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Abstract- The hardware-software co-verification feasibility constitutes a significant challenge to the System-on-Chip 

(SoC) development. A comprehensive co-simulation can take months, if not years of CPU time. To solve this problem, a 

hybrid approach was introduced several years ago. The motivation to use it derives from its ability to address the 

contradiction between hardware and software development requirements. On the one hand, the software is more 

attractive to accelerate the simulation and does not require high accuracy all the time. On the other hand, the hardware 

development relies mainly on a time-aware simulation and can only sacrifice precision occasionally. This paper presents 

an enhanced dynamic hybrid framework that can satisfy both requirements and may be used for hardware-software co-

verification. 

I. INTRODUCTION 

A. Background 

At best, a hybrid simulation can be described as a combination of “two or more different simulation techniques 

into one simulation environment in order to benefit from the different simulation characteristics, e.g., different levels 

of accuracy and simulation speed” [1]. Conceptually, it can be categorized into two groups: static or spatial and 

dynamic or temporal [1].  

One of the most common examples of the static hybrid approach is the hardware-assisted RTL verification. 

Typically, the synthesizable design runs on the hardware accelerator, while the non-synthesizable testbench remains 

within the software simulator realm [4,5]. The downside of this approach lies in the performance. The effectiveness 

of a static hybrid platform is always limited by the slowest simulator. 

Compared to the static platform, the dynamic hybrid solution offers an additional option that allows the user to 

switch between various simulators (i.e. levels of abstraction) during runtime. This technique is frequently utilized to 

explore CPU unit microarchitecture, performance modeling, and software power consumption [2,3,6,7]. One of the 

main challenges of the dynamic hybrid simulation is to maintain synchronization among several simulators. It is a 

very complex and application-dependent task since the entire state of the simulated design must be coherent for all 

engines [1]. As a result, the dynamic hybrid simulation solution is not widely used in the hardware-software co-

verification and there are no commercially successful tools in the marketplace. The proposed enhanced dynamic 

hybrid simulation framework aims to address these challenges. 

B. Enhanced Hybrid platform architecture 

Fig. 1 shows the architecture for this framework. It consists of two main subsystems, called host and client, which 

communicate with each other via a data router and the Inter-Process Communication (IPC) channels (dotted lines). 

The implementation of the IPC may vary depending on system requirements. The most conventional approach is 

to use a standard TCP/IP socket API.  

In a typical hybrid system, the Host subsystem is the fastest part of the simulation. The server can be either an 

Instruction Set Simulator (ISS) or even an actual processor unit.  

The Client tends to represent a more timing-accurate part. This may include a conventional RTL simulation, 

SystemC cycle-accurate model, hardware-assisted simulation, or FPGA prototyping (ref. Client Fig. 2).  

The reconfigurable data router (ref. to Router in Fig. 1 and Fig. 3) governs data flow between Host and Client. It 

also implements an adaptive layer that maps associated interfaces to the IPC protocol. In the case of static 

simulation, the direction of the data stream always remains the same. For dynamic simulation, data flows can be 

altered based on the Switch Simulator request events. 



                               
Figure 1 Enhanced dynamic hybrid platform architecture 

                                        
Figure 2 ISS centric hybrid platform 

The following subsections cover IPC data interchange, event switching protocols, synchronization algorithms, and 

hybrid system limitations. This will be illustrated by examples drawn from the ISS-centric simulation platform (see 

Fig. 2). 

II. HYBRID SIMULATION FRAMEWORK ARCHITECTURAL ASPECTS  

A. Data Router 

The data router manages data traffic between three types of input-output ports (see Fig. 3).  

The Client Control ports are dedicated to the exchange of control information between the Client and Host 

subsystems. This Control flow consists of simulation controls (start the simulation, reboot, freeze clock, and e.t.c) 

and routing events. Each external port pair interacts independently with the data router and has its own TCP/IP 

socket.  

The second pair is a SystemC simulation data path (Host SoC ports). They enable a connection between the Fast 

CPU model and the rest of the SoC Host system.  

In operational terms, data routing can be static (default mode) or dynamic. When the simulation is launched, the 

data router obtains the default routing table configuration in the initialization step. In the case of a static hybrid 

simulation, the routing table remains unchanged during the entire simulation. With dynamic routing, Data MUX  



 

Figure 3 Router block diagram (one Client example) 

updates the routing table on a regular basis based on information from internal or external switching events. The 

event receiver is responsible for processing all events from internal sources and external client control ports.  

