64%			95.45%	85.00%				# bin MISSED TWICE 4024 1 Covere				
	txproc INST	76.57%		33.33%	87.32%	76.26%			100.00%	# default bin others 611 Occurr				
	preproc INST	86,19%		73.33%	91.31%	89.88%			98.18%	# Coverpoint monitor channel_data::CRC 100.0% 100 Covere # covered/total hins: 4 4				
	postproc INST	93.23%			97.79%	98.33%			72.72%	# missing/total bins: 0 4				
	fsarb INST	43.91%	_	40.00%		37,50%			30.00%	# bin ENÄBLED 27961 1 Covere				
	fsaddmux INST	100.00%		40.00 /0	100.00%	100.00%			30.00 %	# bin SEEN_ONCE 13336 1 Covere				
										# bin SEEN TWICE 887 1 Covere # bin DISABLED 6104 1 Covere				
		100.00%			100.00%	100.00%			100.00%	# default him others 0 ZER0				
		100.00%			100.00%	100.00%				# Coverpoint monitor_channel_data::GROUP 100.0% 100 Covere				
		100.00%			100.00%	100.00%				# covered/total bins: 4 4				
	GENER_TXFIFO(2)	100.00%			100.00%	100.00%				# missing/total bins: 0 4 # bin SEARCH 32922 1 Covere				
	GENER_TXFIFO(3)	100.00%			100.00%	100.00%				# bin MATCH 32922 1 Covere # bin MATCH 4921 1 Covere				
· · · · · · · · · · · · · · · · · · ·	GENER TXFIFO(4)	100.00%			100.00%	100.00%				# bin FOUND TWICE 6421 1 Covere				
	GENER TXFIFO(5)	100.00%			100.00%	100.00%				100.00% 100.00				
	4							1	л					

Putting it All Together: Tracking Process and Coverage Metrics

Users' Productivity Gains from Focusing on Coverage Closure & Verification Management

Industry	Sub process	Productivity	Before Questa VM	With Questa VM	Benefits
	Nightly regression test time	Throughput	28 hours	➔ 2.5 hours	= 9 X faster
IP Developer	Results and Coverage Analysis	Turn-around	2 hours	→ 20 minutes	= 6 X faster
	Regression file cleanup	Capacity	15 minutes	→ 30 seconds	= 30 X faster
	Nightly regression test maximum	Throughput	40 tests	→ 320 tests	= 8 X more tests
	Nightly regression test setup time	Turn-around	30 minutes	2 minutes	= 15 X less time
Automotive	Nightly regression addition time	Turn-around	60 minutes	➔ 5 minutes	= 12 X less time
	Nightly regression Script Files	Turn-around	10 files	➔ 1 file	= 10 X easier
	Nightly regression Results Analysis	Turn-around	>1 hour	<1 minute	= 60 X faster
Mieroprocesor	Test Merge Time	Turn-around	7 days	→ 7 hours	= 24 X faster
Microprocessor	Data Storage	Capacity	1 GB	→ 10 MB	= 100X reduction
Wireless	Results Analysis Queries	Turn-around	1 hour	➔ 15 minutes	= 4 X faster
Semiconductor	werge of all coverage from all tests	Turn-around	55 hours	70 minutes	= 47 X faster

Agenda

- Introduction
- Coverage Backgrounder
- Targeting Unreachable Coverage with Formal
- Reaching Coverage Closure Faster
- Conclusion

Conclusion

- "Coverage" in all its forms is an effective way to measure progress, allocate resources, and reach sign-off faster
- The volume of coverage data is exceeding what manual inspection or basic scripting methodologies can handle
- Automated, exhaustive coverage analysis solutions have enabled engineers at companies like MicroSemi (and Microsoft, Micron, Rockwell Automation, Thales, and more) to save 1,000s of hours of compute and R&D time

Resources

Appendix

- Coverage closure case studies shared at DVCon USA last March
- Rockwell Automation, Micron, Microsoft, Thales

