
Embedded UVM
Puneet Goel <puneet@coverify.com>

September 15, 2017

mailto:puneet@coverify.com


Embedded UVM?

I Complete port of UVM-1.2 release including the reg-package
I Natively Compiled into:

I ELF executables that can run on any processor
I Shared libraries that can be loaded into any application (including Verilog/VHDL Simulations)

I Multicore Powered:
I Multiple posix threads running concurrently
I Allows multiple uvm_root instances and evenmulitple simulators

I Systems Programming Enabled:
I ABI compatibility with C/C++
I LLVM based compiler - compiles to LLVM IR

I Embedded UVM is NOT SystemVerilog

© Accellera Systems Initiative September 15, 2017 2 / 17



Embedded UVM?

I Complete port of UVM-1.2 release including the reg-package
I Natively Compiled into:

I ELF executables that can run on any processor
I Shared libraries that can be loaded into any application (including Verilog/VHDL Simulations)

I Multicore Powered:
I Multiple posix threads running concurrently
I Allows multiple uvm_root instances and evenmulitple simulators

I Systems Programming Enabled:
I ABI compatibility with C/C++
I LLVM based compiler - compiles to LLVM IR

I Embedded UVM is NOT SystemVerilog

© Accellera Systems Initiative September 15, 2017 2 / 17



Embedded UVM?

I Complete port of UVM-1.2 release including the reg-package
I Natively Compiled into:

I ELF executables that can run on any processor
I Shared libraries that can be loaded into any application (including Verilog/VHDL Simulations)

I Multicore Powered:
I Multiple posix threads running concurrently
I Allows multiple uvm_root instances and evenmulitple simulators

I Systems Programming Enabled:
I ABI compatibility with C/C++
I LLVM based compiler - compiles to LLVM IR

I Embedded UVM is NOT SystemVerilog

© Accellera Systems Initiative September 15, 2017 2 / 17



Embedded UVM?

I Complete port of UVM-1.2 release including the reg-package
I Natively Compiled into:

I ELF executables that can run on any processor
I Shared libraries that can be loaded into any application (including Verilog/VHDL Simulations)

I Multicore Powered:
I Multiple posix threads running concurrently
I Allows multiple uvm_root instances and evenmulitple simulators

I Systems Programming Enabled:
I ABI compatibility with C/C++
I LLVM based compiler - compiles to LLVM IR

I Embedded UVM is NOT SystemVerilog

© Accellera Systems Initiative September 15, 2017 2 / 17



Embedded UVM?

I Complete port of UVM-1.2 release including the reg-package
I Natively Compiled into:

I ELF executables that can run on any processor
I Shared libraries that can be loaded into any application (including Verilog/VHDL Simulations)

I Multicore Powered:
I Multiple posix threads running concurrently
I Allows multiple uvm_root instances and evenmulitple simulators

I Systems Programming Enabled:
I ABI compatibility with C/C++
I LLVM based compiler - compiles to LLVM IR

I Embedded UVM is NOT SystemVerilog

© Accellera Systems Initiative September 15, 2017 2 / 17



UVM on your RaspberryPi

What will you verify?
© Accellera Systems Initiative September 15, 2017 3 / 17



What will you verify?

Run your UVM testbench on a RaspverryPi or a
Beaglebone and Generate

I Constrained Random Ethernet packets
that go out on a real ethernet port

I Constrained Random USB packets that
emerge from USB connectors of the board

I Test a Beaglebone Cape or a Raspberry
Shield that you designed in your Garage

I Stimulate GPIO pins and connect these
pins to an Arty FPGA board

© Accellera Systems Initiative September 15, 2017 4 / 17



What will you verify?

Run your UVM testbench on a RaspverryPi or a
Beaglebone and Generate

I Constrained Random Ethernet packets
that go out on a real ethernet port

I Constrained Random USB packets that
emerge from USB connectors of the board

I Test a Beaglebone Cape or a Raspberry
Shield that you designed in your Garage

I Stimulate GPIO pins and connect these
pins to an Arty FPGA board

© Accellera Systems Initiative September 15, 2017 4 / 17



What will you verify?

Run your UVM testbench on a RaspverryPi or a
Beaglebone and Generate

I Constrained Random Ethernet packets
that go out on a real ethernet port

I Constrained Random USB packets that
emerge from USB connectors of the board

I Test a Beaglebone Cape or a Raspberry
Shield that you designed in your Garage

I Stimulate GPIO pins and connect these
pins to an Arty FPGA board

© Accellera Systems Initiative September 15, 2017 4 / 17



What will you verify?

Run your UVM testbench on a RaspverryPi or a
Beaglebone and Generate

I Constrained Random Ethernet packets
that go out on a real ethernet port

I Constrained Random USB packets that
emerge from USB connectors of the board

I Test a Beaglebone Cape or a Raspberry
Shield that you designed in your Garage

I Stimulate GPIO pins and connect these
pins to an Arty FPGA board

© Accellera Systems Initiative September 15, 2017 4 / 17



Embedded UVM Powered Emulation

I MRAA library provides user friendly interface to embedded processor’s GPIO pins
I But MRAA allows you to handle only one GPIO at a time – Efficiency?

© Accellera Systems Initiative September 15, 2017 5 / 17



Embedded UVM Powered Emulation

I MRAA library provides user friendly interface to embedded processor’s GPIO pins
I But MRAA allows you to handle only one GPIO at a time – Efficiency?

