
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

Enhanced Dynamic Hybrid Simulation Framework for

Hardware-Software Verification
Victor Besyakov

Untether AI Toronto, Ontario, Canada

https://www.untether.ai.

Background

At best, a hybrid simulation can be described as a combination

of “two or more different simulation techniques into one

simulation environment in order to benefit from the different

simulation characteristics, e.g., different levels of accuracy

and simulation speed”

Conceptually, it can be categorized into two groups:

 static or spatial

 dynamic or temporal

Static hybrid simulation (traditional approach) - offers the

possibility to simulate system “at different levels of abstraction”

User can decide for each simulation run “if an abstract

simulation is sufficient or if a detailed simulation is necessary”

.Issue: Simulation performance is always limited by the

“slowest” part.

Dynamic hybrid simulation – “offers the user the possibility to

switch the simulation technique, i.e. the level of abstraction,

during runtime”.

Ideally, a Dynamic hybrid simulation should be capable “to

speed up the simulation without sacrificing the accuracy”.

Static and semi-dynamic hybrid simulations are special cases of

the dynamic hybrid simulation.

Issue: Switching between “fast” and “slow” simulation “is a

very complex and architecture dependent task , since the

entire state of the simulated program” must be coherent for

all hybrid simulation engines.

Enhanced dynamic hybrid platform architecture

Figure. 1 Generic dynamic hybrid platform

Hybrid Simulation Framework implementation Example

Framework Components: Data Router

The Data Router manages data traffic between three types of

input-output ports (see Figure. 4 and Figure. 5).

The Client Control ports are dedicated to the exchange of

control information between the Client and Host subsystems.

This Control flow consists of simulation controls and routing

events. Each external port pair interacts independently with the

data router and has its own TCP/IP socket.

The second pair is a SystemC simulation data path (Host SoC

ports). They enable a connection between the Fast CPU model

and the rest of the SoC Host system.

In operational terms, data routing can be static (default mode) or

dynamic. When the simulation is launched, the data router

obtains the default routing table configuration in the initialization

step. In the case of a static hybrid simulation, the routing table

remains unchanged during the entire simulation.

With dynamic routing, Data MUX updates the routing table on a

regular basis based on information from internal or external

switching events. The event receiver is responsible for

processing all events from internal sources and external client

control ports.

In addition to the traffic directing function, the router is

responsible for establishing the TCP/IP socket-based

communication. It also records and stores inbound and outbound

transactions in the traffic database, and manages (accepts or

rejects) Direct Memory interface (DMI) requests from System C.

The external data ports (Client Data Ports) and the operation of

the data ports are described in this poster (see Host-Client data

flow).

Acronyms & references

 ISS - Instruction Set Simulator

(https://en.wikipedia.org/wiki/Instruction_set_simulator)

 TLM or TLM 2.0 - Transaction-Level Modeling

(https://en.wikipedia.org/wiki/Transaction-level_modeling)

 IPC - Inter-Process Communication

(https://en.wikipedia.org/wiki/Inter-

process_communication)

 “The Shunt” - Client/Server TCP/IP socket based

communication library (https://github.com/xver/Shunt)

 Kraemer, S. Design and Analysis of Efficient MPSoC

Simulation Techniques. Ph. D. Dissertation, RWTH

Aachen Univeristy 2011

 Enables shift left HW development and debug on SoC RTL

rather than on first silicon and/or prototyping

 Provides a more realistic stimulus for RTL verification

 Reduces simulation time and Allows finding/fixing system-

level bugs in HW, rather than as SW

 Creates a common platform for HW, SW development, and

prototyping (emulation) and Enables HW and SW early

integration

Why Dynamic Hybrid Simulation ?

Hybrid platform (refer to Figure 1 and Figure 2)consists of two

main subsystems, called Host and Client, which communicate

with each other via a Data Router and the IPC channels (dotted

lines).

The implementation of the IPC may vary depending on system

requirements. The most conventional approach is to use a

standard TCP/IP socket API.

