
Expanding role of Static Signoff in Verification
Coverage

Vikas Sachdeva

Senior Director, Product Strategy

Introduction

Shift Left

is earliest possible efficient verification
of each design step

Shift Left

is earliest possible efficient verification
of each design step

Static Sign-Off

efficiently enables shift left

Static Verification vs Dynamic Verification

Dynamic verification
Simulation
Emulation

- Dynamically computes design
 behavior to find failures
- Coverage limited to test cases

Static Verification vs Dynamic Verification

Dynamic verification
Simulation
Emulation

- Dynamically computes design
 behavior to find failures
- Coverage limited to test cases

Static verification

CDC
Lint…

Formal
STA
DRC- Utilizes search & analysis to

 find ALL targeted failures
- Test cases not required

Static Sign-off vs Formal & Simulation

Analysis always finishes (>1B gate capacity)

Finds
100%
of failures
for
targeted
checks

Static Sign-off vs Formal & Simulation

Analysis always finishes (>1B gate capacity)

Finds
100%
of failures
for
targeted
checks

Simulation

Static Sign-off vs Formal & Simulation

Analysis always finishes (>1B gate capacity)

Finds
100%
of failures
for
targeted
checks

Simulation

Formal

Static Sign-off vs Formal & Simulation

Analysis always finishes (>1B gate capacity)

Finds
100%
of failures
for
targeted
checks

Formal Static
Sign-Off

Simulation

Superior User Experience Drives Shift Left
Four enabling elements of user experience

Superior User Experience Drives Shift Left
Four enabling elements of user experience

Fast
Tool Runtime

Superior User Experience Drives Shift Left
Four enabling elements of user experience

Fast
Tool Runtime

Multi-mode
efficiencies

Superior User Experience Drives Shift Left
Four enabling elements of user experience

Fast
Tool Runtime

Efficient Setup
& Debug

Multi-mode
efficiencies

Superior User Experience Drives Shift Left
Four enabling elements of user experience

Fast
Tool Runtime

Efficient Setup
& Debug

Complete &
Expanding
Coverage

Multi-mode
efficiencies

Superior User Experience Drives Shift Left
Four enabling elements of user experience

Advanced tools & methodologies
maximize engineering efficiency during design

Fast
Tool Runtime

Efficient Setup
& Debug

Complete &
Expanding
Coverage

Multi-mode
efficiencies

Enabling Faster Runtime

Customized static sign-off engines

Hierarchy & abstraction

Incremental analysis

Parallel Processing

Multi-Mode Efficiencies

Multimode tools = highest engineering efficiency

1 set up. Complete coverage in 1 run. 1 consolidated report.

• Multi-Mode CDC
• Multi-Scenario RDC
• Multi-Test Mode DFT
• Multi-Policy Lint

Enabling Efficient Setup & Debug

Unified, automated setup across applications → Faster ramp up

Enabling Efficient Setup & Debug

Unified, automated setup across applications → Faster ramp up

Configurations & high granularity rules → Low noise reporting

Enabling Efficient Setup & Debug

Application-customize Debug: CDC, Lint, RDC…

• Customizable reporting -- hierarchy/organization

• Root cause grouping -- faster refinement

• Targeted attributes & CLIs -- searching & filtering

• Pattern matching-based error targeting

Unified, automated setup across applications → Faster ramp up

Configurations & high granularity rules → Low noise reporting

Enabling Efficient Setup & Debug

Application-customize Debug: CDC, Lint, RDC…

• Customizable reporting -- hierarchy/organization

• Root cause grouping -- faster refinement

• Targeted attributes & CLIs -- searching & filtering

• Pattern matching-based error targeting

Unified, automated setup across applications → Faster ramp up

Configurations & high granularity rules → Low noise reporting

Complete, Expanding Coverage of Failure Modes

Clock domain crossing

• Multi-Mode – for all clocking configurations

• Hierarchical analysis with flat accuracy

• Glitch checking to prevent netlist failure

• Design-aware Dynamic CDC verification

Complete, Expanding Coverage of Failure Modes

Clock domain crossing

• Multi-Mode – for all clocking configurations

• Hierarchical analysis with flat accuracy

• Glitch checking to prevent netlist failure

• Design-aware Dynamic CDC verification

Higher coverage with fine-grained, non-overlapping rules

• Lint - 600 checks

• DFT - 100 checks

Expanding Coverage -- New Applications

New failure modes

• RDC

• Glitch

Expanding Coverage -- New Applications

New “Shift Left” applications -- streamline RTL & netlist checking

• Connectivity

• DFT

• Design Initialization

New failure modes

• RDC

• Glitch

Functional Static Sign-Off Expanding Applications

RTL
Linting

Clock
Domain
Crossing

Functional static
sign-off began
with
RTL Linting
& CDC Functional

Static
Sign-Off

Functional Static Sign-Off Expanding Applications

The target
applications
continuously
expand

Functional static
sign-off began
with
RTL Linting
& CDC

Superior User Experience Driving Shift Left
Four enabling elements of user experience

