(2025

DESIGN AND VERIEICATION ™

DVLCOIN

CONFERENCE AND EXHIBITION

MUNICH, GERMANY
OCTOBER 14-15, 2025

Expediting Coverage Closure in Digital Verification
with the Portable Stimulus Standard (PSS)

Tulio Pereira Bitencourt, Nikolaos llioudis, Ahmed Abd-Allah, Daniel Waszczak,
Anton Tschank, Tom Fitzpatrick

Agenda

Introduction to Portable Stimulus Standard (PSS)
Effectively creating a robust PSS model

UVM & PSS: a teamwork to expedite digital verification
Using PSS from day one

Adapting existing UVM testbenches to support PSS
Portable Stimulus Standard, emphasizing PORTABLE
Real-world metrics on the impact of PSS

N o U s W NhRE

Tessent Embedded Analytics functional monitoring

Observing non-intrusively if your SoC behaves as it was meant to

Full visibility into HW/SW interactions in deployed systems enabling
optimizations and debugging throughout the entire system lifecycle from lab to
deployment

* Real-time debug and trace environment
* Optimize software to achieve better performance and efficiency

* Use historical performance data to inform designs of next generation
designs

Data Centre Automotive 5G/6G Storage

(2025

DESIGN AND VERIEICATION ™

DVGCON

EEEEEEEEEEEEEEEEEEEEE ON

Introduction — Tessent Embedded Analytics Software for interactive

debug and optimization

Debug software running on a separate PC is
used to interact with the EA smart monitors

Smart monitors

Range of ~40 IP blocks including run-time
configurable monitors, infrastructure, and

interfaces that enables non-intrusive debug a
performance monitoring

Host Suite

Capture/
processing

app

Orchestration /
analytics app

Embedded
SDK

Host Suite

Fleet monitoring enablement

Applications developed using the Embedded Applications developed using Host Suite can
SDK interact with the monitors, capture, and automate data orchestration and analytics from

process results one or multiple devices

Edge analytics enablement

(2025

DESIGN AND VERIEICATION ™

DVCCON

CONFERENCE AND EXHIBITION

Introduction to Portable
Stimulus Standard (PSS)

Typical UVM Limitations

« UVM is a well-stablished technology, but... } ;Is N
i\ Im N2,

» Relies on too many files to be managed ¥§SqCZ§§S :‘-E < 2; S z}h

» Requires the implementation of different | = :‘;B — Z;B —
testcase scenarios manually — delaying h<_ Sl 19— S
coverage closure — 2| — 1S ™

» Verification intent cannot be ported into S e ©

' ' — O 9] T

non-SystemVerilog solutions 5 5 S

(2025

DESIGN AND VERIEICATION ™

What is a Portable Stimulus Mo a|?

—

Y\ Siream e What does it
Model do

The e How does it
Realization do what it
Layer does

| = R LD\ N RS A g |
\ cAll) e 3 3 \ " w
A% == ’[‘3 ‘] Al et ;_ o . , 0‘ oot LY : § / .-_ i :
-l i TR S e 5 e s e
' " — et =T = =veor e - o L
L - - - < ' by oS %
// DESIGN AND VERIFICATION o

/4

NNNNNNNNNNNNNNNNNNNNNNN

Concise Language to Specify Verification Intent
A complement to UVM, not a replacement

Events & Scheduling
Sequences Control UVCs

Stimulus Coverage “Constraint H

Score boa rd Virtual Sequences
Debug

”

PSS is a stimulus language

UVM Environment

A y
Interface VIPs Interface VIPs

IP / Sub-System RTL T

Concise Language to Specify Verification Intent
A complement to UVM, not a replacement

/(lnitialize UART)

—(Config UART) Config UART Agent)

e Behavior = Action

APB Agent
A

v \
Scenario = \
{transactions, UART IP
configurations, { RX Data Agent TX Data)
programming 4
A\ 4
sequences} A e é

Agent RX Data)