In a typical hybrid system, the Host subsystem is the fastest part

of the simulation. The Server can be either an ISS or even an

actual processor unit.

The reconfigurable Data Router governs data flow between

Host and Client. It also implements an adaptive layer that maps

associated interfaces to the IPC protocol. In the case of static

simulation, the direction of the data stream always remains the

same. For dynamic simulation, data flows can be altered based

on the Switch Simulator request events see Table one and

Figure 2.

TABLE ONE TYPES AND SWITCHING EVENTS

Event Name Transaction type Event Trigger

Temporal N/A
If the simulated time is within the specified

interval.

Address
Read and Write

Transaction

If the transaction address falls within the

specified address range.

Register
Read and Write

Transaction

If the address and the value of the present

transaction are equal to the corresponding

values in the reference table.

Figure. 2 Events Hierarchy

Figure. 4 Router block diagram (one Client example)

Figure. 3 ISS centric hybrid platform

Figure. 5 Host-Client data flow

Framework Components: Inter-Process Communication

The open-source communication

library "The Sunt" is selected as

the TCP/IP application layer. It covers

all SystemC, System Verilog, and C

clients and facilities to establish TLM 2.0 connections. The main

reason for selecting a TCP/IP protocol is that the hybrid platform

requires communication between remote applications.

The primary objective of the IPC is to provide a unified reusable

data exchange protocol for all potential hybrid platform clients. In

practice, the selection of the communication methods is a

compromise between simulators interoperability, performance,

and data transfer overhead, just to name a few.

Host-Client data flow

An example of client-host integration is shown in Figure 5

Host subsystem is represented by the ARM ISS Fast Processor

model . It interacts with a hybrid system's peripherals through the

ARM Programmer View (PV) ports (pvbus_m and pvbus_s).

The PV Bus provides functionally accurate communication

between bus masters and slaves, but doesn’t have any notion of

the data exchange protocol.

The PVBus2AMBAPV and AMBAPV2PVBus components
implement the required protocol conversion, such as PV to

AMBA and vice versa.

Host-to-Client Read request (red lines in Figure 5) :

Host: Read request is sent from the processor model output to

the ama_pv_m port via the PVBus2AMBAPV protocol converter.

The Router fetches the AXI bus transaction and forwards it to the

AMBAPV2Shunt adapter. It converts read request from the

amba_pv and sent it over TCP/IP to the corresponding client.

Client: The Shunt2UVM adapter gets an ingress transaction,

converts it to the regular uvm_tlm_generic_payload, and passes

it to AXI BFM.

Client -to-Host Read response (purple lines in Figure 5):

Then BFM returns the results of the read transaction. The

following components of the data flow diagram will be involved:

UVM2Shunt adapter, TCP/IP packet, Shunt2AmbaPV adapter,

amba_pv_s port, AMBAPV2PVBus, and finally the PVbus input

port of the processor.

Server
External
blocks

Router

Switch Simulator Request

IPC

Peripheral

Host Client

Data
MUX

Events
Decoder

Host Events
generator

Host Simulation
Controls

generator

Router

ISS (FW)

RTL
simulation

TLM2IPC
Hub

RTL
Emulation

RTL FPGA
prototype

SystemC
Cycle

Models
simulation

Switch Simulator Request

IPC

IPC

IPC
SystemC

simulation

IPC

Host SystemC SoC External SoC blocks

Events
Decoder

Host Events
generator

Host Simulation
Controls

generator

Recv tlm_b_transport

Send tlm_b_transport

Send tlm_b_transport
Data
MUX

amba_pv_slave_socket

Host SoC ports Client Data ports

Recv tlm_b_transport
amba_pv_master_socket

Client Control ports

https://en.wikipedia.org/wiki/Instruction_set_simulator
https://en.wikipedia.org/wiki/Transaction-level_modeling
https://en.wikipedia.org/wiki/Inter-process_communication
https://github.com/xver/Shunt
https://github.com/xver/Shunt

