

Exhaustive validation of a cache memory

controller using Formal Verification to meet

performance and timing requirements
Himani Jawa, Nishant Raman, Sini Balakrishnan, Manas Karanjekar

 Intel Corporation

himani.jawa@intel.com; nishant.raman@intel.com;

sini.balakrishnan@intel.com; manas.karanjekar@intel.com;

Abstract-The challenges related to verification of modern-day IPs and SOCs have significantly increased because of

their ever-increasing complexity. The complexity has further led to a manifold increase in the performance issues. Each

performance setback can lead to multiple revisions in a project. In a design such as that of a cache memory controller,

timing of multiple requests such as read, write and refresh should follow certain rules and specifications to prevent data

loss, data miss and any other data integrity issue. Violations of the rules might lead to bugs, leading to performance

issues. Formal Verification is an exhaustive verification based on mathematical modelling which explores the whole input

space state. This paper talks about a methodology for timing performance validation which uses different formal

techniques such as abstractions, range covers and assertion modelling. This helped to uncover some complex hidden bugs

for different combinations of cache memory requests. It also talks about some of the issues which might have resulted in

huge performance loss if those were not caught.

I. INTRODUCTION

Cache Memory is high-speed memory that sits between a processor (CPU/GPU) and a main memory. It stores the

data and instructions which are frequently used by the processor. The transfer of data between the processor, main

memory and cache memory is handled by a block called cache Controller. When a request is received, the Cache

controller checks if the requested information is available in the cache memory. For a hit case, information is readily

available for the processor to access. But for a miss case, where the information is missing in the cache, controller

helps to fetch the information for the processor and update the cache line based on the request. Hence the

architecture of a cache controller is always looking for the best possible configuration to improve the performance of

cache and main memory access and thus improving the performance of overall system.

II. PERFORMANCE OF CACHE ARCHITECTURE

A cache’s primary purpose is to increase data retrieval performance by reducing the need to access the underlying

slower storage layer i.e., the main memory or lower-level cache. If the cache performance is low, it impacts the

performance of the whole computer architecture. The performance of a cache memory controller can be measured

multiple ways such as its Hit Ratio, average access time etc. Hit Ratio is the number of hits to the total number of

accesses requested to the cache memory which is the overall number of hits and misses. Average access time is

dependent on the hit time (the time required to access the cache multiplied by the hit rate), the miss rate and miss

penalty which is the total time needed to fetch the data from the memory whenever there was a miss.

Hit Ratio = Number of Hits / (Number of Hits + Number of Misses)

 Average access time = Hit Time + Miss Rate * Miss Penalty

Performance improvement aims for good hit ratio and low average access time. Both the performance measures are

observed to be dependent on the miss rate or the number of misses. A miss happens when the requested data/address

location is not present in the cache memory. This can happen because of multiple reasons, one of most important

being the requests to the cache memory getting dropped or there were any data integrity issues in the cache memory

leading to a high miss rate. Data scheduler (shown in Fig. 1) in the cache memory controller is responsible for

scheduling the request coming from the processor. It makes sure that all the requests are scheduled at proper timing

in order to make sure that no request is dropped, no two requests overlap each other and thereby making sure that

the data integrity is maintained.

mailto:himani.jawa@intel.com
mailto:nishant.raman@intel.com
mailto:sini.balakrishnan@intel.com
mailto:manas.karanjekar@intel.com

Figure 1. Cache Memory controller

III. PERFORMANCE CHALLENGES

This section talks about the different challenges which impact the miss rate and ultimately affect the performance,

request scheduling being one of the major ones. Request scheduling is a critical feature which should follow

different strict timing requirements so that there are no misses, and all the requests reach the cache memory

controller at correct timing. The schedule of the requests should follow the below three requirements:

• Scheduling requests based on minimum timing constraints

• Avoiding request scheduling as per configurable single clock rules

• Request duplication based on Data Block (DB) timing specification for DB pair

A. Scheduling Requests based on Minimum timing constraints

Data scheduler in a cache memory controller schedules multiple requests such as read, write, refresh to the cache

memory. A huge cache memory can be divided into slices, data-blocks and subarrays. Each slice is divided into data

blocks, and each data-block is divided into subarrays. As the size of the cache increases, the number of slices and

data-blocks also increase, leading to an increase in the timing complexity of the cache controller. For every location,

slice, data-block, subarray, the timing for a request should follow a correct timing order so that all the reads and

writes are happening correctly without any data corruption. With the increase in the size of the cache memory, the

total number of combinations of constraints increase exponentially.

