
Expediting Coverage Closure in Digital Verification
with the Portable Stimulus Standard (PSS)

Tulio Pereira Bitencourt, Nikolaos Ilioudis, Ahmed Abd-Allah, Daniel Waszczak,
Anton Tschank, Tom Fitzpatrick

Agenda

1. Introduction to Portable Stimulus Standard (PSS)

2. Effectively creating a robust PSS model

3. UVM & PSS: a teamwork to expedite digital verification

4. Using PSS from day one

5. Adapting existing UVM testbenches to support PSS

6. Portable Stimulus Standard, emphasizing PORTABLE

7. Real-world metrics on the impact of PSS

Tessent Embedded Analytics functional monitoring​

Observing non-intrusively if your SoC behaves as it was meant to

Full visibility into HW/SW interactions in deployed systems enabling
optimizations and debugging throughout the entire system lifecycle from lab to
deployment

• Real-time debug and trace environment

• Optimize software to achieve better performance and efficiency

• Use historical performance data to inform designs of next generation
designs

Bus Monitor
Status

Monitor
Trace

Encoder
NoC

Monitor

Direct
Memory
Access

Static
Instrumen-

tation

CPU Debug
Module

Trace
Receiver

AI Data Centre Automotive 5G/6G Storage Audio

Introduction – Tessent Embedded Analytics

Host Suite

3rd party SW

Orchestration /
analytics app

Host Suite

Embedded
SDK

Capture/
processing

app

Smart monitors
Range of ~40 IP blocks including run-time

configurable monitors, infrastructure, and

interfaces that enables non-intrusive debug and

performance monitoring

Software for interactive

debug and optimization
Debug software running on a separate PC is

used to interact with the EA smart monitors

Edge analytics enablement
Applications developed using the Embedded

SDK interact with the monitors, capture, and

process results

Fleet monitoring enablement
Applications developed using Host Suite can

automate data orchestration and analytics from

one or multiple devices

Introduction to Portable
Stimulus Standard (PSS)

Typical UVM Limitations

Non-PSS

Testcases:

• UVM is a well-stablished technology, but…

➢Relies on too many files to be managed
➢Requires the implementation of different

testcase scenarios manually – delaying
coverage closure

➢Verification intent cannot be ported into
non-SystemVerilog solutions

What is a Portable Stimulus Model?

• What does it
do

The Abstract
Model

• How does it
do what it
does

The
Realization

Layer

Concise Language to Specify Verification Intent

IP / Sub-System RTLIP / Sub-System RTLIP / Sub-System RTL

Control UVCsSequences

Virtual SequencesScoreboard

Stimulus Coverage

Events & Scheduling

Debug

“Constraint Hell”

UVM Environment

Interface VIPsInterface VIPs Interface VIPsInterface VIPs

A complement to UVM, not a replacement

PSS is a stimulus language

UVM Env

Concise Language to Specify Verification Intent

Interface VIPsAPB Agent

UART IP

UART Agent

A complement to UVM, not a replacement

Scenario =

{transactions,

configurations,

programming

sequences}

Config UART AgentConfig UART

Agent TX DataRX Data

Agent RX DataTX Data

Initialize UART

• Behavior = Action

UVM Env

Concise Language to Specify Verification Intent

Interface VIPsAPB Agent

UART IP

UART Agent

A complement to UVM, not a replacement

Scenario =

{transactions,

configurations,

programming

sequences}

Config UART AgentConfig UART

Agent TX DataRX Data

Agent RX DataTX Data

Initialize UART

• Behavior = Action

• Schedule = Activity

UVM Env

Concise Language to Specify Verification Intent

• Behavior = Action

• Schedule = Activity

• Sequential Data = Buffer

• Parallel Data = Stream

• State info = State

• In UVM, PSS can create a
set of sequences
• Run in existing UVM env

Interface VIPsAPB Agent

UART IP

UART Agent

A complement to UVM, not a replacement

Scenario =

{transactions,

configurations,

programming

sequences}

Config UART AgentConfig UART

Agent TX DataRX Data

Agent RX DataTX Data

init?