The Data router is implemented as an extension of the amba_pv_to_tlm_bridge class [14]. In addition to the 

traffic directing function, the router is responsible for establishing the TCP/IP socket-based communication. It also 

records and stores inbound and outbound transactions in the traffic database, and manages (accepts or rejects) DMI 

requests from System C. 

The external data ports (Client Data Ports) and the operation of the data ports will be described in paragraph B 

below. 

B. Host-Client data flow 

An example of client-host integration is shown in Fig. 4, where the host subsystem is represented by the ARM 

Fast Processor model [14]. ISS interacts with a hybrid system's peripherals through the ARM Programmer View 

(PV) ports (see pvbus_m and pvbus_s in Fig. 4). The PV Bus provides functionally accurate communication 

between bus masters and slaves, but doesn’t have any notion of the data exchange protocol [14]. The 

PVBus2AMBAPV and AMBAPV2PVBus components implement the required protocol conversion, such as PV to 

AMBA and vice versa. 

The system data flow is illustrated with a read transaction as follows. The outgoing Host-to-Client read request 

(follow the red lines in Fig. 4) is sent from the processor model output to the ama_pv_m port [14] via the 

PVBus2AMBAPV protocol converter. Next, the router fetches the AXI bus transaction pair (amba_pv_transaction, 

amba_pv_extension) and forwards it to the AMBAPV2Shunt adapter. The egress adapter converts read request from 

the amba_pv to the Shunt TLM structures (cs_tlm_generic_payload_header, cs_tlm_axi3_extension_payload_header 

[11]) and sent it over TCP/IP to the corresponding client. 

On the Client side, the Shunt2UVM adapter gets an ingress transaction, converts it to the regular 

uvm_tlm_generic_payload, and passes it to AXI BFM. If BFM is compatible with uvm_tlm_generic_payload 

(example Synopsys AMBA AXI3 BFM [13]), the AXI read request can be converted directly into a bus transaction, 

with no further transformation. Otherwise, another level of mapping must occur. Then BFM returns the results of the 

read transaction (follow the purple lines in Fig. 4). The following components of the data flow diagram will be 

involved: UVM2Shunt adapter, TCP/IP packet, Shunt2AmbaPV adapter, amba_pv_s port, AMBAPV2PVBus, and 

finally the PVbus input port of the processor. 

         
Figure 4 Host-Client data flow 



Non-bus transactions such as interrupts or sideband signals are not present in the Fig. 4 example. They need a 

dedicated set of router ports and converters (for instance: AMBAPVSignal [13] protocol to shunt structures 

converter). Nevertheless, the principle of operation is still the same. The host processor retrieves the Client's signals 

via the chain of the Client to the Shunt structures adapter, TCP/IP packet communication, and the Shunt to the 

AMBAPVSignal converters. 

C. Inter-Process Communication 

The primary objective of the IPC is to provide a unified reusable data exchange protocol for all potential hybrid 

platform clients. In practice, the selection of the communication methods is a compromise between simulators 

interoperability, performance, and data transfer overhead, just to name a few. 

The main reason for selecting a TCP/IP protocol is that the hybrid platform requires communication between 

remote applications. 

For the framework, the choice of the TLM 2.0 generic payload [9] over the TCP/IP socket communication is 

quite natural. The Host and the SC client are TLM 2.0 compliant by definition as SystemC components (ref. to Fig. 

2). The UVM-based RTL client can get TLM 2.0 capabilities from the uvm_tlm_generic_payload [8] class. 

However, two clients require special consideration. The emulation-based client (see Fig. 2) is linked to external 

applications via the standard SCE-MI co-emulation interface [10] like most hardware accelerators. Regarding the 

FPGA client (see Fig 2), there is no standard that can describe how to connect proprietary prototypes to the external 

world. This leads to the conclusion of creating a TLM 2.0 adapter for these two components instead of backup two 

or more different protocols.  

The open-source communication library "The Shunt" [11,12] is selected as the TCP/IP application layer. It 

covers all SystemC, System Verilog, and C clients and facilities to establish TLM 2.0 connections. 

III. SWITCHING EVENT MANAGEMENT 

The hybrid simulation works with events originating from the host and external clients. The router event 

decoder receives the first set of events directly from the Host Events generator (Fig. 3). The second series of events 

pass via a TCP/IP connection (Client Control ports Fig. 3). Only three types of events are listed in Fig. 5: temporal, 

address, and register. However, hybrid systems may have events originating from another source. For example, a 

software-centered system may have C/C++ debugger or exception handler events. 