Conference Papers

- DVCon 2015: "Coverage Data Exchange Is No Robbery, or Is It?", MGC
- ARM Techcon 2014: "Advanced Verification Management and Coverage Closure Techniques", Nguyen Le, Microsoft

Whitepapers

- "An Automated Code Coverage Closure Solution", <u>http://goo.gl/aZwUpK</u>
- "Verification Management Eases Those Re-spin Worries", <u>http://goo.gl/J0oNAV</u>

On Demand Webinars & Courses

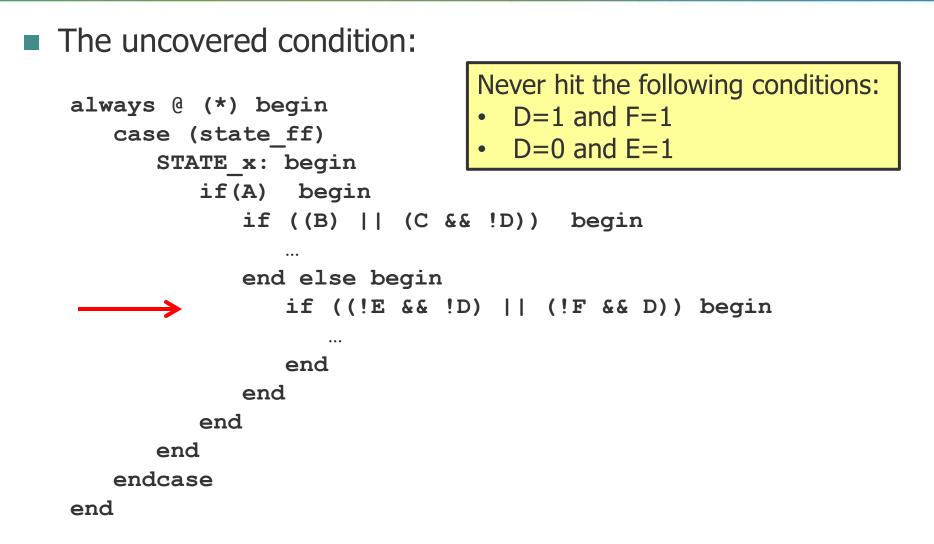
- New School Coverage Closure: <u>http://goo.gl/2JTy7o</u>
- Verification Academy: CoverCheck Accelerating Coverage Closure <u>https://verificationacademy.com/sessions/CoverCheck-Accelerating-Coverage-Closure</u>

Speaker contact info

- Joe Hupcey III: <u>Joe Hupcey@mentor.com</u>
- Nuni Srikanth (a/k/a Shree): <u>Nuni_Srikanth@mentor.com</u>
- Bhushan Safi: <u>Bhushan Safi@mentor.com</u>

www.mentor.com

Code Coverage Closure Tutorial, DVCon 2015


Appendix

Code Coverage case study at Rockwell Automation

Case Study: Rockwell Automation Analysis of Missed Coverage

Case Study: Rockwell Automation Analysis of Missed Coverage

The properties:

```
assert property (@(posedge clk) disable iff (!resetn)
    !((state_ff == STATE_X) && (A) && !((B) || (C && !D)) && (D==1) && (F==1)));
assert property (@(posedge clk) disable iff (!resetn)
    !((state_ff == STATE_X) && (A) && !((B) || (C && !D)) && (D==0) && (E==1)));
```

Formal Results:

- Assertions fired
- The given counterexample was illegal protocol

Rockwell Automation Case Study Conclusion

Use Formal early and often

- Top level and block level connectivity verification
- Top level address map verification
- Complex control logic

Add Formal analysis for missing coverage

— Holes always show up late in design cycle

Appendix

Questa CoverCheck Success at Micron

Verification Closure

Bala Chandrasekaran ASIC Verification Engineer

DVCon 2015

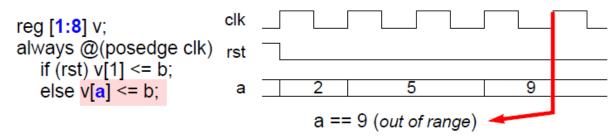
About Micron SoC Design and Verification