Under minimum timing constraints, any request followed by any other request for any location, a block, or a sub-

block should only happen after a certain minimum no of cycles as shown in Fig. 2. There should be a minimum

number of cycle gaps between the consecutive memory access to the same location to make sure there is no overlap

between any 2 requests.

 Figure 2. Minimum timing constraint spec for different combination of requests

The minimum clock cycles between two requests increases if the memory access happens on the same location or

nearby location. As shown in Fig. 2, if one write is followed by another write, and the latter write wants to access a

different slice, the minimum clock cycles is 2. However, if a write is followed by another write to the same location

that is the same slice, data-block and subarray, the minimum clock cycles is 16.

As shown in Fig. 3, read to read can come in minimum 2 cycles for different slices, while read to write for same

slice can come minimum after a cycle gap. Write and refresh requests for same slice, different data-block can come

in the same cycle. And minimum gap between two refreshes can come after a minimum cycle gap of 2 for different

slices. Different requests for different cache memory locations, slice, data-block, subarray, have different timing

rules and all the possible combinations need to be validated which makes it more complex and difficult.

Figure 3. Request scheduling as per Min timing constraints

 B. Avoiding request scheduling as per configurable single clock rules

Unlike Minimum Timing constraints, these rules make sure that the repeated memory access to a specific location

is blocked from occurring at specific cycles after the initial access. A second request should not be scheduled at an

exact number of cycle gap after the first request. As shown in Fig. 2, write is blocked and not scheduled on

3rd,4th,5th cycles after a write on the same slice and 2 cycles after a read. The read should not be scheduled 4 cycles

after a write on the same slice and 2 cycles after a read.

Some of the single clock rules can be configured using configurable registers. Based on the value of the register,

the request does not get scheduled at the specific cycles. For example, as shown in Fig. 4, w2w_same_slice register

is used for the write to write for same slice. If w2w_same_slice’s value is ‘b11101, then write should not appear

1,3,4,5 cycles after a write on the same slice. Such single clock rule registers help block requests at different cycles

for different configurations and find the best performance configuration of cache memory controller.

Figure 4. Write blocking as per single clock configurable register

 C. Request duplication based on Data Block (DB) timing specification for Half DB pair

The requests from the data scheduler are forwarded to the data propagation mux which further sends it to the

cache memory array. Data propagation mux duplicates each request coming from the data scheduler for each

half DB.

Since the requests to the cache memory are duplicated, the timing complexity increases, so therefore there are

specific DB timing requirements and more robust validation is required to make sure no request is overlapped or

dropped. For read, the duplicated request for each half DB gets generated after a cycle gap. For write, the

duplicated request for each half DB gets generated after 3 cycles gap, at the 4th cycle.

For example, as per Fig. 5, read after read for the same slice should be scheduled after a minimum 4 cycle gap,

let's say it gets scheduled at the 2nd cycle. Then the second read request gets dropped because of the overlap

between the duplicated read requests between the two reads.

 Figure 5. Request blocking as per single clock configurable register

With such huge timing complexity, different types of timing requirements and an exceptional huge number of

timing rules to be verified, bug escape is very easy. Dynamic simulation on one hand can only verify certain cases

since it is dependent on random test stimuli, Formal verification and advanced Formal Techniques pave the way

for us to achieve no bug escape.

In the next section we talk about the different FV techniques that helped in exhaustively verifying the timing

performance of a higher-level cache memory controller IP and how formal verification Methodology and

techniques helped in not only validating the existing performance but also helped in optimizing the performance.

This IP provides large capacity medium bandwidth cache to improve the performance and throughput in discrete

graphics products.

IV. FORMAL TECHNIQUES TO RESOLVE PERFORMANCE CHALLENGES

We propose a formal methodology to exhaustively validate the timing performance of the cache memory

controller. The data scheduler is responsible for scheduling requests according to the different timing requirements

as discussed in the previous section.

In stage 1, Assertions and checkers in FV for Min timing constraints, configurable single clock rules and the DB

timing requirements have been modelled and developed. If any assertion failed, that means it is not following the

timing requirement and is affecting the functionality of the cache memory controller, therefore it wase reported as a

bug.