TX Data

UVM Env

Concise Language to Specify Verification Intent
A complement to UVM, not a replacement

e Behavior = Action

| * Schedule = Activity
APB Agent | D >
A J
v \ .
Scenario = \ ———
{tran_sacthns, UART IP o T .
configurations,
1 A
SeqUences) I
g UART Agent | I:\,fﬁl
A A
UVM Env

Concise Language to Specify Verification Intent
A complement to UVM, not a replacement

e Behavior = Action

FEps ‘/(Initialize UART) * Schedule = Activity
t ntt | ——=_ « Sequential Data = Buffer
(Config UART) CConﬂg UART Agent) * Parallel Data = Stream
Scenario = = * State info = State
{transactions, UART IP e I
configurations, e \(Agent TxDaa) °* IN UVM, PSS can create a
programml?g ! set of sequences
sequences e
i UART Agent data iﬁ * Run in existing UVM env
R TX Data Agent RX Data
UVM Env data](J)

(2025

DESIGN AND VERIEICATION ™

The Rubber Meets the Road

The Abstract Model must be
implemented on different targets

- 7 >
g _~~ - = ~
- // ,:'/_if"/'

Atomic Actions - target code

e Target code modeled in exec blocks

Action

Exec Block

(2025

DESIGN AND VERIEICATION ™

NNNNNNNNNNNNNNNNNNNNNNN

PSS Generalized Tool Flow

Constraint
Solver

(%]
3 c
c
o <
s <Z
9]
@
n

UVM Testbench

Transaction I C-test I
Sequences

SoC Testbench

(2025

DESIGN AND VERIEICATION ™

DVCCON

CONFERENCE AND EXHIBITION

Generated Code Implements Activity Schedule

Effectively creating a robust
PSS model

What is a PSS Model?

e A structured specification of verification intent
written in the PSS language.

e Automating generation of valid test scenarios. oot sconario generation

PORTABLE TEST Q
§TIMULUS |= ﬁ

e List of behavioural rules on how to randomize and
accommodate tasks and variables into scenarios.

Simulation Emulation

\/
PSS
Model

/ \

FPGA Post-Silicon

* Platform-independent description that can be
realized across multiple target environments

(2025

DESIGN AND VERIEICATION ™

NNNNNNNNNNNNNNNNNNNNNNN

Proposed Flow (running PSS)

SystemVerilog

. Simulator
Compiler

PSS Base
Vseq

_ PSS Vseq +pss_action="actionN”
PSS Compiler

PSS Model

PSS Test
Actions

_—

package functions pkg {

Starting a PSS Model anponent ust_dra_c {

functions_pkg::*;

1. Create a .pss file to serve as the PSS Model
entry point

2. Organize model elements within package
declarations to enable reuse and organization

3. Create a top component & action that will
serve as the entry point for scenario

generation action top {

PSS Model activity {

(2025

DESIGN AND VERIEICATION ™

DVCON

CONFERENCE AND EXHIBITI ON

package functions pkg {
function void run_alloc(int manage_id
target SV function run_alloc

[] [] [] }
Splitting features into tasks o weamace
unctions_pkg::*;
1. Group the system main functionalities action do_alloc {
into SV tasks in a Virtual Sequence. rand bit[32] manage_id
2. Import the SV task into PSS. exec body {
. . run_alloc(manage id);
3. Create actions in the PSS Model and s
connect them to the SV tasks. }
task run _alloc (int manage_id); action top {
m{ alloc _seq alloc_seq; .
Toc_seq = s ::create(); activity {
(! randomlze() with {
my_manage_id = 5
}) “uvm Fatal(report id,)
start()
endtask run_alloc } /

(2025

DESIGN AND VERIEICATION ™

package functions pkg {
function void run_alloc(int manage_id
target SV function run_alloc

. . }
Setting up the constraints comoert seamac
unctions_pkg::*;

e Pick variables that will be randomized at action do_alloc {
the PSS level (i.e., PSS-controlled e body |
VariabIES). run_alloc(manage_id);