Initialize UART

data

data

data

The Rubber Meets the Road
The Abstract Model must be
implemented on different targets

Atomic Actions → target code

• Target code modeled in exec blocks

Generator assembles target code
according to Activity schedule

Action

Exec Block

PSS Generalized Tool Flow
Gen-time or Run-time

Scenario model

+ Constraints

PSS
Model

P
S

S

C
o

m
p

il
e
r

Solved Model

Constraint

Solver

Test

Generator

AXI

VIP

UART DDR

MEM

DMAC

UART

VIP

AXI

VIP

UVM

Sequences

UVM Testbench

TB
AXI

VIP

UART DDR

MEM

DMAC

UART

VIP

CPU

Transaction

Sequences
C-testSync

SoC Testbench

SV/UVM

Generated Code Implements Activity Schedule

action
exec

action

action action

exec

exec exec

action
exec

C Code

Effectively creating a robust
PSS model

What is a PSS Model?

• A structured specification of verification intent
written in the PSS language.

• Automating generation of valid test scenarios.

• List of behavioural rules on how to randomize and
accommodate tasks and variables into scenarios.

• Platform-independent description that can be
realized across multiple target environments

Proposed Flow (running PSS)

UVM TB

PSS Test

PSS Base
Vseq

PSS Model

PSS Compiler

Simulator

PSS Test
Actions

+pss_action=“actionN”PSS Vseq

SystemVerilog
Compiler

Starting a PSS Model

1. Create a .pss file to serve as the PSS Model
entry point

2. Organize model elements within package
declarations to enable reuse and organization

3. Create a top component & action that will
serve as the entry point for scenario
generation

PSS Model

package functions_pkg {

}
component ust_dma_c {
 import functions_pkg::*;

 action top {

 activity {

 }
 }
}

Splitting features into tasks
1. Group the system main functionalities

into SV tasks in a Virtual Sequence.
2. Import the SV task into PSS.
3. Create actions in the PSS Model and

connect them to the SV tasks.

task run_alloc (int manage_id);
 my_alloc_seq alloc_seq;

 alloc_seq = my_alloc_seq::type_id::create("alloc_seq");

 if (!alloc_seq.randomize() with {
 my_manage_id == local::manage_id;

 }) `uvm_fatal(report_id, "Unable to randomize alloc_seq.")

 alloc_seq.start(m_env.m_agt.seqr);

endtask : run_alloc

package functions_pkg {
 function void run_alloc(int manage_id);
 import target SV function run_alloc;

}
component ust_dma_c {
 import functions_pkg::*;

 action do_alloc {
 rand bit[32] manage_id;

 exec body {
 run_alloc(manage_id);
 };
 }

 action top {

 activity {

 }
 }
}

Setting up the constraints
• Pick variables that will be randomized at

the PSS level (i.e., PSS-controlled
variables).

• num_of_alloc_msgs shall be randomized
from within the 1-3 range.

package functions_pkg {
 function void run_alloc(int manage_id);
 import target SV function run_alloc;

}
component ust_dma_c {
 import functions_pkg::*;

 action do_alloc {
 …
 exec body {
 run_alloc(manage_id);
 };
 }

 action top {

 action bit[3:0] in [1..3] num_of_alloc_msgs;

 activity {

 }
 }
}

Calling actions
• Tasks shall be locally declared inside the

top action.

• Start the activity block.

• Randomize the number of alloc
messages.