- Micron SoC designs
 - Multi million gate NAND-controller IP blocks designed and verified
- Verification flow
 - Constrained-random, coverage driven approach using UVM
 - Testing at IP block and SoC level
 - Vplan Requirements tracking
 - Coverage metrics
 - Functional coverage with SV cover groups
 - Assertion coverage with SVA covers
 - Code coverage
- Statement, Branch, Expression, Condition, FSM

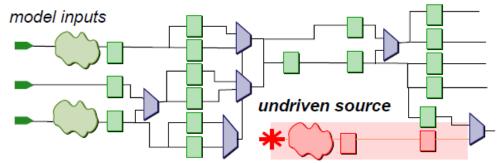
Sign-off requirements

- All test requirements tracked through to completion
- 100% functional and code coverage

Micron Case Study: Questa AutoCheck Results


Check	Evaluations	Found	Waived
BLOCK_UNREACHABLE	1353	1	0
FSM_STUCK_BIT	101	1	0
FSM_UNREACHABLE_TRANS	220	2	0
INDEX_ILLEGAL	150	1	0
LOGIC_UNUSED	3038	118	0
X_ASSIGN_REACHABLE	2	1	0
X_UNRESOLVED	54	54	0
AC Total	4918	178	0

Micron Case Study: Violations


INDEX_ILLEGAL (17 Found)

Illegal Array Index: Array index value is illegal.

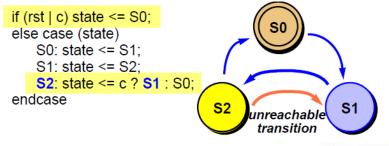
LOGIC_UNDRIVEN (863 Found)

Logic not Driven from Inputs: Design contains logic that has no driver.

Micron Case Study: Cautions

- ASSIGN_IMPLICIT_CONSTANT (65 Found)
 - RHS of an assignment statement includes a non-constant expression, but the statement only assigns a constant value when sensitized.

int a, b, var; ... if (a == 0) **var <= a;** else var <= b;


BLOCK_UNREACHABLE (4 Found)

Block of code cannot be reached.

reg[2:0] a, b, var; ... if (a == 9) var <= 0; else var <= b;

FSM_UNREACHABLE_TRANS (1 Found)

FSM State Transition is Unreachable: FSM has a state transition that cannot be sensitized.

Micron Case Study: Questa CoverCheck Results

Coverage Type	Active	Unreachable	Reachable	Inconclusives
Branch	731	78	636	17
Condition	135	15	113	7
Expression	483	153	315	15
FSM	34	6	28	0
States	3	1	2	0
Transitions	31	5	26	0
Statement	875	95	768	12
Toggle	0	0	0	0
Coverbin	0	0	0	0
Total	2258	347	1860	51

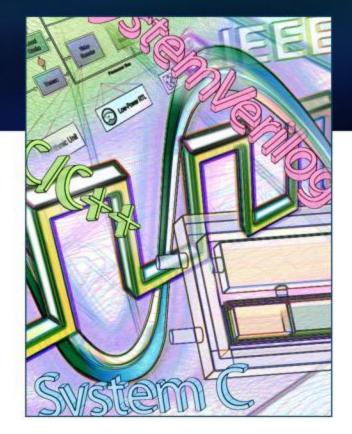
85

Micron Case Study: What we found

- We got AutoCheck and CoverCheck up & running in 30 min
- We found 347 unreachable items (our prior analysis missed)!
- These were found without constraints If we add a reset/initialization state and constraints we could potentially find even more
- How does this impact schedule?
 - Assuming it takes 15 min to review each item
 347 exclusions * 15 minutes = 5,205 minutes (86.75 h)

> 2 Man Weeks Saved!

AutoCheck and CoverCheck analyses are now the required Plan of Record.