In Stage 2, if the minimum timing constraint assertions passed, we verify that scheduling operation happened on

the minimum timing as specified in the spec using Covers. If the cover traced passed, then the scheduling operation

was happening at the minimum timing possible, therefore leading to the best performance possible for that

scheduling. If the cover trace fails, we move to stage 3.

In stage 3, we find the minimum possible cycle using Ranged Covers at which the minimum timing constraint is

satisfied and the cover passes. Since the design complexity is huge, the covers convergence was difficult. This is

when Abstractions were used and helped in the convergence of the covers and reduced the overall complexity. The

cover traces are then analyzed, and feedback is given to improve the performance.

 Figure 6: Overall Methodology to validate the performance of a cache memory controller architecture

Given the various timing and performance challenges, the complexity of the rules constraining the design is

varied. Depending on the complexity of the rules, different Formal property implementations can be applied
keeping in mind the optimization of the FV model. This section explores different Formal Verification techniques to

verify the timing performance of a cache memory controller to minimize the miss rate.

A. Assertions

Various kinds of assertions have been used to exhaustively verify the minimum timing constraints, the single

clock rules and checkers for the DB (data-block) timing spec as shown in Fig. 6. Assertions were modelled for each

type of specification for all the different combinations of requests scheduled for each array and subarray, as shown

in the sample specification in Fig. 2. The assertions can be classified into 4 categories based on the features they

verify:

• Logical expression-based assertions such as the one in Fig. 7 are effective in verifying direct properties such

as two requests not being scheduled in the same clock cycle. They are of the least complexity in terms of both

code size and number of flops generated.

Figure 7: Logical expression-based assertions

• Assertions modelled with additional logic such as counters are more involved due to the supporting logic

modelled along with it. They have been used to verify the minimum timing criteria of the various request

combinations. The counters are triggered by an initial request that needs to be tracked. As the counter value

increments, the assertion checks for new requests and if they are scheduled within the legal timing comparing

with the counter and the specified minimum timing value. Combinations of such checkers are effective in

verifying the more complicated single clocking requirements. The sample code in Fig. 8 and Fig. 9 show one

such implementation to verify the case where a write request must not appear in clocks 1,3,4,5 after the initial

write request to a particular data array. The first assertion ensures the absence of a repeated write request until

cycle 6, except for the 2nd clock cycle. If a write appears in the 2nd clock, the counter for the second assertion

is triggered, where the latter ensures the absence of another write request in the consequent 5 cycles.

Together, the pair of assertions cover the entire single clocking requirement.

Figure 8. Checker1 for single clocking rule Figure 9. Checker2 for same single clocking rule

• Single clocking requirements can also be implemented using configurable registers in the design which allows

for variable single clock rules. The assertions to verify these compare the register value for the clock cycle in

which they block a consecutive request with the arrival of a new request. A sample assertion in Fig. 10

verifies the case where a configurable register (W2W_CR_3) is blocking a write request 3 clocks after the

first write.

Figure 10. Assertions using configurable register

B. Covers

Beyond precondition covers generated for assertions by the formal tool, targeted covers have been used to

minimize the search space and view the failure scenarios faster. These also allow verification of certain properties

such as performance requirements where the occurrence of an event is a sufficient indicator rather than the perpetual

occurrence of an event or a sequence of events.

In the verification effort towards a cache memory controller, dedicated covers can be used to check for the

minimum possible, legal repeated memory accesses. For example, if a minimum timing constraint between

consecutive write requests is 10 clock cycles, the cover property checks for the earliest occurrence of a consecutive

write request at the 10th clock cycle. Fig. 11 shows a code snippet of one such cover property in System Verilog

HDL.

Figure 11. Cover for Wr after Wr Min timing constraint

Along with targeted covers, modified cover properties can also be used to view the earliest occurrence of an event

within a time-period or a range of clock cycles. For convenience, they shall be referred to as range-based covers

henceforth. These range-based covers look for a repeated request in a specified range of clock cycles based on

performance and search depth requirements. Assuming a read request is expected in a specified range, the cover

would, in a well abstracted setup, generate a trace for the earliest possible repeated read in that range. Fig. 12 shows

the System Verilog code for a sample range-based cover.