• Run, in sequence, all alloc messages.

package functions_pkg {
 function void run_alloc(int manage_id);
 import target SV function run_alloc;

}
component ust_dma_c {
 import functions_pkg::*;

 action do_alloc {
 …
 exec body {
 run_alloc(manage_id);
 };
 }

 action top {
 do_alloc alloc;

 action bit[3:0] in [1..3] num_of_alloc_msgs;

 activity {
 num_of_alloc_msgs;
 sequence {
 do alloc; do alloc; do alloc;
 }
 }
 }
}

Activity: schedule, sequence, parallel

Parallel

run_alloc

run_alloc

run_alloc

Sequence

run_alloc run_alloc run_alloc

Schedule

Activity: schedule, sequence, parallel

run_alloc run_alloc run_alloc

run_alloc

run_alloc

run_alloc

run_alloc

run_alloc

run_alloc
run_alloc

run_alloc

run_alloc

Debugging a PSS Model

• Enable trace logs to track action
scheduling and execution flow

• Examine component hierarchy, action
relationships, and scheduling in
graphical views.

• Use fixed seeds to reproduce specific
scenarios for detailed analysis.

Schedule

Replicate (3)

run_alloc

run_alloc

run_alloc

Schedule

Replicate (3)
run_alloc run_alloc run_alloc

PSS SEED = 1000

PSS SEED = 5000

Real-world Example

Summary

1. Split features into PSS tasks.

2. Clearly define value constraints for PSS-controlled variables.

3. Implement the PSS model.

4. Run any PSS visualization tool to see and graphically debug
PSS scenarios.

UVM & PSS

Introduction

• PSS aims at enhancing UVM testbenches.

• PSS reuses existing environments.

• PSS allows for dynamic and randomized testcase generation.

PSS

PSS around UVM

Test

Env

Agent

Driver Monitor

Scoreboard

Sequencer

Non-PSS World

PSS World

Multiple
UVM_TEST classes

Few Extra
Semidirected

Testcases

PSS Model

PSS Test

Basic Structure: PSS Test

• PSS reuses the entire UVM testbench
(e.g., scoreboard, agents).

• The PSS Test extends a UVM_TEST to
preserve the UVM structure.

• The PSS Test starts the compiled PSS
vseq.

• PSS Vseq is usually unreadable, but
the implementation of the PSS model;
it extends the PSS Base Vseq.

UVM Base Test

PSS Test

extends

PSS Base
Vseq

PSS Vseq
extends

starts

PSS Model

PSS
Compiler

Basic Structure: PSS Test
• The PSS Test’s

run_phase has the
necessary code to
start the PSS Vseq.

• The PSS Vseq shall
be started as any
other Vseq would.

• The PSS Vseq shall
not target any
sequencer/virtual
sequence.

class dma_pss_test extends dma_base_test;
 …

 task run_phase_runSequences(uvm_phase phase);
 dma_qps_nvirt_vseq test_vseq;

 phase.raise_objection(this, "Starting Test");

 `uvm_info("TEST","PSS Test Running", UVM_HIGH);
 test_vseq = dma_qps_nvirt_vseq::type_id::create("pss_vseq");

 test_vseq.m_root_action = pss_root_action;
 test_vseq.start(null);

 phase.drop_objection(this, "Test Finished");
 endtask // run_phase

endclass : dma_pss_test

Basic Structure: PSS Base Vseq
• The pss_base_vseq is simply a uvm_sequence with the list of

available tasks.

• Extends uvm_sequence.

class dma_pss_base_vseq extends uvm_sequence;
 …

 task run_alloc (int manage_id);
 my_alloc_seq alloc_seq;
 alloc_seq = my_alloc_seq::type_id::create("alloc_seq");

 if (!alloc_seq.randomize() with {
 my_manage_id == local::manage_id;
 }) `uvm_fatal(report_id, "Unable to randomize alloc_seq.")

 alloc_seq.start(m_env.m_agt.seqr);

 endtask : run_alloc

endclass : dma_pss_base_vseq

Tasks

Example of Scenario Generation

run_alloc

run_read

run_write

Schedule

Sc
e

n
ar

io
 #

1
Sc

e
n

ar
io

 #
2

Sc
e

n
ar

io
 #

3

run_alloc

run_read

run_write

run_alloc run_read

run_write

run_alloc

run_read

run_write

Scenario randomization is controlled by

PSS_SEED

PSS & Regressions

Non-PSS

Testcases:

PSS

Testcases:

PSS Seeds +

SIM Seeds

Corner cases:

Considerations

• PSS manipulates the stimuli sent through a UVM environment.