• Fast Tool Runtimes

• Multimode

• Efficient set up & debug

• Expanding coverage of failure modes

Engineering ROI expanding
functional static sign-off domains & usage

Asynchronous Logic sign-off
beyond CDC

Synchronous vs Asynchronous Logic
Verification
• Scale of Async logic usage

• Large variation across top level blocks

• 10’s to 100’s of clock domain

• 100’s to >100K synchronizers

• 1% to 70% flops with async resets

Source: www.realintent.com

Synchronous vs Asynchronous Logic
Verification
• Synchronous paths are >99% of typical designs

• Relatively SAFE from Metastability/Randomness

• Verified efficiently with high-confidence using the Core ASIC sign-off
flows

RTL
Verification

Logic
Equivalence

Std-Cell
Characterization

1-cycle STA
across PVT

DFT / BIST
Coverage

Source: www.realintent.com

Synchronous vs Asynchronous Logic
Verification
• Asynchronous paths are <1% of typical designs

• Significant RISK of Metastability/Randomness bugs

• Verification requires many specialized flows beyond just structural
CDC

Std RTL Code
Generators

Sims with Sync
Randomization

Sims with C/RDC
Assertion Checks

RTL
CDC

Std-Cell
Synchronizers

Netlist
CDC

Async Glitch
Checks

RTL
RDC

Async Timing
across PVT

Sync MTBF
across PVT

Source: www.realintent.com

What is RDC Analysis?
Even one Asynchronous reset in the design can cause RDC problems

34

Reset Domain : Part of the design that can be reset independently
of other such parts of the design (other reset domains).

To reset only the
faulty logic, several
localized reset
domains needed e. g.
Automotive

• RDC issues are less likely, but they do occur

• RDC issues are extremely difficult to debug in silicon

• Multiple reset types and their interactions multiply risk

Why is Reset Domain Verification
Needed?

35

• Why RDC Signoff is important now?

• Number of software resets increasing, possible some parts of design under reset while some parts in

functional operations

• Different power domains need different resets

• Isn’t reset controller logic already designed so these problems don’t occur

• Yes but none of the flows STA, functional verification catch for these specific issues to ensure sign-off.

Using RDC tool is only reliable way to safely verify reset logic is designed to ensure without

metastability issues

Why RDC?

36

• Does CDC tool cover RDC

• No, CDC tool looks at asynchronous paths. RDC failures can occur between synchronous clock domains also

and are not same as CDC failures.

• Why we have not seen failures yet?

• Unlike CDC frequency of reset operation is much less than clocks

• The reset effect has to propagate through functional logic and is dependent upon state

• Depends on actual delays, so may not always show as error but intermittent failures in some chips (lower

yield)

• RDC issues HAVE led to chip failures in multiple design houses!

Why RDC?

37

No substitutes for RDC Analysis
Specific solution needed to pinpoint unsafe paths

38

RDC

Only Sync

Resets

Formal

Simulation

STA

CDC

RDC ERROR – Mobile SoC

39

RST_1 assertion creates an untimed path.
Fault might be detectable during gate-level sims but no guarantee

Problem

40

SOFT_internal_reset assertion while Power_reset is de-asserted assertion creates an untimed path.
Fault might be detectable during gate-level sims but no guarantee

Problem

RDC ERROR – MIPI MPHY
SOFT_internal_reset

D Q

 CLK

clk1

Power_reset
D Q

 CLK

clk1

D Q

 CLK

D Q

 CLK

METASTABILITY

clk1
clk1

41

reset assertion creates an untimed path.
Fault might be detectable during gate-level sims but no guarantee

Problem

RST-A D Q

 CLK

clk1

D Q

 CLK

reset

D2

Clock Gating Logic

clk1

D Q

 CLK

clk1 METASTABILITY

RDC ERROR – Modem IP
• Design assumption is to have clock gated at MFs prior metastability can pass to MF.
• Simulation tool did not fail, as well as seen that clock gated on the time.
• Simulation “ticks” based and depends on internal events , so there is a race between signals and in simulation gate

closed “tick”

Reducing Noise in CDC and RDC

• Structural CDC and RDC are inherently noisy

• Typical early reports: >10K warnings for functional blocks, >10M for
top-level blocks

• Usually only a handful of “real bugs” are in the mix

• Need to reduce noise so designers aren’t overwhelmed (goal is “zero
noise”)