. }s
* num_of alloc_msgs shall be randomized }

from within the 1-3 range.

action top {

action bit[3:0] in [1..3] num_of alloc msgs;

activity {

(2025

DESIGN AND VERIEICATION ™

package functions pkg {
function void run_alloc(int manage_id
target SV function run_alloc
}

Ca | | i ng a Ctio n S component ust dma_c {

functions_pkg: :*;

* Tasks shall be locally declared inside the action do_aliec ¢

top action. exec body {
L run_alloc(manage_id);
e Start the activity block. b
e Randomize the number of alloc action top {
messages do_alloc alloc;

. action bit[3:0] in [1..3] num_of _alloc msgs;

* Run, in sequence, all alloc messages.

activity {
num_of_alloc_msgs;

{

do alloc; do alloc; do alloc;

(2025

DESIGN AND VERIEICATION ™

Activity: schedule, sequence, parallel

Sequence

run_alloc run_alloc run_alloc

Parallel

Activity: schedule, sequence, parallel

Schedule

run_alloc run_alloc run_alloc —Pm

run_alloc

run_alloc

run alloc run_aIIoc

run_alloc

run_alloc

Debugging a PSS Model

Schedule PSS SEED = 1000

. Replicate (3
* Enable trace logs to track action eplicate (3 run_alloc

scheduling and execution flow

run_alloc

* Examine component hierarchy, action run_alloc
relationships, and scheduling in
graphical views.

Schedule _
PSS SEED = 5000

Replicate !3) !

* Use fixed seeds to reproduce specific
scenarios for detailed analysis.

(2025

DESIGN AND VERIEICATION ™

Real-world Example

]|
-

m

5]

=] - ==i_srabied wait_for_maduls_enable num_ot_get_msg du_get_msg fag_run_disabile_event dn_siizable_svent
saart [» auuuf request @ I > . - - @ {rena
-

m
m‘

do_set_dma_chan

repeat 'p_num_dma_cha

(2025

DESIGN AND VERIEICATION ™

DVCCON

CONFERENCE AND EXHIBITION

Summary

Split features into PSS tasks.
Clearly define value constraints for PSS-controlled variables.
Implement the PSS model.

B W

Run any PSS visualization tool to see and graphically debug
PSS scenarios.

UVM & PSS

(2025

DESIGN AND VERIEICATION ™

Introduction

e PSS aims at enhancing UVM testbenches.

* PSS reuses existing environments.

* PSS allows for dynamic and randomized testcase generation.

Non-PSS World |

PSS around UVM =

Env .

Scoreboard \/

Agent PSS World

Sequencer PSS Model
Few Extra
Semidirected
Driver Monitor PSS Test Testcases

(2025

DESIGN AND VERIEICATION ™

DVCCON

CONFERENCE AND EXHIBITION

Basic Structure: PSS Test

e PSS reuses the entire UVM testbench PSS Test

(e.g., scoreboard, agents).
ode

* The PSS Test extends a UVM_TEST to
preserve the UVM structure.

* The PSS Test starts the compiled PSS
vseq.

starts

* PSS Vseq is usually unreadable, but
the implementation of the PSS model,
it extends the PSS Base Vseq.

DESIGN AND VERIEICATION ™

NNNNNNNNNNNNNNNNNNNNNNN

Basic Structure: PSS Test

* The PSS Test’s * The PSS Vseq shall * The PSS Vseq shall
run_phase has the be started as any not target any
necessary code to other Vseq would. sequencer/virtual
start the PSS Vseq. sequence.
class extends ;

task . phase);
dma_gps_nvirt vseq test vseq;
(this,);
test vseq = C - e -);
= pss_root _action;
(null);
(this,);

endtask // run_phase

endclass :

Basic Structure: PSS Base Vseq

* The pss_base_vseq is simply a uvm_sequence with the list of
available tasks.