Appendix

Questa CoverCheck Success at Microsoft

Verification Closure

Nguyen Le, Microsoft

DVCon 2015

Author Information

Nguyen Le

- Principal Design Verification Engineer
- Microsoft Corp.
- Email: ngle@microsoft.com

About Microsoft SoC Design and Verification

IEB SoC designs

Multi million gate internal IP blocks designed and verified

Verification flow

- Constrained-random, coverage driven approach using UVM
- Testing at IP block and SoC level
- Testplan requirements tracking
- Coverage metrics
 - Functional coverage with SV covergroups
 - Assertion coverage with SVA covers
 - Code coverage
 Statement, Branch, Expression, Condition, FSM

Sign-off requirements

- All test requirements tracked through to completion
- 100% functional, assertion and code coverage

CoverCheck Case Study Results

- Exclusions improved code coverage by 10 15% in most blocks
 - Coverage number improved from 87% to 97%
- In auto-generated code for register blocks the improvement was 20%
 - There are simulation hooks that are unreachable

Benefits of Formal Code Exclusion

Improved code coverage metrics

Metrics are automatically tuned to the relevant modes of operation for reused IP blocks

Improved design quality

Exclusions are formally proven reducing the risk of ignoring important goals

Case study ROI

 Time to manually write exclusions vs. auto-generate (1 Design Engineer + 1 Verification Engineer) x 10 min/exclusion
 = 4 man months saved

Example: Two Days to Manually Exclude

```
2
                  module sample code cov(
            3
                                           input logic reset, clk
            4
                                          ,input logic [ 3: 0] code_val
            5
                                          ,input logic [11: 0] pkt_len
            б
                                          ,output logic error_case
            7
                                          );
            8
                  define SIZE 1
                                           4'b0001
            9
                  define SIZE 2
                                           4'b0010
           10
                  define SIZE_3
                                           4'b0011
           11
                  define SIZE 4
                                           4'b0100
                  define SIZE_5
           12
                                           4'b0101
           13
                    always @(posedge reset or posedge clk)
           14
                    begin
           15
                      if(reset) begin
                        error case <= 1'b0;
           16
           17
                      end
           18
                      else begin
           19
                        if((code_val < `SIZE_1) ||
           20
                           (code_val > 'SIZE_5)) begin
           21
                          error_case <= 1;
           22
                        end
           23
                        else if (((pkt_len[3:0] != 0) && (code_val == `SIZE_1)) ||
           24
                                  ((pkt_len[8:0] != 0) && (code_val == `SIZE_2)) ||
           25
                                  ((pkt_len[9:0] != 0) && (code_val == `SIZE_3)) ||
                                  ((pkt_len[10:0]!= 0) && (code_val == `SIZE_4)) ||
           26
Xç
                                  ((pkt_len[11:0] = 0) & (code_val == `SIZE_5))) begin
           27
           28
                            error_case <= 1'b1;
           29
                        end
           30
                        else begin
           31
                          error_case <= 1'b0;
           32
                        end
           33
                      end
           34
                    end
           35
                  endmodule
           36
```


Example: Detail Coverage

After extracting this snippet of code and run 64k cases (exhaustive), we are convinced of the exclusions from CoverCheck

File: sample_code_cov.v			
Line: 27			
Condition Coverage for:			
((pkt_len[11:0]!= 0) &&	(code_val	== 'SIZE	_5))) begin
FEC Coverage: 9 (pt of 10 :	input tern	ns covered	1 = 90.0%
Input Terminal	Covered	Reason	Hint
(pkt_len[3:0] != 0)	Y		
(code_val == 1)	N		
(pkt_len[8:0] != 0)	Y		
(code_val == 2)	Y		
(pkt_len[9:0] != 0)	Y		
(code_val == 3)	Y		
(pkt_len[10:0] != 0)	Y		
(code_val == 4)	Y		
(pkt_len != 0)	Y		
(code_val == 5)	Y		

DA TITE

94

Row	1:	1	(pkt_len[3:0] != 0)_0	{ 0-0-0.
Row	2:	1	(pkt_len[3:0] != 0)_1	{ 11
Row	3:	х	(code_val == 1)_0	{ 100-0·
Row	4:	1	(code_val == 1)_1	{ 11
Row	5:	1	(pkt_len[8:0] != 0)_0	{ 0-0-0.
Row	6:	1	(pkt_len[8:0] != 0)_1	{ 0-11
Row	7:	1	(code_val == 2)_0	{ 0-100·
Row	8:	1	(code_val == 2)_1	{ 0-11
Row	9:	1	(pkt_len[9:0] != 0)_0	{ 0-0-0.
Row	10:	1	(pkt_len[9:0] != 0)_1	{ 0-0-11