• PSS Test starts a compiled PSS Vseq, which implements the PSS model.

• PSS Base Vseq shall contain a list of available tasks.

• PSS_SEED controls the generation of scenarios and allows for
reproducing them.

• PSS-based Regressions focus on a PSS Test running with multiple
PSS_SEEDs + few corner-case tests (if necessary).

Using PSS from day one

Introduction

• Using PSS from Day 1 is the best-case scenario.

• No need to adapt existing testcases/tasks into PSS.

• Liberty to decide the best approach to extract the maximum out of
PSS without re-work.

Understand the Design

• Thoroughly understanding the design is the key!

• Think about ways to break RTL features into tasks.

• Implement a robust UVM environment and create all the necessary
sequences and virtual sequences.

• Remember: TASKS!

Create the tasks
• Create the PSS Base Vseq.

• PSS Base Vseq shall extend uvm_sequence.

• Define the major tasks as SystemVerilog tasks in the PSS Base Vseq.

• If needed, create auxiliary helper tasks/functions.
• These shall not be imported by the PSS model.

class dma_pss_base_vseq extends uvm_sequence;
 …

 task task_1 (args);
 task task_2 (args);
 …
 task task_N (args);

 task task_AUX (args);

endclass : dma_pss_base_vseq

Relationship between tasks & PSS Model

• Now let’s think about the relationship between tasks:
• Which task(s) must start the simulation (e.g., config)?

• Any other hard requirement for ordering tasks?

• Which task must finish the simulation?

• LEAVE SPACE FOR RANDOMIZATION! → define tasks that can be executed in
any order.

• Implement tasks to allow randomization of variables at the PSS Model.

Relationship between tasks & PSS Model
• Example: run_alloc run_read run_write run_config run_drain

PSS Model

run_drain

Repeat

run_config

Repeat

run_read

run_write

Schedule

run_alloc

Create the PSS Test
• As previously presented, just create the PSS Test and start the

compiled sequence from its run_phase.

• Ensure that it extends the UVM Base Test, which builds the
environment.

class dma_pss_test extends dma_base_test;
 …

 task run_phase_runSequences(uvm_phase phase);
 dma_qps_nvirt_vseq test_vseq;

 phase.raise_objection(this, "Starting Test");

 `uvm_info("TEST","PSS Test Running", UVM_HIGH);
 test_vseq = dma_qps_nvirt_vseq::type_id::create("pss_vseq");

 test_vseq.m_root_action = pss_root_action;
 test_vseq.start(null);

 phase.drop_objection(this, "Test Finished");
 endtask // run_phase

endclass : dma_pss_test

Summary of Steps & Considerations

1. Understand the design spec.

2. Divide design features into
different SV Tasks.

3. Define the relationship
between tasks.

4. Implement the PSS Model

5. Create the PSS Test.

• PSS From Day 1 allows for
designing a PSS-compatible
UVM environment.

• Easier to define tasks.

• Possibility to re-use tasks in
future non-PSS testcases.

Adapting existing UVM
testbenches to support PSS

Assumptions

1. Have a working UVM testbench + set of tests

2. Want to use PSS to generate stimulus, instead of UVM tests

3. Want existing UVM tests to still be runnable, afterwards

4. Have set up a PSS flow that requires 3 main files to be defined, to run:
• PSS base vseq

• PSS model

• PSS test

Objective: create these files and match/improve coverage achieved
by current UVM tests.