* Extends uvm_sequence.

class extends ;

task int

endtask

endclass :

Example of Scenario Generation

IEHS

run_write

run_write

run_alloc run_alloc

- = | Schedule

run_write

Scenario randomization is controlled by

PSS_SEED

run_alloc

run_write

Scenario #3 @l Scenario #2 |l Scenario #1

_SYSTEMSINITIATIVE

1ONS

PSS & Regress

PSS Seeds +
SIM Seeds

D

Non-PSS
Testcases:

LN
N
o
AN

i
|
>
a
z
<
z
9
m
i
o}

FICATION™
IBITION

DVCCON

CONFERENCE AND EXH

Considerations

* PSS manipulates the stimuli sent through a UVM environment.
* PSS Test starts a compiled PSS Vseq, which implements the PSS model.

* PSS Base Vseq shall contain a list of available tasks.

* PSS_SEED controls the generation of scenarios and allows for
reproducing them.

* PSS-based Regressions focus on a PSS Test running with multiple
PSS SEEDs + few corner-case tests (if necessary).

Using PSS from day one

Introduction

e Using PSS from Day 1 is the best-case scenario.
* No need to adapt existing testcases/tasks into PSS.

e Liberty to decide the best approach to extract the maximum out of
PSS without re-work.

Understand the Design

* Thoroughly understanding the design is the key!
* Think about ways to break RTL features into tasks.

* Implement a robust UVM environment and create all the necessary
sequences and virtual sequences.

e Remember: TASKS!

Create the tasks
* Create the PSS Base Vseq.
* PSS Base Vseq shall extend uvm_sequence.
* Define the major tasks as SystemVerilog tasks in the PSS Base Vseq.

* If needed, create auxiliary helper tasks/functions.
* These shall not be imported by the PSS model.

class extends ;

task
task

task

task

endclass :

Relationship between tasks & PSS Model

* Now let’s think about the relationship between tasks:
* Which task(s) must start the simulation (e.g., config)?
* Any other hard requirement for ordering tasks?
* Which task must finish the simulation?

* LEAVE SPACE FOR RANDOMIZATION! - define tasks that can be executed in
any order.

* Implement tasks to allow randomization of variables at the PSS Model.

Relationship between tasks & PSS Model
ZEUT I oo SSRGS un write o un_confis 2 run drain

Repeat

Repeat

Create the PSS Test

* As previously presented, just create the PSS Test and start the
compiled sequence from its run_phase.

* Ensure that it extends the UVM Base Test, which builds the
environment.

class extends ;
task) phase);
dma_gps_nvirt_vseq test_vseq;
(this,)
test vseq = C D e D)
= pss_root_action;
(null);
this 5
endtask // run_phase (’)
endclass :

(2025

DESIGN AND VERIEICATION ™

Summary of Steps & Considerations

Understand the design spec.

2. Divide design features into
different SV Tasks.

3. Define the relationship
between tasks.

. Implement the PSS Model
5. Create the PSS Test.

* PSS From Day 1 allows for
designing a PSS-compatible
UVM environment.

e Easier to define tasks.

* Possibility to re-use tasks in
future non-PSS testcases.

Adapting existing UVM
testbenches to support PSS

Assumptions

1. Have a working UVM testbench + set of tests

2. Want to use PSS to generate stimulus, instead of UVM tests

3. Want existing UVM tests to still be runnable, afterwards

4. Have set up a PSS flow that requires 3 main files to be defined, to run:
* PSS base vseq
e PSS model
* PSS test

Objective: create these files and match/improve coverage achieved
by current UVM tests.