Reducing Noise in CDC and RDC

• Workflows can help reduce the noise

• Discourage Waivers, Encourage Constraints
• Use project-level constraints to cover async logic from Std Code Generators

• Constraints can be checked for consistency, validated in simulation

• Run at multiple Hierarchy levels
• Fifo-level, Block-level, Top-level, Chip-level

• Supports “left-shift” goals

• Use hands-off batch-mode regressions to track CDC/RDC health

• Combine modes when it makes sense
• Collapse multiple clock modes into one set of reports by enabling multi-clock propagation

• Support separate runs/reports/workflows for issues owned by different design teams

Simulation Checks for CDC/RDC Assumptions

• RTL sims can be augmented to help verify CDC/RDC constraints and async logic
behavior

• Instantiate “anchor points” in the RTL with standardized naming conventions

• Enforce special sim behavior at anchor points (randomized delay, X insertion)

• Tie constraint check assertions to anchor points

• Constrain optimization flows to maintain anchor points through to tapeout
netlists

Async Reset Checks

• Async Resets cause an explosion of async edges
• From the reset flops themselves

• From downstream flops if clocked and not in reset

• From further downstream flops, and so on

• Async edges must be contained
• By reset clamps

• By reset sequencing

• By stopping clocks to non-reset flops

• By changing logic to sync reset reset_B_

Reset Domain A

When reset_B_ is asserted,
async edges can leak out of
Reset Domain B and corrupt
flops in Reset Domain A

Reset Domain B

When reset_A_ is asserted,
async edges can leak out of
Reset Domain A and corrupt
flops in Reset Domain B

reset_A_

Async Reset Checks

• Async Reset Signoff needs both CDC and RDC
• RDC for reset assert

• CDC for reset de-assert

• RTL bugs found with MERIDIAN RDC
• Async edges leaking into adjacent logic

• Race conditions between parallel resets

• RDC paths added by late design changes

reset_B_

Reset Domain A

When reset_B_ is asserted,
async edges can leak out of
Reset Domain B and corrupt
flops in Reset Domain A

Reset Domain B

When reset_A_ is asserted,
async edges can leak out of
Reset Domain A and corrupt
flops in Reset Domain B

reset_A_

How to Not Break a Chip

• Use standard plugins whenever possible, don’t reinvent the wheel for async interfaces

• Run simulations with randomizing synchronizer models

• Run CDC and RDC early and often, and after late ECOs

• Check CDC and RDC constraints with simulation assertions

• Don’t fall for “these async paths worked on the last chip so the design must be fine”

• Don’t assume that equivalence checks will flag glitchy logic optimizations

• Don’t assume that correct async logic in synthesized netlists stays that way in layout

• Check that synchronizer depths will meet MTBF goals across PVT

• Run async timing checks to cover async skew assumptions across PVT

• . . .

DFT Compliance, checking and enabling
shift left using static sign-off

©Copyright 2023 Real Intent Inc.
49

• Shift Left

• ATPG typically occurs after P&R – but fixes are 10X more expensive at each
stage

• ATPG attempted before P&R, but overkill

DFT Challenges and Trends

©Copyright 2023 Real Intent Inc.
50

Shifting Left with DFT Static Sign-off Verix DFT

DFT Static
Sign-Off

RTL

Place & Route

DFT Static
Sign-Off

DFT Static
Sign-Off

RTL & Netlist
Rules

Logic Synthesis

Scan Synthesis

ATPG

Verix DFT

Verix DFT

RTL & Netlist
Rules

RTL
Rules

Design RTL

Gate-level Netlist
with Scan Chains

Netlist with Scan
Chains Reordered

Prepare for scan synthesis, to
ensure RTL is scan friendly

To verify correctness of
scan implementation

To ensure scan reordering
does not create issues

Approach to DFT Static Sign-off
• Multimode

• Multiple sets of rules per run, reducing setup time and speeding up runtime
• Multiple ATPG partitions, multiple sets of constraints per partition

• High capacity and performance
• Multi-million gate design in minutes
• Low peak memory footprint

• Specialized, fine-grained rules
• High coverage at all design stages
• Faster debug and root cause analysis

• Low noise
• To minimize false positives and error duplication

• Fits easily with existing flows and DFT/ATPG tools

Design issues that affect Fault Coverage

• Uncontrollable test clocks

• Uncontrollable/incorrectly constrained async set/reset pins of flip-
flops

• Loss of connectivity/controllability between signals, due to –
• Design bugs, such as undriven/unloaded nets, combinational feedback loops,

and tristate busses with potential for bus contention

• Specification errors in test mode constraints, such as incorrect or insufficient
test mode constants

TCLK_DATA_USE (Category: CLOCK)
Test Clock Drives Data Input of FF in Scan Hierarchy

• Cause:

• Test clock drives data or async set/reset inputs of FFs
(e.g., FF1) in a scan hierarchy (RTL/Gate)

• Impact:

• Metastability during capture, since data transitions
happen at or close to the clock edge, hence affected
flip-flop data can get corrupted, causing loss of both
controllability and observability, hence lower fault
coverage FF1

TCLK_DATA_USE

D

SE

SI D Q

FF1

TCLK
CLK

GATED_TCLK (Category: CLOCK)
Test Clock Not Enabled During Scan Shift

• Cause:

• Gated test clock is not enabled during scan shift (RTL/Gate)

• Impact:

• Failure to load scan chain during shift, causing loss of controllability (observability) of the affected flip-flop during scan load
(unload), lowering fault coverage

FF1

GATED_TCLK

D

SE

SI D Q

FF1

TCLK ICG Cell

ENABLE_NOT_ON

EN

CLK

TCLK_SOURCE_POLARITY (Category: CLOCK)
Test Clock & Test Source Clock Have Different Polarities

• Cause:

• Test clock (e.g., CLK in FF1) does not have the same polarity as the
test source clock (RTL/Gate)

• Impact:

• Non-controllable test clock during scan test, causing loss of fault
coverage

FF1

TCLK_SOURCE_POLARITY D

SE

SI D Q

FF1

CLK

TCLK_SOURCE

RESET_NOT_DISABLED (Category: ASYNC_RESET)
Async. Set/Reset Not Disabled During Scan Shift

• Cause:

• In shift mode, there is at least one path to propagate
asserted value (or X) from source Set/Reset to FF
Set/Reset pin, where FF belongs to the scan hierarchy
(RTL/Gate)

• Impact:

• Scan load/unload Shift data erased by non-disabled
asynchronous set/reset signal, causing loss of fault
coverage

SE

RESET_NOT_DISABLED

D

SE

SI D Q

FF1

Source
Set/Reset Async.

Set/Reset
11

1

Annotated
Values

RESET_GLITCH_RECON (Category: ASYNC_RESET)
Reconvergence of Set/Reset with Opposite Polarity

• Cause:

• Signal re-converges with itself with opposite polarity
and drives the set/reset pin of FF (e.g., FF1) in a scan
hierarchy (RTL/Gate)

• Self-loop between the output of FF2 to its D-input can be
either ignored or checked; if ignored, then the flip-flop is
considered as a glitch source, otherwise it is not.

• Impact:

• Glitchy set/reset, FF not able to shift and/or capture
test data, causing loss of fault coverage

RESET_GLITCH_RECON

D

SE

SI D Q

FF1

D

SE

SI D Q

FF2

S/R

GLITCH_SOURCE

CLK

CLK

TRISTATES_NOT_DISABLED (Category:
CONNECTIVITY)
A net has multiple non-disabled tristate drivers

• Cause:

• A design has >1 non-disabled tristate drivers. (RTL/Gate)

• Impact:

• Loss of fault coverage due to unreliable shift and/or capture

TRISTATES_NOT_DISABLED

A

B

C

Net_1

Disabled
(0)

Not disabled
– either 1 or
controllable

B2B_LATCH_ENABLE (Category: SCAN_CHAIN)
• Cause:

• Two latches are connected back-to-back with Q of one latch driving EN of the next latch. (Gate)

• Impact:

• Test data loss while data is being shifted through scan chain

• Timing problems

B2B_LATCH_ENABLE

CLK

D Q

EN

D Q

EN

1st_Latch 2nd_Latch

CLK

D Q

EN

D Q

EN

1st_Latch 2nd_Latch

Architectural Compliance using
static sign-off

Structured Design Methodologies Manage
Complexity
Architecture implemented using functional components within a structure
Connectivity rules specify architectural component interconnections

Structured Design Methodologies Manage
Complexity

Architecture implemented using functional components within a structure

Connectivity rules specify architectural component interconnections

• Bus protocols, power, debug logic, PD constraints, memory, DFT connectivity…
• Facilitates automatic design integration

Structured Design Methodologies Manage
Complexity

Architecture implemented using functional components within a structure

Connectivity rules specify architectural component interconnections

• Bus protocols, power, debug logic, PD constraints, memory, DFT connectivity…

• Facilitates automatic design integration

Shift Left: Earliest possible efficient verification of a design step

Connectivity Checking: Efficient shift left verification of architecture compliance