The “Switching on” and “Switching off” (Fig. 5) requests are generated, if some switching Client simulator 

criterion is satisfied (see TABLE I). The event decoder (Fig. 4) updates the data routing table according to the event 

type, associated destination, and event data routing information. It inserts a new routing table entry upon “Switching 

on” request arrival and deletes an expired routing when the “Switching off” event. Typically, the “Switching on" 

event enables the destination of the external clients and the “Switching off” request cause to redirect the data back to 

the host SoC simulation. 

     
Figure 5 Events Hierarchy  

TABLE I 
TYPES OF SWITCHING EVENTS 

N Event Name An additional 
Attribute 

Request type Source (Fig. 2 
abbreviation) 

Event Trigger 

1 Temporal N/A Switching ON 

and Switching off 

SC,RTL,EM,PR If the simulated time is within the specified interval. 

2 Address Read and Write 

Transaction 

Switching ON 

and Switching off 

Host,SC,RTL,EM,PR If the transaction address falls within the specified 

address range. 

3 Register Read and Write 

Transaction 

Switching ON 

and Switching off 

Host,SC,RTL,EM,PR If the address and the value of the present 

transaction are equal to the corresponding values in 
the reference table. 



 

IV. SYNCHRONIZATION ALGORITHM 

As mentioned above, the synchronization of data and simulation time between the different simulation agents is 

a complicated task. It depends on the type of firmware, the implementation of the client/host simulator and on the 

simulation strategy itself. Indeed, different hybrid system scenarios may require a different sync. 

Ideally, the dynamic hybrid simulation platform user should be able to select the most appropriate 

synchronization algorithm at any time during the simulation. But in practice, it's very difficult to accomplish. A 

more pragmatic approach might be to choose the synchronization algorithm before the simulation starts and retain it 

during the entire simulation. Also, when it is possible to select a simulation strategy that can reduce synchronization 

overhead or even requires no synchronization. One option is to adopt a semi-dynamic approach that requires a one-

time swap between host and client [2]. This strategy needs no more than one-time forward synchronization per 

simulation.  

A. “Forward/Backward” synchronization 

The “Forward/Backward” synchronization is the most simple and straightforward technique. Briefly, while 

executing the simulation, the router records data transactions and stores them into the traffic database. Then, when 

the “Switching on” event occurs, the router transmits all accumulated transactions to the external Client. The Client 

sends the updated memory context back to the Host during the “Switching off” event. 

This kind of synchronization can be optimized by filtering out the exchange traffic. For example, a decision 

could be made to sync only with the nonzero entry transaction     at the most recent address.  

The Forward/Backward synchronization may require many synchronization sessions, especially when the host 

starts looking for information about the client (interrupts, state or data registry updates, memory consistency, etc.). If 

this occurs too frequently, it can significantly slow down the entire simulation. 

B. “Freeze-unfreeze clock” synchronization 

The “Freeze-unfreeze clock” is a gating clock synchronization method. It is convenient for distributed 

simulation when each client runs on their own simulation engine or when the host or client operates in an interactive 

debug mode. For each data update cycle, the clock is gated for the data exchange period and activated when the 

exchange is finished. 

An optimized algorithm version may take a more adaptive approach by varying the number of clocks for each 

simulation step. A more sophisticated arbitration system can also be implemented when the client itself can request 

the service from the host. 

C. “By Restart” synchronization  

The synchronization "by Restart" is useful, when the fast host runs the “real” firmware, but the client is placed 

over the slow RTL simulation. For synchronization with the slow simulator, the host has to be restarted at the 

beginning of each client simulation cycle. 

Back in the 90s, this type of synchronization was used in the Hardware modeler implementation [16]. As it was 

noticed in [15], the hardware modeler had only modest performance and a long simulation problem since it is 

necessary to reapply the entire stimulus history in order to obtain the next vector. The same drawback also applies to 

hybrid simulations. However, for non-intrusive black box simulations, this technique is irreplaceable. 