Summary of PSS base vseq, model, and test

my_pss_base_vseq.svh Class definition which contains collection of tasks;
each task is a ‘unit’ of stimulus

my_pss_model.pss Imports tasks from pss_base_vseq and defines rules
for how stimulus is generated from these tasks

my_pss_test.svh Class definition of pss test; runs a vseq generated
from pss_model + pss_base vseq

* Location of each file will depend on how your PSS flow is set up
 Don’t forget to add these to any relevant packages and defns

Rough Outline of PSS Files

my_pss_base_vseq.svh my_pss_model.pss my_pss_test.svh
//;lass my pss_base_vseq \\\ //;ackage functions pkg { \\\ //,lass my pss_test \\\
extends uvm_sequence; // import tasks from extends my base_ test;
base_vseq
3
// declare handles for task run_phase(..);
env, agents, configs; component my_component {
control knob vars // create vseq
// define pss actions // pass handles
// constrain vars for imported tasks // start vseq
// define tasks action top { endtask
: activity {
// define scheduling endclass
rules for actions
endclass }.}3

- L a %

(2025

DESIGN AND VERIEICATION ™

DVL CIN

CONFEREN E AND EXHIBITION

Key Phases and Milestones

Basic PSS setup PSS Sanity Test PSS Model is
Compiles Passes Finalized
e Ensure PSS vseq, test, e Create stimulus for e Slowly incorporate
and model correctly basic sanity test of more stimulus.
interact with existing DUT, with PSS.
environment. e Can ‘decompose’ key
e Get familiar with PSS UVM tests into vseq
e Ensure PSS flow works model syntax and tasks and ensure
as expected. capabilities —and your model can create the
PSS tool’s debug test cases as scenarios.
e Minimal stimulus. capabilities
e Eventually scenarios
cover all test cases.

N / - J _ J

(2025

DESIGN AND VERIEICATION ™

DVCCON

CONFERENCE AND EXHIBITION

Basic PSS Setup: Notes

Vseq tasks will perform test-level functionality e.g.
e Starting a seq on a sequencer that lives as env.agent.sequencer
* Incrementing a transaction count variable

So, vseq needs handles to UVM components, configs, and various variables

These will likely live in the base test which the PSS test extends

So can pass handles into vseq in run phase of PSS test, before starting vseq

task run phase (uvm phase phase);

// my pss vseq type 1is generated from model, extends my pss base vseq
vseq = my pss vseq::type 1id::create (“vseq”);

vseg.m env = m env;

vseq.m cfg = m cfg;

vseqg.start (null) ;

(2025

DESIGN AND VERIEICATION ™

DVCCON

CONFERENCE AND EXHIBITION

Common Pitfalls

= Problem: One or more test cases requires overriding build phase.

—> Solution: Define pss_test _<specialized>; extends pss_test, overrides build phase.

—> Problem: Model or base_vseq needs vars that can't be directly passed to base vseq.

—> Solution: Use a ‘pss_config’ object.

psstest <pkg>::m pss cfg ={..}; //or: m cfg.m pss cfg ={..}; vseg.m cfg = m cfg;

function void get pss cfg(output pss cfg t pss cfg);

PSS VSe(Q pss_cfg = <pkg>::m pss cfg; //or: pss cfg = m cfg.m pss cfg;
endfunction

struct pss cfg t {..};
pss cfg t pss cfg;
get pss cfg(pss cfg);

(2025

DESIGN AND VERIEICATION ™

DVCCON

CONFERENCE AND EXHIBITION

Coverage Monitoring for PSS

* Coverage provides a metric for comparison against existing UVM tests

* Run PSS tests in separate regression
* |nstead of suites of different UVM tests, run same PSS test multiple times
* Different PSS seeds between runs cover many scenarios per regression
* Exception: pss_test <specialized> with overridden build phase

* As PSS model gets finalized, PSS regression coverage rises to meet or exceed
UVM-test coverage

e Again: might use a few semi-directed UVM tests for very edge cases

Portable Stimulus Standard,
emphasizing PORTABLE

PSS Portability - The Core Advantage

* True Portability: PSS separates test intent from implementation details

* Write Once, Run Anywhere: Same abstract model drives verification across multiple:
* Environments (simulation, emulation, FPGA)
e Abstraction levels (block, subsystem, system)
* Languages (SystemVerilog UVM, C/C++)

* Verification Continuum: Seamless transition from block-level to system-level testing

Multi-Target Test Generation

* One Model, Multiple Outputs

v

UVM Tests (SystemVerilog)
PSS Model

v

C Tests (SW/HW Integration)

Post-silicon tests

v

* Consistent Test Intent: Same scenarios used at multiple levels of abstractions / targets

* Better Maintenance: Tests definitions in one place, not multiple environments.