System Requirements for Superior User Experience

• Convenient Rules Specification

• Robust against design changes

• Source/Destination exclusions target refinement

• Rules dictionary for full coverage

• Instantiate/Activate relevant rules

• Support diverse connectivity principles

System Requirements for Superior User Experience

• Convenient Rules Specification

• Robust against design changes

• Source/Destination exclusions target refinement

• Rules dictionary for full coverage

• Instantiate/Activate relevant rules

• Support diverse connectivity principles

• Extremely fast runtime & capacity for entire SoC

• Without requiring black-boxing

System Requirements for Superior User Experience

• Convenient Rules Specification

• Robust against design changes

• Source/Destination exclusions target refinement

• Rules dictionary for full coverage

• Instantiate/Activate relevant rules

• Support diverse connectivity principles

• Extremely fast runtime & capacity for entire SoC

• Without requiring black-boxing

• Customized debug

• Customizable reporting

• Schematics with annotated attributes

High Capacity & Performance

• Highest capacity in industry
• Block-level & full SoC-level sign-off

• Black boxing available

• But not required for large designs like other approaches

• ~10X faster
• Block-level analysis in minutes

• Compared to hours for Tcl scripting & formal for comparable blocks

Methodology: Left Shift of Architectural Compliance

• CAD creates dictionary of standard rules
• Minimal creation cost

• Users instantiate & activate relevant rules
• Also add local custom rules

• Continuous integration for left shift
• Fast runtime

Connectivity checking using
static-signoff

Connectivity Checking Shift Left In Action

SOC

Connectivity
rules

B1

B2

BN

Connectivity
Checks

DFT
Functional

& Connectivity
Checks

RTL
Integration

Connectivity Checking Shift Left In Action

Connectivity
rules

B1

B2

BN

Connectivity
Checks,

DFT, Power,
P&R…

SOC
RTL

Integration

DFT
Checks

…

…

Functional
Verification

Power Logic
Checks

P & R

SafeConnect: RTL & Netlist Connectivity & Glitch Sign-Off

Static Connectivity Checking Requirements

Diverse and Granular Checks Full Chip Capacity

Ease of Specification Ease of Debug

Diverse and Granular Checks- 1

Point to point connectivity Point to point connectivity

through objects
Point to point direct

connectivity

Point to point
Connectivity through transparent
Sequential or modules/instances

Point to point connectivity

disallow objects

Point to point connectivity

allowed objects

Diverse and Granular Checks- 2

Each in Tx Group connected to

at least one in Rx Group and vice-versa
Can check whether only SOURCE_MISS

Or only DESTINATION_MISS or both

Rx Group

Tx Group

Diverse and Granular Checks- 3

Each in Tx Group connected to
at least one in Rx Group and vice-versa

Through objects

Rx Group

Tx Group

Each in Tx Group connected to
at least one in Rx Group and vice-versa

Transparent sequential
Or modules/instances

Rx Group

Tx Group

Diverse and Granular Checks- 4

Not connect
None of the sources drive destination

Rx Group

Tx Group

✗

None of the sources drive destination

Through certain objects

Rx Group

Tx Group

✗

Diverse and Granular Checks- 5

Full connect
Each Tx is connected to All Rx and vice versa

Rx Group

Tx Group

Full connectivity

Through certain objects

Rx Group

Tx Group

Diverse and Granular Checks- 6

Only One Connection
 only one connection exists between Tx Signal and

Rx Group

Rx Group

Tx Signal

Only One Connection

Through certain objects

Rx Group

Tx Signal

Diverse and Granular Checks - 7

Direct Connection between matching names

Rx Group

Tx Group

Full connectivity in Bus
At least one ordered connection exists between every bus / ordered signals in Tx list
and every bus / ordered signals in the Rx list

If the bits or order inter-changed then it is also caught

Ease of specification

Easily specify Tx and Rx Groups
• All flops inside a module or instance

• Input/Output ports of modules or instances
• All modules but exclude some instances

• All flops or only flops with async reset, only flops with retention non-retention
• Type of object – pin/port/net

• Isolation cells
• Level shifters

Ease of specification - Example

• Just 3 commands can define a check at block or full chip level to avoid improper connectivity from non-
retention reset to retention FFs

• Rule defining check can be easily enabled or disabled using enable_rules / disable_rules commands

create_group –name Non_Retention_Reset_Sub_Group_1
 –scope {I1 I2.I3 } –signals { RST_* }
 –module Non_Ret_Mod –exclude_instances {u_inst1.u_inst2.*}

create_group –name Retention_FF_Sub_Group_1
 –scope { I4* } –FF { retention }

set_not_connect
 –from_group Non_Retention_Reset_Sub_Group_1
 –to_group Retention_FF_Sub_Group_1
 –dont_trace_group { CLAMP_CELL_instance_group }
 –rule SLSI_NONRET_RST_TO_RET_FF

Glitch checking methodology
using static-signoff

Glitches Fail Chips

• Glitch = transition shorter than
signal’s clock period

• Async Interactions within designs
become vulnerable to glitches
at netlist

• Not caught by STA & functional
simulation

Structured Glitch Verification Methodology

• CDC glitch failures encapsulated within interfaces

• Using pre-verified components for CDC interfaces is standard practice

• Structural glitch avoidance principles can be included within components

Structured Glitch Verification Methodology

• CDC glitch failures encapsulated within interfaces

• Using pre-verified components for CDC interfaces is standard practice
• Structural glitch avoidance principles can be included within components

• For timing exceptions & power management logic, path structuring may
be necessary with synthesis tool restrictions for path during
optimization.