Figure 12. Ranged Cover for Wr after Wr Min timing constraint

Using the range-based cover technique can be thought of as a modified version of using a divide-and-conquer

strategy to help observe waveforms. What this means is, one can provide an estimate of bound or cycles-based range

to the formal tool, during which target behavior is expected, and this range can then be modified to generate a

meaningful trace as illustrated in Fig. 13. The generated trace will help one sieve through the source code for

possible failures. They also help assess the current performance capability of the design.

 Figure 13: Devising covers for different bounds for a desired state

C. Abstractions (AM)

Unlike simulation, formal has certain limitations when it comes to the design size, precisely the number of state

elements that a tool can process. This is primarily because of the nature of how formal works. With every new state

element added, the state space increases exponentially, thereby leading to design complexity issues.

We encountered such complexity issues as a part of our verification effort. Some properties were not converging

after being run for a long amount of time, which helped us identify this problem as a first step. Two cases when

formal verification efforts hit a roadblock are, first when covers fail, and second is when properties don’t converge.

Both the issues can be tackled by the range-based covers approach. As mentioned earlier, writing these covers

enables debugging through waveforms, and help trace driver signals through the RTL.

The generated behavioral waveforms helped identify a bottleneck matrix which was adding complexity to the

tool. The matrix functioned as a hardware-based algorithm to identify and evict instructions received by the cache

controller. Implementing such algorithms in hardware often requires keeping track of multiple features, such as age

of an instruction, priority of an instruction, and such others, thereby requiring memory elements to be added to the

design. These memory elements contribute to complexity and require a resolution. If we were to replace the matrix

with something more lightweight, and yet have the same computational effect in downstream logic, we could get

past this complex hurdle. This is the essence of abstraction, replacing a complex piece of logic with logic that

provides similar functionality, and simplifies the formal analysis process for the tool as illustrated in Fig. 14. We

identified the functionality of the matrix, and the logic it interacted with, and replaced it with an abstracted model

with the same interface. The abstract model consisted of properties which acted as assumptions for the tool and

complied with rest of the design logic just as the original matrix. This technique helped achieve convergence on

properties within 20 minutes, which otherwise were taking over 72 hours to reach the same bounds, thereby

reducing the turnaround time by ~99.5%. This can have a significant impact on left-shifting the design verification

timeline and identifying early bugs in the design.

Figure 14. State space without and with Abstraction

V. RESULTS & DISCUSSION

Using this innovative approach, multiple hidden bugs were found in the cache controller architecture. Two bug

scenarios which had a huge impact on performance are discussed below.

A. Bug Scenario 1

In the case of single clocking constraint where a repeated write request was to be blocked for clocks 1,3,4,5 after

the initial write request. In other words, a consecutive write may be expected at cycle 2 and 6 onwards. The issue in

the design revealed to be repeated write requests being blocked for all 5 cycles.

CLK

1 Request

Single Clocking Request Block By Request 1

Single Clocking Request Block By Request 2

Single Clocking Request Block By Request 3

Single Clocking Request Block Effective

2 Request

Single Clocking Request Block Effective

NoWrite

Write

Write

NoWriteNoWrite

NoWriteNoWrite

NoWrite NoWrite NoWrite NoWrite NoWrite NoWrite

NoWrite NoWrite

NoWrite NoWrite NoWrite NoWrite

NoWrite NoWrite NoWrite

Write

NoWrite NoWrite

NoWrite NoWrite NoWrite NoWrite

Write Write

NoWrite NoWrite NoWrite NoWrite

Write Write

12 13 146 7 8 9 10 111 2 3 4 5

Figure 15. Bug Scenario1- Wr after Wr for single clock rule

Scenario 1 in Fig. 15 shows the peak performance expectations from the architectural specification, while

scenario 2 depicts the observed bug. At peak performance, assuming the requests repeat as shown, 2 writes every 8

cycles is expected, while the implementation allows for 2 writes every 12 cycles. The missed write request resulted

in a 33% (1 – 8/12) decrease in write bandwidth. Effectively 1 out of every 3 writes are being dropped, and in cache

memory design this adversely affects the cache miss rate.

The implementation for verifying this functionality was a pair of assertions. The first assertion simply constraints

repeated requests after an initial write but does not check in the 2nd cycle (as per the specification). The second

assertion is specific to the writes request that could appear in the 2nd cycle. Together, the pair of assertions cover the

entire single clocking requirement. Depending on the complexity of the single clocking requirement, more checks

may be introduced that help cover the specification. The bug was discovered through a simple precondition cover

that is generated for the second of the pair of assertions. It looks for the specific write that appears in the 2nd cycle

after an initial write request. Failing to see one resulted in a cover failure which exposed this critical performance

issue. The above bug scenario reveals that through existing checkers, the search for performance-bug hunting

widens.