(2025

DESIGN AND VERIEICATION ™

DVCCON

EEEEEEEEEEEEEEEEEEEEE ON

Scaling to Subsystem Level

4 4 4 4 4 4

' y y vy v
Message Engine

* From Block-Level to Subsystem: Compose
block level PSS models into subsystem
scenarios

* Reuse Without Rewrite: Leverage existing
block-level PSS components into larger
context

AXI BFM USB2 BFM i

UVM VIP

1
1
UVM VIP UVM VIP UVM VIP |

direct message
env

UVM VIP
sequences

UVM VIP
example tests

USB 2 env. i

f

AXl env.

i

JTAG env

* Cross-Block Interactions: Model complex
behaviors spanning multiple design units

UVMVIP
Environment

(2025

DESIGN AND VERIEICATION ™

Scaling to Emulation and FPGA

* Performance with Portability: Run the same tests on
acceleration platforms

* Test Reuse Strategy:
e Simulation - Debug detailed behaviours
* Emulation - Run longer, more complex tests
* FPGA - Test in near-real-time environment

* Implementation Considerations: What changes between
environments vs. what stays the same

Implementation Example: Tessent

Embedded A.nalytlcs subsystem cross-platform PSS Model
Test Generation

* Added PSS model for test / sequence - odel.p
generation for. component sm_top AL
action sm_set_config_act {); action set_transfer_size_act{};

* Unified Testing Framework — Generate
identical test scenarios for both UVM and C- PRl |
based environments acton sm_un_enable_act; scton write_dma_act;

action delay_act {}; action read_dma_act {};

* Seamless Environment Transitions —

Maintain test consistency across development Target Language
phases Implementation

improving quality through consistent
testing methodology.

* Key Benefit: Software teams can begin
validation earlier in the development
cycle, reducing time-to-market and

SIMULATION FPGA PROTO 202 5

DESIGN AND VERIEICATION ™

DVCCON

CONFERENCE AND EXHIBITION

PSS Benefits and ROI

* Verification Efficiency: Write once, verify everywhere
* Reduced Maintenance: Single source of truth for test intent
* Accelerated Coverage: Reach complex scenarios earlier in the process

e Smoother Hardware Transition: Same tests from simulation to silicon

Real-world metrics on the
impact of PSS

PSS vs. Non-PSS — tests and coverage

80
70
60
50
40
30
20
10

DMA IP - PSS vs. Non-PSS JTAG Analytic IP - PSS vs. Non-PSS
73.4 75 90 81.1 82.7
80
58 70
60
40
23 30 27
l 20 12 17 l
4 10 3
0]
Number of testcases Number of files Coverage % (CC, FC) Number of testcases Number of files Coverage % (CC, FC)

(segs, vsegs, tests)

PSS ® Non-PSS

(segs, vsegs, tests)

PSS ® Non-PSS

= 4-5x reduction in number of testcases to achieve the same coverage levels

- Many hours of development time saved!

(2025

DESIGN AND VERIEICATION ™

DVCCON

CONFERENCE AND EXHIBITION

Advantages of PSS

1. Reduced complexity + improved maintainability:
a. Much fewer files to manage.

b. All platform-specific implementation centralized in a single place (i.e., pss_base _vseq)
c. All higher-level verification intent centralized in a single place (i.e., PSS model)

2. Dynamic and automatic generation of scenarios:

a. Random scheduling process — can be constrained as required
b. Random variables and values — can be constrained as required
- Helps expose RTL bugs as well as testbench weaknesses

3. Still reaches similar levels of coverage when compared to
non-PSS implementations.

(2025

DESIGN AND VERIEICATION ™

Conclusion

* PSS enhances the DV process by creating random scenarios.