• Insert “do not touch” component to partition paths
• Verify connectivity in netlist
• Verify glitch in netlist

Glitch sign-off – IP level, Chip level

87

• In Async paths, Glitch can be fatal
• False Paths, Multi-Cycle Paths, Clamps, Global Signals, Power control signals

• Logic reordering, restructuring, retiming, optimization

• Numerous companies had late-stage netlist-glitch failures
• IP vendor provided glitchy-IP (@outputs) to customer

• Automotive chip had glitch-potential, designers were unaware

• Memory-controller chip went through multiple ECOs because of glitch failures

Glitch Detected on path to Analog IP

Example Glitch Report

• Source to destination path should not be glitchy

• Check can be easily specified

• Glitch source flop/signal, glitch point and glitch capturing flops reported

Efficient functional sign off by automatic
assertion generation for RTL building blocks
using static methods

The Verification Challenge
• System-level validation is complex, slow, and

incomplete, pushing up HW design cost

• Systematic functional sign-off is an underserved
imperative

• Vast gap between low-level RTL checks and system-
level functional RTL sign-off

• Must Bridge the Gap!

• System-level validation is very hard due to
• 3rd-party IP, Distributed design team, Legacy RTL in SOC

assembly

• Stimulus automation has been the focus so far
• Constraint random, Formal, PSS, UVM..

• But, Manually-Guided Checkers are Slow, Unstable,
and Insufficient
• Researching, planning, coding, reviewing, debugging..

• Need automation in checker generation also!

RTL Lint

Auto-
Formal

System-
level

End-to-end
Functional
Validation

GAP

Sign-off Confidence

Verification Process Steps

V
e

ri
fi

ca
ti

o
n

 C
o

n
fi

d
e

n
ce

Fast, Automatic, Mechanical Slow, Manual, Complex

Low-level

DUT
Rich

Stimulus
Poor

Checking

Less Sign-off Confidence

manual
checker

manual
checker

RTL Lint

Auto-
Formal

System-
level

End-to-end
Functional
Validation

GAP DUT

Source: www.realintent.com

Auto-Inferred Building-Block Property
Checking (AIPC)

Library of Assertion Templates

• Most designs have primitive building-blocks
• Counter, FSM, FIFO, Stack, FF-Sync, RAM, Shift-Reg etc.

• Advanced Functional Static Analysis successfully
automatically infers such building-blocks in RTL

• Generate white-box assertions based on Simple
Assertion Template for each building-block type

• Bind these assertions to RTL using co-generated bind
files without user effort

• AIPC method allows uniform safety and coverage
criteria to be created across a variety of
implementations

Success X Failure or Absent Coverage

Counter

Synchronizer

Counter

X

Property

Counter

Property

FSM

Property

FF-Sync

Property

FIFO
…

Instantiation

Source: www.realintent.com

AIPC Assertion Library

GUI Snapshots

Source: www.realintent.com

Full and Instant Automation

Multi-Purpose Use for RTL Verification

Source: www.realintent.com

Verification Flow with AIPC

Source: www.realintent.com

Advanced methodology to identify X-
initialization source errors and fix them to
prevent the error from propagating

What Are X Sources?

Potential X Sources

Uninitialized 4-state variables (Uninit) Out-of-range bit-selects and array indices
(OutOfRange)

Low power logic shutdown or power-up
(NonRetention)

Logic gates with unknown output values (Explicit)

Unconnected module input ports (Undriven) Setup or hold timing violations (Netlist only)

Multi-driver conflicts (Bus Contention) User-assigned X values in hardware models (Explicit)

Operations with an unknown result (RAMs, FIFOs) Testbench X injection (User)

X Source : a flop or input port which is in unknown value at the end of a given reset scenario

X Propagation: Two Problematic Scenarios

 If (sel)

 D=1;

 else
 D=0;

Dsel=1’bx

CLK

1’b0

X-Optimism

D

sel=1’bx

CLK

1’bxD=sel*1+ ~sel*1

X-Pessimism

X

Sel=x

1

1

The Impact of X Propagation in the Design

• Uninitialized and Reverted to X Flops

• Incorrect reset type and value

• Hardware security exposure

Uncontrolled Design Behavior

• Long initialization latency

• Inefficient reset routing

• Excessive initialization power

Sub-optimal Design Quality

• Incorrect simulation

• Incomplete simulation

• Inefficient gate-level debug

Breakdown of Validation Flow

Ignoring the impact of
design X values causes

silicon failures.