Unreachable code_val == 1 never false

Microsoft Case Study Conclusions

- Verification of complex SoC projects is a always more difficult to manage than expected
- Time saved by automatic code coverage closure is easily an order of magnitude

Wish list

There are still complex FECs that the tool would give up
 We are hoping for more complex expression to be handled
 Or possible RTL recoding suggestion that can help the tool

Appendix

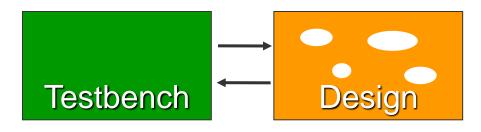


Questa CoverCheck Success at Thales

96 Code Coverage Closure Tutorial, DVCon 2015

© Mentor Graphics Corp. Company Confidential **www.mentor.com**

Christian Bara



The coverage challenge

Coverage driven verification well adopted by industry

now

- To measure that every lines of design code have been exercised
- But difficult to reach 100 % coverage
 - Insufficient or incorrect input stimulus during simulation
 - Unreachable coverage items
 - because of bugs , particular statements or configurations
- Need to identify manually unreachable parts
 - Could be a painful task
- Add extra tests to cover not reached items

This leads to a lot of effort to reach the coverage closure

Mentor solution : Questa Covercheck

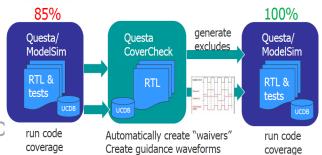
- A formal tool

Automating the debug process of coverage closure

- Inputs

rtl design & ucdb simulation results (not mandatory) to focus analysis only on code items not reached by simulation