Summary of PSS base vseq, model, and test

Example Filename Description

my_pss_base_vseq.svh Class definition which contains collection of tasks;
each task is a ‘unit’ of stimulus

my_pss_model.pss Imports tasks from pss_base_vseq and defines rules
for how stimulus is generated from these tasks

my_pss_test.svh Class definition of pss test; runs a vseq generated
from pss_model + pss_base_vseq

• Location of each file will depend on how your PSS flow is set up
• Don’t forget to add these to any relevant packages and defns

Rough Outline of PSS Files

my_pss_base_vseq.svh my_pss_test.svhmy_pss_model.pss

class my_pss_test
extends my_base_test;

 task run_phase(…);

 // create vseq
 // pass handles
 // start vseq

 endtask

endclass

class my_pss_base_vseq
extends uvm_sequence;

 // declare handles for
 env, agents, configs;
 control knob vars

 // constrain vars

 // define tasks
 :
 :

endclass

package functions_pkg {
 // import tasks from
 base_vseq
};

component my_component {

 // define pss actions
 for imported tasks

 action top {

 activity {
 // define scheduling
 rules for actions
 };
 };

};

Key Phases and Milestones

Basic PSS setup
Compiles

• Ensure PSS vseq, test,
and model correctly
interact with existing
environment.

• Ensure PSS flow works
as expected.

• Minimal stimulus.

PSS Sanity Test
Passes

• Create stimulus for
basic sanity test of
DUT, with PSS.

• Get familiar with PSS
model syntax and
capabilities – and your
PSS tool’s debug
capabilities

PSS Model is
Finalized

• Slowly incorporate
more stimulus.

• Can ‘decompose’ key
UVM tests into vseq
tasks and ensure
model can create the
test cases as scenarios.

• Eventually scenarios
cover all test cases.

Basic PSS Setup: Notes

• Vseq tasks will perform test-level functionality e.g.

• Starting a seq on a sequencer that lives as env.agent.sequencer

• Incrementing a transaction count variable

• So, vseq needs handles to UVM components, configs, and various variables

• These will likely live in the base test which the PSS test extends

• So can pass handles into vseq in run phase of PSS test, before starting vseq

task run_phase(uvm_phase phase);

 …

 // my_pss_vseq type is generated from model, extends my_pss_base_vseq

 vseq = my_pss_vseq::type_id::create(“vseq”);

 vseq.m_env = m_env;

 vseq.m_cfg = m_cfg;

 vseq.start(null);

 …

Common Pitfalls

Problem: One or more test cases requires overriding build phase.

Solution: Define pss_test_<specialized>; extends pss_test, overrides build phase.

Problem: Model or base_vseq needs vars that can't be directly passed to base_vseq.

Solution: Use a ‘pss_config’ object.

struct pss_cfg_t {…};

pss_cfg_t pss_cfg;

get_pss_cfg(pss_cfg);

function void get_pss_cfg(output pss_cfg_t pss_cfg);

 pss_cfg = <pkg>::m_pss_cfg;

endfunction

<pkg>::m_pss_cfg ={…}; //or: m_cfg.m_pss_cfg ={…}; vseq.m_cfg = m_cfg;

//or: pss_cfg = m_cfg.m_pss_cfg;

pss test

pss vseq

pss model

Coverage Monitoring for PSS

• Coverage provides a metric for comparison against existing UVM tests

• Run PSS tests in separate regression

• Instead of suites of different UVM tests, run same PSS test multiple times

• Different PSS seeds between runs cover many scenarios per regression

• Exception: pss_test_<specialized> with overridden build phase

• As PSS model gets finalized, PSS regression coverage rises to meet or exceed
UVM-test coverage

• Again: might use a few semi-directed UVM tests for very edge cases

Portable Stimulus Standard,
emphasizing PORTABLE

PSS Portability - The Core Advantage

• True Portability: PSS separates test intent from implementation details

• Write Once, Run Anywhere: Same abstract model drives verification across multiple:
• Environments (simulation, emulation, FPGA)

• Abstraction levels (block, subsystem, system)

• Languages (SystemVerilog UVM, C/C++)

• Verification Continuum: Seamless transition from block-level to system-level testing

Multi-Target Test Generation

• One Model, Multiple Outputs

• Consistent Test Intent: Same scenarios used at multiple levels of abstractions / targets

• Better Maintenance: Tests definitions in one place, not multiple environments.