Incorrect Initialization Causes Design Failure

• Functional non-determinism in a design is a failure
• Incorrect design initialization causes erroneous design behavior, sub-

par design quality, security vulnerability

FF has X initial
Value

X

e.g. UnInit_FF, UnDriven nets
RAM,Bbox outputs ….

X-Source

X-Reset

What you’d want to know:

Simulation Can Mask X Issues Due to X-Optimism

• Can not rely on simulation for correct initialization because simulator
can mask X initialization, and propagates wrong value (X-Optimism)

• Must fix X-Sources before RTL simulation

if (Sel)
 Mout <= IN_1;
else
 Mout <= IN_2;

Simulator reports
IN_2 initial Value

Behavioral RTL Mux

e.g. UnInit_FF, UnDriven nets
RAM,Bbox outputs ….

X-Optimism

X-Source

X-Reset

What you’d want to know:

Simulation Can Miss Dangerous X on Clock

With Reset de-asserted, Clock 0->x should be treated
as an undetermined edge

=> FF1.Q should become X

However, in Simulation, when Reset is de-asserted,
Clock 0->x is treated as a posedge (X-Optimism)

=> FF1.Q changes to 1

X
Initialization Problem

Missed by Simulation

• Change X-Optimistic Simulation Behavior to X-Pessimistic
• Causes extra X-failures in RTL simulation

• Increased debug effort

• Reset all flops

• Routing congestion

• Sub-optimal design to overcome simulation limitation

Nominal Approaches to Deal with X Issues Are
Imprecise or Sub-Optimal

©Copyright 2023 Real Intent Inc.
105

Static Sign-off Can Complete / Enhance Simulation-Only Flow

Comprehensive

Early

Low effort

Addresses root cause

Optimization potential

Static Sign-off

Test bench coverage
dependent

Simulation needs
mature RTL

Simulation needs
vectors

Band-Aid for symptom,
X remains in GLS

No optimization

Simulation

• Put the device in a known functional state
• Eliminate dangerous X-Sources that can cause functional problems by initializing them
• NEED TO KNOW: where x-sources and x-resets are

• Minimize silicon resources dedicated to reset
• Optimize reset network, initialize the minimum required flops
• NEED TO KNOW: what resets to add or remove

• Avoid simulation inaccuracy due to X-Propagation
• Fix X-Optimism as much as possible before RTL simulation
• Remove X Sources as much as possible
• NEED TO KNOW: where X-Optimism happens

Best Practices to Ensure Design Has No X
Issues

Questions?