- Outputs

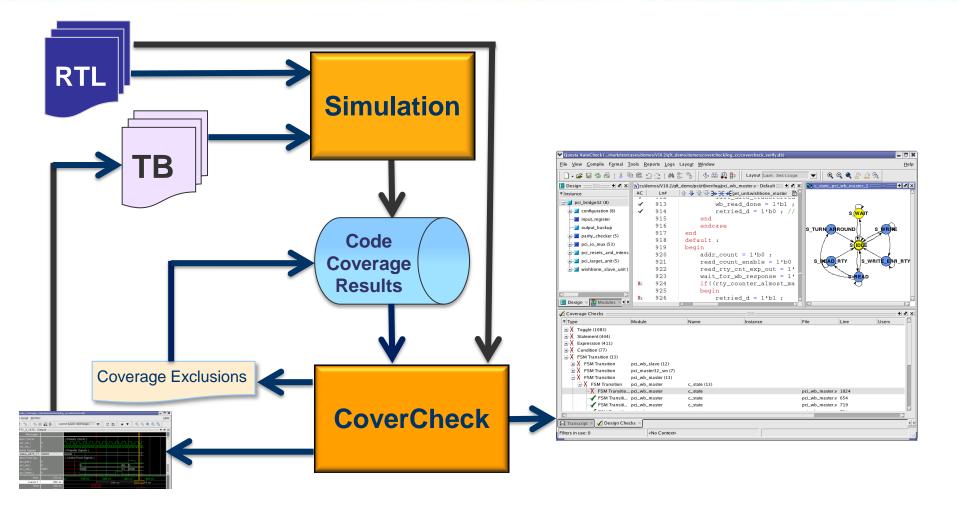

reports of proved unreachable code

bugs or conditions making the code unreachable

exclusions files

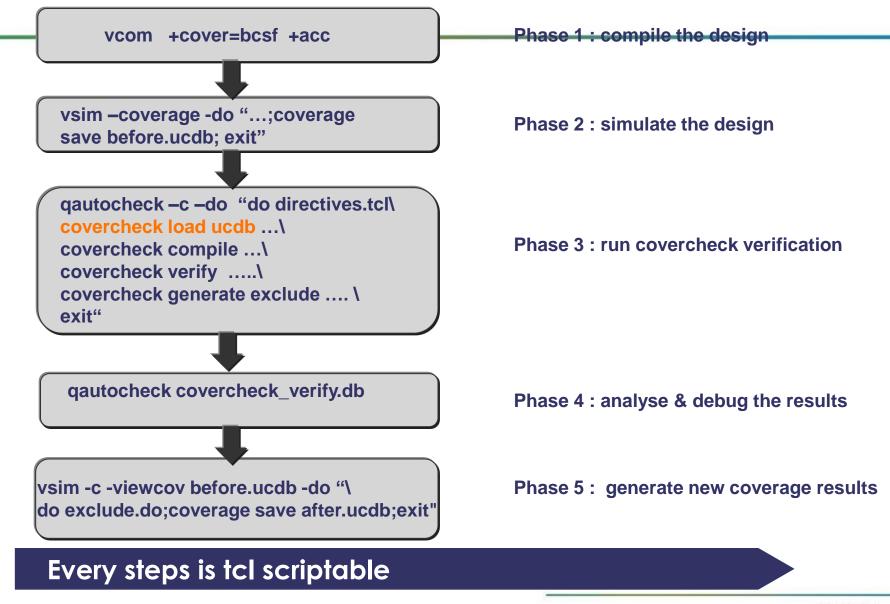
for truly unreachable code guidance waveforms

