
© Accellera Systems Initiative

Problem Statement/Introduction

Implementation Details – Diagram 

Proposed Methodology/Advantages

Implementation Details & Flow

STD UVC vs Error aware UVC 

Sushrut B Veerapur, Verification Director/Architect, Cadence Design Systems

Kilaru Vamsikrishna, Verification Architect, Cadence Design Systems

Embrace Errors! Architecting UVM Testbenches 

for Dynamic Error Injection & Handling

Results Table Conclusion

REFERENCES

Errors are random in nature! Errors do not happen in seclusion!
• This is true across all types of errors –Standard Logic Design-Under-Test (DUT) errors, Interface errors or 

Protocol errors

Coverage metrics look good but misleading
• Most verification engineers end-up exercising error scenarios in directed tests, as the testbench doesn’t 

support standardized strategy to inject errors. 
• Functional and code coverage might seem good with this strategy, but DUT error handling is left unverified 

from a real-world scenario perspective.

Testbenches(TB) should be built such that they exercise errors in mimicking real-world –in a truly random 
fashion
• A well-thought-out comprehensive strategy is required to build UVM Testbenches for Constraint Random 

Error Injection, where errors are intermixed with good traffic, where the testbenches not only gracefully 
handle errors but predict the design error handling capabilities.

The problem here could be termed as “Sequence –Coverage Problem”
• Inability to identify driver bugs: Leading industry recommendations suggest that the Universal Verification 

Component (UVC)or Verification IP (VIP)Driver packets be collected for coverage, as monitoring errors and 
uniquely identifying them is quite challenging. The major drawback of this method is the inability to 
identify driver bugs, as the methodology doesn’t necessarily guarantee that the intended error was truly 
driven. The problem here could be termed as “Driver –Coverage Problem”. 

DUT error handling is unverified from a real-world scenario perspective
• VIP vendors do provide good error injection strategy but there is lack of standardized approach on 

handling those errors in the testbench. The problem here could be terms as “Error handling Problem”.

The proposed “Dynamic Error Injection& Handling” is a novel and comprehensive UVM 
testbench strategy, which details on end-to-end verification techniques required to build 
a robust error aware and automated error checking testbench.

The proposed strategy details on techniques needed to be adopted for constraint 
random error injection, fine control for error injection, modifications required for drive 
logic. It also details on the importance of the monitor in being error aware, and 
automated check aspects of the testbench. 

The proposed “Dynamic Error Injection& Handling” Testbench Strategy can be 
summarized as below. 

• Errors intermixed with traffic –all the time, using Constraint Random Error Injection

• Continuous Error Monitoring and Graceful Error Monitoring

• Automatic Response Prediction that includes predicting Status Register updates, 
Interrupts, DUT Error Response Packet etc.,

• Automatic Handling for Interrupt Handling, Response Packet Scoreboarding etc.,

The Testbench architecture requirements translates to comprehensive updates across the Testbench –
Sequence Items, Sequences, Drivers, Monitors, Checkers/Predictors, Coverage Collectors. 

Driver
• Driver is updated to inject errors depending on the error and sets the seq item variable expect_error, 

to “hint” the monitor. 

Monitor
• Monitor “monitors” all the packets driven and checks for timing correctness and errors
• Driver forwards all the packets driven, to the monitor as “global reference”
• Monitor maintains a separate container queue[$] for this reference
• On error detection, monitor “refers” to the driver provided global reference, checks if intentional
• Logs expected error (uvm_info) if set and if driver indeed drove the very error, as randomized in 

seq_item
• Logs unexpected errors(uvm_error) if not set -flags as driver logic or packet generation issue

Coverage Collector
• Samples interesting scenarios like Single error packets, Multiple error packets, Sequence of error 

packets in a test Multiple error packets in a single clock cycle

Checker
• Checker predicts DUT’s expected behavior to errors, DUT Status Register Updates, DUT Interrupts and 

DUT Error Response/Reporting Packet etc.,
• Checker automatically  handles DUT responses to errors and “Triggers” the interrupt handler to 

expect and handle interrupt 
• Generates expected interrupt packets for response scoreboard

The proposed UVM Testbench Architecture is scalable and has been successfully 
adopted for comprehensive verification in highly complex Serial Design IP Controller 
Verification.In addition to solving the quoted problem statements, few of the key advantages of 
adopting this strategy were quicker coverage closure, higher confidence in verification 
signoff and significant reduction in reported late or silicon bugs.

Given the new-age IP/SoC complexities, constrained random error injection and error 
aware testbench have become the core verification requirement.

“Dynamic Error Injection& Handling” strategy is novel, an all-inclusive, completely 
scalable and comprehensive testbench verification strategy that can help verify any 
design of any complexity in a real-world perspective, mimicking the errors good and 
error traffic.