Source: istockphoto

	Slide 1: Expanding role of Static Signoff in Verification Coverage
	Slide 2: Introduction
	Slide 3
	Slide 4
	Slide 5: Static Verification vs Dynamic Verification
	Slide 6: Static Verification vs Dynamic Verification
	Slide 7: Static Sign-off vs Formal & Simulation
	Slide 8: Static Sign-off vs Formal & Simulation
	Slide 9: Static Sign-off vs Formal & Simulation
	Slide 10: Static Sign-off vs Formal & Simulation
	Slide 11: Superior User Experience Drives Shift Left
	Slide 12: Superior User Experience Drives Shift Left
	Slide 13: Superior User Experience Drives Shift Left
	Slide 14: Superior User Experience Drives Shift Left
	Slide 15: Superior User Experience Drives Shift Left
	Slide 16: Superior User Experience Drives Shift Left
	Slide 17: Enabling Faster Runtime
	Slide 18: Multi-Mode Efficiencies
	Slide 19: Enabling Efficient Setup & Debug
	Slide 20: Enabling Efficient Setup & Debug
	Slide 21: Enabling Efficient Setup & Debug
	Slide 22: Enabling Efficient Setup & Debug
	Slide 23: Complete, Expanding Coverage of Failure Modes
	Slide 24: Complete, Expanding Coverage of Failure Modes
	Slide 25: Expanding Coverage -- New Applications
	Slide 26: Expanding Coverage -- New Applications
	Slide 27: Functional Static Sign-Off Expanding Applications
	Slide 28: Functional Static Sign-Off Expanding Applications
	Slide 29: Superior User Experience Driving Shift Left
	Slide 30: Asynchronous Logic sign-off beyond CDC
	Slide 31: Synchronous vs Asynchronous Logic Verification
	Slide 32: Synchronous vs Asynchronous Logic Verification
	Slide 33: Synchronous vs Asynchronous Logic Verification
	Slide 34: What is RDC Analysis? Even one Asynchronous reset in the design can cause RDC problems
	Slide 35: Why is Reset Domain Verification Needed?
	Slide 36: Why RDC?
	Slide 37: Why RDC?
	Slide 38: No substitutes for RDC Analysis Specific solution needed to pinpoint unsafe paths
	Slide 39: RDC ERROR – Mobile SoC
	Slide 40: RDC ERROR – MIPI MPHY
	Slide 41: RDC ERROR – Modem IP
	Slide 42: Reducing Noise in CDC and RDC
	Slide 43: Reducing Noise in CDC and RDC
	Slide 44: Simulation Checks for CDC/RDC Assumptions
	Slide 45: Async Reset Checks
	Slide 46: Async Reset Checks
	Slide 47: How to Not Break a Chip
	Slide 48: DFT Compliance, checking and enabling shift left using static sign-off
	Slide 49: DFT Challenges and Trends
	Slide 50: Shifting Left with DFT Static Sign-off
	Slide 51: Approach to DFT Static Sign-off
	Slide 52: Design issues that affect Fault Coverage
	Slide 53: TCLK_DATA_USE (Category: CLOCK) Test Clock Drives Data Input of FF in Scan Hierarchy
	Slide 54: GATED_TCLK (Category: CLOCK) Test Clock Not Enabled During Scan Shift
	Slide 55: TCLK_SOURCE_POLARITY (Category: CLOCK) Test Clock & Test Source Clock Have Different Polarities
	Slide 56: RESET_NOT_DISABLED (Category: ASYNC_RESET) Async. Set/Reset Not Disabled During Scan Shift
	Slide 57: RESET_GLITCH_RECON (Category: ASYNC_RESET) Reconvergence of Set/Reset with Opposite Polarity
	Slide 58: TRISTATES_NOT_DISABLED (Category: CONNECTIVITY) A net has multiple non-disabled tristate drivers
	Slide 59: B2B_LATCH_ENABLE (Category: SCAN_CHAIN)
	Slide 60: Architectural Compliance using static sign-off
	Slide 61: Structured Design Methodologies Manage Complexity
	Slide 62: Structured Design Methodologies Manage Complexity
	Slide 63: Structured Design Methodologies Manage Complexity
	Slide 64: System Requirements for Superior User Experience
	Slide 65: System Requirements for Superior User Experience
	Slide 66: System Requirements for Superior User Experience
	Slide 67: High Capacity & Performance
	Slide 68: Methodology: Left Shift of Architectural Compliance
	Slide 69: Connectivity checking using static-signoff
	Slide 70: Connectivity Checking Shift Left In Action
	Slide 71: Connectivity Checking Shift Left In Action
	Slide 72: SafeConnect: RTL & Netlist Connectivity & Glitch Sign-Off
	Slide 73: Static Connectivity Checking Requirements
	Slide 74: Diverse and Granular Checks- 1
	Slide 75: Diverse and Granular Checks- 2
	Slide 76: Diverse and Granular Checks- 3
	Slide 77: Diverse and Granular Checks- 4
	Slide 78: Diverse and Granular Checks- 5
	Slide 79: Diverse and Granular Checks- 6
	Slide 80: Diverse and Granular Checks - 7
	Slide 81: Ease of specification
	Slide 82: Ease of specification - Example
	Slide 83: Glitch checking methodology using static-signoff
	Slide 84: Glitches Fail Chips
	Slide 85: Structured Glitch Verification Methodology
	Slide 86: Structured Glitch Verification Methodology
	Slide 87: Glitch sign-off – IP level, Chip level
	Slide 88: Example Glitch Report
	Slide 89: Efficient functional sign off by automatic assertion generation for RTL building blocks using static methods
	Slide 90: The Verification Challenge
	Slide 91: Auto-Inferred Building-Block Property Checking (AIPC)
	Slide 92: AIPC Assertion Library
	Slide 93: GUI Snapshots
	Slide 94: Full and Instant Automation
	Slide 95: Multi-Purpose Use for RTL Verification
	Slide 96: Verification Flow with AIPC
	Slide 97: Advanced methodology to identify X-initialization source errors and fix them to prevent the error from propagating
	Slide 98: What Are X Sources?
	Slide 99: X Propagation: Two Problematic Scenarios
	Slide 100: The Impact of X Propagation in the Design
	Slide 101: Incorrect Initialization Causes Design Failure
	Slide 102: Simulation Can Mask X Issues Due to X-Optimism
	Slide 103: Simulation Can Miss Dangerous X on Clock
	Slide 104: Nominal Approaches to Deal with X Issues Are Imprecise or Sub-Optimal
	Slide 105: Static Sign-off Can Complete / Enhance Simulation-Only Flow
	Slide 106: Best Practices to Ensure Design Has No X Issues
	Slide 107: Questions?