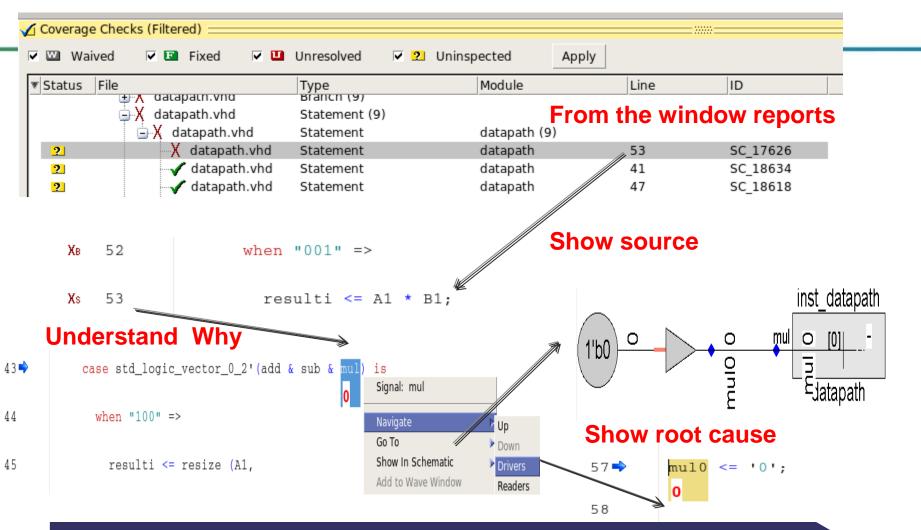
for code that could be reac


Points on causes of unreachables and help cover not yet reached code

© Mentor Graphics Corp. Company Confidential **www.mentor.com**

Overview of Covercheck flow


— Use formal static analysis to improve code coverage results

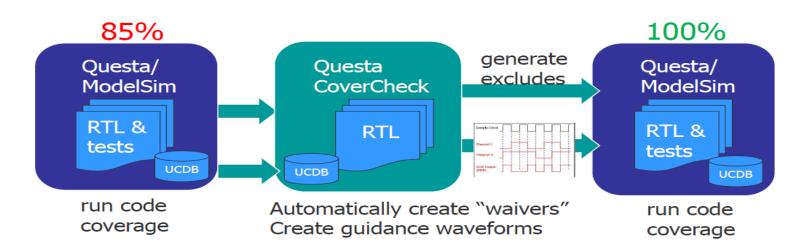

Can be used without simulation results

Covercheck implementation flow

Find root cause of unreachable code

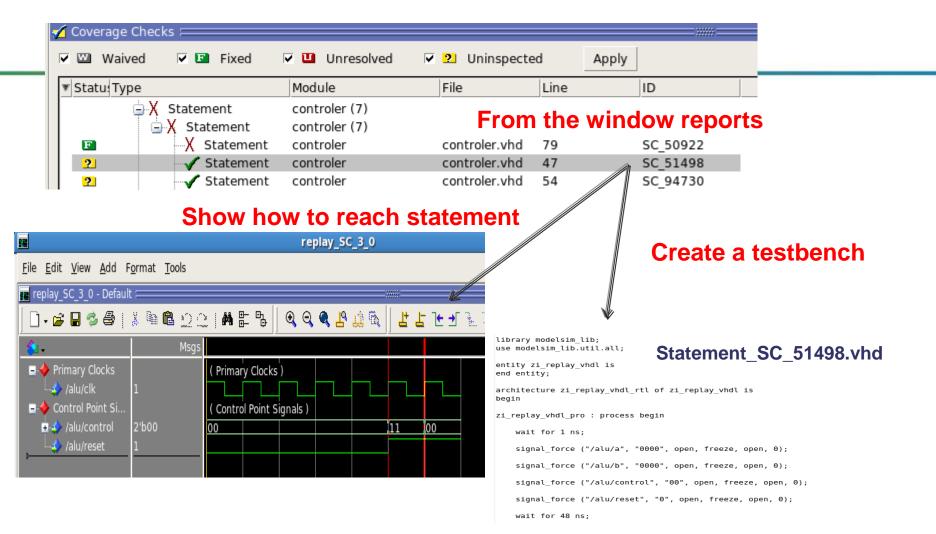
Easy to pinpoint the root cause of an unreachable code and analyse if it's a bug that need to be fixed or not

102 Code Coverage Closure Tutorial, DVCon 2015


© Mentor Graphics Corp. Company Confidential **www.mentor.com**

The generated exclude file

vsim c viewcov before.ucdb do "do exclude.do coverage save after.do"


coverage exclude -du work.controler -srcfile controler.vhd -linerange 79 -item s 1 -comment "CoverCheck:Statement" coverage exclude -du work.datapath -srcfile datapath.vhd -linerange 53 -item s 1 -comment "CoverCheck:Statement" coverage exclude -du work.controler -srcfile controler.vhd -linerange 77 -item b 1 -comment "CoverCheck:Branch" coverage exclude -du work.datapath -srcfile datapath.vhd -linerange 52 -item b 1 -comment "CoverCheck:Branch"

less effort to improve code coverage results to target 100%

Show guidance waveforms : waivers

Help to write a directed test or adjust constraints for a constrained random testbench

The evaluation (1)

- Machine

32 cores @ 2.7 GHZ , 128 GB RAM , Linux RedHat 507 64 bits

- Questa CoverCheck 10.2b
- Design characteristics
 - 60 klines of vhdl code
 - implemented within a XILINX KINTEX7 device (xc7k325)
 - Slices 30k , DSP 178 , Bram 374

A real design

The Results

- Without UCDB file (branch condition statement

verification)			
vermedelorry	verify effort low 30 min	verify effort high 7 hours	
Actives	52918	52918	
Unreachables	3310	3323	
Reachables — Using an UC	23798	27809	
	20 min 2556 a verificat	ion effort to tow	

Passing low to high effort increases drastically the runtime verification (x 14) for a small decrease in inconclusives (15%)

Conclusion

- Easy to use tool
 - User guide , Tutorial , good support
 - Intuitive debug user interface
- Questa Covercheck brings benefits
 - Reducing time trying to hit truly unreachables code
 - Helping find stimulus to improve code coverage
 - Facilitating process review for justifying unreached code items
 - Particularly for code that does not matter
 - Eliminating manual errors for creating exclusions files
 - Easing maintenance of exclusions files as the design volves
- Next Steps
 - Run with higher effort levels to reduce inconclusives
 - Run on more designs