PSS Model

UVM Tests (SystemVerilog)

C Tests (SW/HW Integration)

Post-silicon tests

Scaling to Subsystem Level

• From Block-Level to Subsystem: Compose
block level PSS models into subsystem
scenarios

• Reuse Without Rewrite: Leverage existing
block-level PSS components into larger
context

• Cross-Block Interactions: Model complex
behaviors spanning multiple design units

AXI

Comm

USB 2

Comm

JTAG

Comm

UVM VIP

example tests

UVM VIP

AXI env.

UVM VIP

JTAG env.

UVM VIP

USB 2 env.

UVM VIP

sequences

Message Engine

UVM VIP

direct message
env.

AXI BFM JTAG BFM USB2 BFM

UVM VIP
Environment

Scaling to Emulation and FPGA

• Performance with Portability: Run the same tests on
acceleration platforms

• Test Reuse Strategy:
• Simulation → Debug detailed behaviours

• Emulation → Run longer, more complex tests

• FPGA → Test in near-real-time environment

• Implementation Considerations: What changes between
environments vs. what stays the same

Implementation Example: Tessent
Embedded Analytics subsystem cross-platform
Test Generation

• Added PSS model for test / sequence
generation for.
• Unified Testing Framework — Generate

identical test scenarios for both UVM and C-
based environments

• Seamless Environment Transitions —
Maintain test consistency across development
phases

• Key Benefit: Software teams can begin
validation earlier in the development
cycle, reducing time-to-market and
improving quality through consistent
testing methodology.

UVM C

PSS Model

SIMULATION FPGA PROTO

Target Language

Implementation

PSS Model

subsys_model.pss

component sm_top component dma_top

action sm_set_config_act {};

action sm_comparator_config_act {};

action sm_qualifier_config_act {};

action sm_set_enable_act {};

action sm_run_enable_act {};

action delay_act {};

action set_transfer_size_act{};

action msg_if_dma_set_config_act {};

action msg_if_dma_channel_set_config_act {};

action msg_if_dma_set_enable_act {};

action write_dma_act {};

action read_dma_act {};

PSS Benefits and ROI

• Verification Efficiency: Write once, verify everywhere

• Reduced Maintenance: Single source of truth for test intent

• Accelerated Coverage: Reach complex scenarios earlier in the process

• Smoother Hardware Transition: Same tests from simulation to silicon

Real-world metrics on the
impact of PSS

PSS vs. Non-PSS – tests and coverage

4

41

73.4

23

58

75

0

10

20

30

40

50

60

70

80

Number of testcases Number of files
(seqs, vseqs, tests)

Coverage % (CC, FC)

DMA IP - PSS vs. Non-PSS

PSS Non-PSS

3

17

81.1

12

27

82.7

0
10
20
30
40
50
60
70
80
90

Number of testcases Number of files
(seqs, vseqs, tests)

Coverage % (CC, FC)

JTAG Analytic IP - PSS vs. Non-PSS

PSS Non-PSS

→ 4-5x reduction in number of testcases to achieve the same coverage levels
→ Many hours of development time saved!

Advantages of PSS

1. Reduced complexity + improved maintainability:
a. Much fewer files to manage.

b. All platform-specific implementation centralized in a single place (i.e., pss_base_vseq)

c. All higher-level verification intent centralized in a single place (i.e., PSS model)

2. Dynamic and automatic generation of scenarios:
a. Random scheduling process – can be constrained as required

b. Random variables and values – can be constrained as required

→ Helps expose RTL bugs as well as testbench weaknesses

3. Still reaches similar levels of coverage when compared to
non-PSS implementations.

Conclusion

• PSS enhances the DV process by creating random scenarios.