* PSS is based on a ‘PSS Model” which captures verification intent.

* PSS works with UVM — complementary methodologies.

* New project using PSS from day one facilitates efficient implementation.
* Existing UVM Environments can be adapted to work with PSS.

* PSS tests can work in other platforms (e.g., C and post-silicon).

Questions?

	Cover
	Slide 1: Expediting Coverage Closure in Digital Verification with the Portable Stimulus Standard (PSS)

	Agenda
	Slide 2: Agenda

	EA Intro
	Slide 3: Tessent Embedded Analytics functional monitoring​
	Slide 4: Introduction – Tessent Embedded Analytics

	Topic 1: Intro to PSS
	Slide 5: Introduction to Portable Stimulus Standard (PSS)
	Slide 6: Typical UVM Limitations
	Slide 7: What is a Portable Stimulus Model?
	Slide 8: Concise Language to Specify Verification Intent
	Slide 9: Concise Language to Specify Verification Intent
	Slide 10: Concise Language to Specify Verification Intent
	Slide 14: Concise Language to Specify Verification Intent
	Slide 19: The Rubber Meets the Road
	Slide 20: PSS Generalized Tool Flow
	Slide 21: Generated Code Implements Activity Schedule

	Topic 2: PSS model
	Slide 23: Effectively creating a robust PSS model
	Slide 24: What is a PSS Model?
	Slide 25: Proposed Flow (running PSS)
	Slide 26: Starting a PSS Model
	Slide 27: Splitting features into tasks
	Slide 28: Setting up the constraints
	Slide 29: Calling actions
	Slide 31: Activity: schedule, sequence, parallel
	Slide 32: Activity: schedule, sequence, parallel
	Slide 33: Debugging a PSS Model
	Slide 34: Real-world Example
	Slide 35: Summary

	Topic 3: UVM & PSS
	Slide 36: UVM & PSS
	Slide 37: Introduction
	Slide 38: PSS around UVM
	Slide 39: Basic Structure: PSS Test
	Slide 40: Basic Structure: PSS Test
	Slide 41: Basic Structure: PSS Base Vseq
	Slide 42: Example of Scenario Generation
	Slide 43: PSS & Regressions
	Slide 44: Considerations

	Topic 4: PSS from day 1
	Slide 45: Using PSS from day one
	Slide 46: Introduction
	Slide 47: Understand the Design
	Slide 48: Create the tasks
	Slide 49: Relationship between tasks & PSS Model
	Slide 50: Relationship between tasks & PSS Model
	Slide 51: Create the PSS Test
	Slide 52: Summary of Steps & Considerations

	Topic 5: Adapting TB to PSS
	Slide 53: Adapting existing UVM testbenches to support PSS
	Slide 54: Assumptions
	Slide 55: Summary of PSS base vseq, model, and test
	Slide 56: Rough Outline of PSS Files
	Slide 57: Key Phases and Milestones
	Slide 58: Basic PSS Setup: Notes
	Slide 59: Common Pitfalls
	Slide 60: Coverage Monitoring for PSS

	Topic 6: PSS, PORTABLE
	Slide 61: Portable Stimulus Standard, emphasizing PORTABLE
	Slide 62: PSS Portability - The Core Advantage
	Slide 63: Multi-Target Test Generation
	Slide 64: Scaling to Subsystem Level
	Slide 65: Scaling to Emulation and FPGA
	Slide 66: Implementation Example: Tessent Embedded Analytics subsystem cross-platform Test Generation
	Slide 67: PSS Benefits and ROI

	Topic 7: Metrics on Impact
	Slide 68: Real-world metrics on the impact of PSS
	Slide 69: PSS vs. Non-PSS – tests and coverage
	Slide 70: Advantages of PSS
	Slide 71: Conclusion

	Questions
	Slide 72: Questions?