B. Bug Scenario 2

 Another performance requirement from the specification is that requests are scheduled as early as possible while

meeting minimum legal constraints. While requests are not expected to always repeat at the minimum timing

imposed by the specification, they must be allowed to do so to ensure no loss in memory access bandwidth. For

example, a consecutive read request can’t be scheduled within 16 cycles of each other, as a minimum timing

constraint, but they may be expected at any cycle after that. An issue observed associated with these minimum

constraints was that while the read requests adhered to the minimum legal constraints, a request was never scheduled

at the minimum possible cycles, i.e., 16.

The verification methodology employed in these performance critical areas was through covers and ranged

covers. The unreachability of the targeted cover for a consecutive read request after exactly 16 cycles present a

formal proof of the bug. This is important in such scenarios where simulation-based verification techniques may not

give the surety of the presence of a failure or simply a rarity in occurrence.

In cases where the covers are failing, the traces do not get generated. In such kind of bugs, where cover failures

are an indication of the bug, the lack of a violation trace may be unhelpful in debugging the failures since the

failures can’t be pinpointed directly. There are some workarounds to this that would help trace through the source

code/RTL. One is the use of the FV technique discussed previously, range-based covers, which are useful in

partially combatting the issue mentioned earlier regarding the lack of violation traces.

These also have the added advantage of highlighting the extent of performance loss in this scenario.

Experimenting with a variety of cover ranges to estimate the degree of failure, the earliest cover trace showed a 30-

cycle difference between consecutive read requests. The performance loss here is very evident – the best-case

scenario presented by the design is 1/30 requests per cycle and the expected bandwidth by the specification is 1/16

requests per cycle. A drop of almost 47% (1 - 16/30) in read bandwidth! Having such an indicator allows designers

and architects to easily identify core issues and fix them with priority.

While such bugs are not critical to functionality, they impact the performance and the potential bandwidth of

memory accesses.

C. Overall Results

Using this novel methodology, more than 20 bugs were found including several corner-case bugs which if not

caught would have impacted the performance adversely. As discussed in the above two corner case bug scenarios,

missing those bugs would have reduced the architecture performance by 33% and 47% respectively.

We were successfully able to validate the different timing requirements to meet the stipulated cache controller

architecture performance. Covers and Range Covers with abstractions helped to identify the minimum timing

supported by the design. Using different cover traces in the subsequent stages (Stage 2, stage 3) the design areas

which hinder the performance were root-caused quickly. Based on the feedback, various modifications in the

architecture and design implementation were carried out and several performance bottlenecks were identified while

applying this innovative method.

CONCLUSION

We presented a comprehensive methodology to validate all kinds of timing performance challenges of a cache

controller architecture that yields impactful results. This helps to prevent data loss, reduce data-misses and avoid

other data integrity issues. Using this innovative technique, the best possible performance can be identified. Flaws in

the architecture can be root caused if there is a performance setback. We could also showcase that several corner

case issues can be exposed with minimal code-space properties and by reducing the design complexity. Underlying

formal techniques greatly speeds up the validation process and consequently leads to better designs with high ROI.

Different test scenarios are used to demonstrate the effectiveness of this methodology to bridge the gap between ‘a

sense of an issue’ and ‘a confirmed bug’. The same methodology applied to all such requirements can multiply the

benefits and yield better designs with greater performance.

ACKNOWLEDGMENT

 Thanks to DDG Design and Architecture Team for the support and FVCTO Team for the motivation and the

valuable feedback.

REFERENCES
[1]M, Achutha KiranKumar, Erik Seligman & Tom Schubert, Book on “Formal Verification – An Essential Toolkit for VLSI Design”, 2015

[2] IEEE Std 1800™-2017, IEEE Standard of System Verilog – Unified Hardware Design, Specification, and Verification Language.

[3] Pierre Wolper, “Expressing interesting properties of program in propositional temporal logic” 13th ACM SIGACTSIGPLAN symposium on
Principles of programming languages, pages 184-193. ACM Press, 1986.

[4] T. Patel, “Using Formal Sign-Off to Deliver Bug-Free IPs”, Oski Decoding Formal Club, Dec 2019