• PSS is based on a ‘PSS Model’ which captures verification intent.

• PSS works with UVM – complementary methodologies.

• New project using PSS from day one facilitates efficient implementation.

• Existing UVM Environments can be adapted to work with PSS.

• PSS tests can work in other platforms (e.g., C and post-silicon).

Questions?

	Cover
	Slide 1: Expediting Coverage Closure in Digital Verification with the Portable Stimulus Standard (PSS)

	Agenda
	Slide 2: Agenda

	EA Intro
	Slide 3: Tessent Embedded Analytics functional monitoring​
	Slide 4: Introduction – Tessent Embedded Analytics

	Topic 1: Intro to PSS
	Slide 5: Introduction to Portable Stimulus Standard (PSS)
	Slide 6: Typical UVM Limitations
	Slide 7: What is a Portable Stimulus Model?
	Slide 8: Concise Language to Specify Verification Intent
	Slide 9: Concise Language to Specify Verification Intent
	Slide 10: Concise Language to Specify Verification Intent
	Slide 14: Concise Language to Specify Verification Intent
	Slide 19: The Rubber Meets the Road
	Slide 20: PSS Generalized Tool Flow
	Slide 21: Generated Code Implements Activity Schedule

	Topic 2: PSS model
	Slide 23: Effectively creating a robust PSS model
	Slide 24: What is a PSS Model?
	Slide 25: Proposed Flow (running PSS)
	Slide 26: Starting a PSS Model
	Slide 27: Splitting features into tasks
	Slide 28: Setting up the constraints
	Slide 29: Calling actions
	Slide 31: Activity: schedule, sequence, parallel
	Slide 32: Activity: schedule, sequence, parallel
	Slide 33: Debugging a PSS Model
	Slide 34: Real-world Example
	Slide 35: Summary

	Topic 3: UVM & PSS
	Slide 36: UVM & PSS
	Slide 37: Introduction
	Slide 38: PSS around UVM
	Slide 39: Basic Structure: PSS Test
	Slide 40: Basic Structure: PSS Test
	Slide 41: Basic Structure: PSS Base Vseq
	Slide 42: Example of Scenario Generation
	Slide 43: PSS & Regressions
	Slide 44: Considerations

	Topic 4: PSS from day 1
	Slide 45: Using PSS from day one
	Slide 46: Introduction
	Slide 47: Understand the Design
	Slide 48: Create the tasks
	Slide 49: Relationship between tasks & PSS Model
	Slide 50: Relationship between tasks & PSS Model
	Slide 51: Create the PSS Test
	Slide 52: Summary of Steps & Considerations

	Topic 5: Adapting TB to PSS
	Slide 53: Adapting existing UVM testbenches to support PSS
	Slide 54: Assumptions
	Slide 55: Summary of PSS base vseq, model, and test
	Slide 56: Rough Outline of PSS Files
	Slide 57: Key Phases and Milestones
	Slide 58: Basic PSS Setup: Notes
	Slide 59: Common Pitfalls
	Slide 60: Coverage Monitoring for PSS

	Topic 6: PSS, PORTABLE
	Slide 61: Portable Stimulus Standard, emphasizing PORTABLE
	Slide 62: PSS Portability - The Core Advantage
	Slide 63: Multi-Target Test Generation
	Slide 64: Scaling to Subsystem Level
	Slide 65: Scaling to Emulation and FPGA
	Slide 66: Implementation Example: Tessent Embedded Analytics subsystem cross-platform Test Generation
	Slide 67: PSS Benefits and ROI

	Topic 7: Metrics on Impact
	Slide 68: Real-world metrics on the impact of PSS
	Slide 69: PSS vs. Non-PSS – tests and coverage
	Slide 70: Advantages of PSS
	Slide 71: Conclusion

	Questions
	Slide 72: Questions?