V. IMPLEMENTATION NOTE  

A. ISS optimization and Direct Memory Interface (MDI) 

The TLM DMI provides methods for bypassing the SoC bus infrastructure (b_transport [9]) and accessing the 

SoC memory directly. This functionality is critical to simulation performance. According to the study presented in 

[19], the boot time of Linux is 20 seconds with DMI and over 2 hours without DMI. But from a data router 

perspective, all DMI activity is hidden, which is a problem. Once the ISS gets the DMI pointer, it forwards all 

transactions straight to the SoC memory.  

Ideally, to solve this issue, the user should have complete control over the data flow. In reality, this is not 

feasible, as often the ISS is a proprietary black-box model. 



The more practical solution is to cut off all attempts to obtain DMI access to the shared host/client memory. 

This may be accomplished by modifying get_direct_mem_ptr( tlm_transaction & tx ,tlm_dmi& dmi) function 

inherited from amba_pv_to_tlm_bridge [14,17] (see code snapshot in Fig. 6). 

 

                
Figure 6 DMI access example 

 

B. Software/Hardware instrumentation  

Conventional software instrumentation (SI) is a well-known technique that focuses on modeling, runtime, 

power consumption, and statistical profiling [22]. In the case of hybrid simulation, SI creates switching events based 

on specific program behavior. For instance, to redirect traffic upon the Linux prompt or make a breakpoint for 

debugging purposes. It can also play a role in optimizing synchronization overhead by analyzing a shared memory, 

creating a database of transaction history, and avoiding time-consuming MDI blocking (see paragraph A above). 

The RTL code instrumentation (RI) is an integral part of the System Verilog standard or System Verilog 

simulators (assertions, code coverage, power-aware verification, UCLI, “$ system” task, etc.). Switching events 

produced by the integrated RI are the most preferred. It guarantees the same simulated behavior and does not 

intervene with the original RTL. The same applies to the use of synthesizable assertions and probes in FPGA-based 

prototypes. 

The non-standard RI has no support by any commercially available RTL simulators. Users need to code 

proprietary methods and ensure design consistency. The use of an open-source tool may facilitate this. For example, 

Verilator has a built-in code pipeline filter that can "modify inputs without changing primary sources" [20]. 

C. Distributed simulation challenges 

The Host-Clients synchronization algorithm could be significantly simplified if it can be assumed that there is 

no direct interaction between external clients. It means there is no sharing of resources (memory, buses, sideband 

signals, etc.) among clients. All client-to-client communications should be conducted via the host system. Another 

assumption that could be made is that at any given simulation time slot there should be only one client/host data 

exchange. It will ensure the order of the synchronization transactions. At first glance, such limitations could 

constitute an obstacle to the hybrid platform adaptation. However, focusing hardware/software co-simulation on the 

"one client per test" strategy can significantly reduce the negative impact of the synchronization trade-off. For the 

Host architecture, this means that the Host SoC model has to contain all external client models, all application 

connections and can function as a complete standalone simulation. 

VI. RESULT AND CONCLUSION  

The Dynamic Hybrid Simulation Framework was developed to evaluate the main advantages and disadvantages 

in terms of the applicability for ASIC software development and functional verification processes. It aims to enable 

early HW/SW integration by establishing a common platform across different simulator engines. This framework is 

still in the experimental phase, but even today it could provide significant benefits in software-driven verification.  

In static mode, the performance results are comparable to all other static hybrid simulation platforms [18]. One 

of the framework variants was used to develop a real production software driver.  

The dynamic mode was exercised as a proof of concept. In a semi-dynamic configuration (similar to [2]), it 

shows good performance for the U-BOOT boot loader [21]. It took under five minutes to get a prompt, compared to 

4 hours of pure RTL simulation. 

The advantages of a dynamic hybrid platform include: 

 Enables shift left  Perform SW development and debug on SoC RTL rather than on first silicon and/or 

prototyping 



 Provides a more realistic stimulus for RTL verification 

 Enables HW and SW early integration  

 Allows finding/fixing system-level bugs in HW, rather than as SW 

 Helps to identify bottlenecks in performance  

 Reduces simulation time 

 Creates a common platform for HW, SW development, and prototyping (emulation) 

 Improves Verification coverage and RTL quality 

Besides the many benefits and opportunities of dynamic hybrid simulation, this approach faces a number of 

challenges related to the heterogeneous nature of the hybrid system, such as: 

 Absence of a common simulators API  

 No debugging environment for the distribution simulations. 

 No requirement to VIP vendors to be TLM 2.0 compliant  

 Lack of interoperability across various RTL simulators.  

 No standard SW/RTL instrumentation 
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