© Accellera Systems Initiative September 15, 2017 5 / 17



UVM on SoCFPGA – Hardware Accelerators

© Accellera Systems Initiative September 15, 2017 6 / 17



Hardware Accelerators Perspective

© Accellera Systems Initiative September 15, 2017 7 / 17



Hardware Accelerators Perspective

© Accellera Systems Initiative September 15, 2017 7 / 17



Hardware Accelerators Perspective

© Accellera Systems Initiative September 15, 2017 7 / 17



Hardware Accelerators Perspective – Embdded UVM

I Embedded UVM tests the point of deployment
I Allows System Level calls fromwithing a Testcase

I For example DUT config part of testcase can be replaced by loading of device driver!!

I Failing tests can be taken back to RTL for debug
I Software testing is often Opensource

© Accellera Systems Initiative September 15, 2017 8 / 17



Hardware Accelerators Perspective – Embdded UVM

I Embedded UVM tests the point of deployment
I Allows System Level calls fromwithing a Testcase

I For example DUT config part of testcase can be replaced by loading of device driver!!

I Failing tests can be taken back to RTL for debug
I Software testing is often Opensource

© Accellera Systems Initiative September 15, 2017 8 / 17



Hardware Accelerators Perspective – Embdded UVM

I Embedded UVM tests the point of deployment
I Allows System Level calls fromwithing a Testcase

I For example DUT config part of testcase can be replaced by loading of device driver!!

I Failing tests can be taken back to RTL for debug
I Software testing is often Opensource

© Accellera Systems Initiative September 15, 2017 8 / 17



Hardware Accelerators Perspective – Embdded UVM

I Embedded UVM tests the point of deployment
I Allows System Level calls fromwithing a Testcase

I For example DUT config part of testcase can be replaced by loading of device driver!!

I Failing tests can be taken back to RTL for debug
I Software testing is often Opensource

© Accellera Systems Initiative September 15, 2017 8 / 17



Hardware Accelerators Perspective – Embdded UVM

I Embedded UVM tests the point of deployment
I Allows System Level calls fromwithing a Testcase

I For example DUT config part of testcase can be replaced by loading of device driver!!

I Failing tests can be taken back to RTL for debug
I Software testing is often Opensource

© Accellera Systems Initiative September 15, 2017 8 / 17



Emulation – Look Ma no SCE-MI

I Low cost, Easy to setup emulation for
Small Designs

I Xilinx Zynq - PARALLELLA BOARD (USD
99)

I Intel Cyclone-V - DE10 NANO BOARD
(USD 130)

© Accellera Systems Initiative September 15, 2017 9 / 17



Emulation – Look Ma no SCE-MI

I Low cost, Easy to setup emulation for
Small Designs

I Xilinx Zynq - PARALLELLA BOARD (USD
99)

I Intel Cyclone-V - DE10 NANO BOARD
(USD 130)

© Accellera Systems Initiative September 15, 2017 9 / 17



Emulation – Look Ma no SCE-MI

I Low cost, Easy to setup emulation for
Small Designs

I Xilinx Zynq - PARALLELLA BOARD (USD
99)

I Intel Cyclone-V - DE10 NANO BOARD
(USD 130)

© Accellera Systems Initiative September 15, 2017 9 / 17



Debug – Back to RTL
I UVM that embeds into…

I Verilog simulators via DPI and PLI
I VHDL simulators via FLI and VHPI
I SystemC simulator

I Provides same stimulus for all the DUT simulators
I And runs parallel to the DUT simulation

© Accellera Systems Initiative September 15, 2017 10 / 17



Debug – Back to RTL
I UVM that embeds into…

I Verilog simulators via DPI and PLI
I VHDL simulators via FLI and VHPI
I SystemC simulator

I Provides same stimulus for all the DUT simulators
I And runs parallel to the DUT simulation

© Accellera Systems Initiative September 15, 2017 10 / 17



Debug – Back to RTL
I UVM that embeds into…

I Verilog simulators via DPI and PLI
I VHDL simulators via FLI and VHPI
I SystemC simulator

I Provides same stimulus for all the DUT simulators
I And runs parallel to the DUT simulation

© Accellera Systems Initiative September 15, 2017 10 / 17



Debug – Back to RTL
I UVM that embeds into…

I Verilog simulators via DPI and PLI
I VHDL simulators via FLI and VHPI
I SystemC simulator

I Provides same stimulus for all the DUT simulators
I And runs parallel to the DUT simulation

© Accellera Systems Initiative September 15, 2017 10 / 17



Multicore Simulations

I The Free Lunch is over
I The numbers of cores in server processors are

projected to grow to hundreds in next 5 years
I Possible to partition RTL structurally because all

variables are statically allocated
I No such automatic partioning possible for the

dynamically allocated testbench
I Contemporary Verification Languages do not

support parallel programming for behavioral code

© Accellera Systems Initiative September 15, 2017 11 / 17



Embedded UVM is Thread Safe

Design Under Verification (DUV)

uvm_component

uvm objection
mechanism

uvm config
object

uvm_agent

uvm phase
mechanism

uvm_env

uvm_test

sc
or

eb
oa

rd
co

ve
ra

ge

shared objects shared testbench
components

I Embedded UVM takes advantage of the fact that
there is minimal interaction between different
uvm_agents

I UVM constructs (like uvm_objection), that are
shared between the components, are synchronized
in the UVM base library implementation

I Abstraction ParContextmanages parallelization
I In Embedded UVM, a uvm_component

implements ParContext

© Accellera Systems Initiative September 15, 2017 12 / 17



Embedded UVM is Thread Safe

Design Under Verification (DUV)

uvm_component

uvm objection
mechanism

uvm config
object

uvm_agent

uvm phase
mechanism

uvm_env

uvm_test

sc
or

eb
oa

rd
co

ve
ra

ge

shared objects shared testbench
components

I Embedded UVM takes advantage of the fact that
there is minimal interaction between different
uvm_agents

I UVM constructs (like uvm_objection), that are
shared between the components, are synchronized
in the UVM base library implementation

I Abstraction ParContextmanages parallelization
I In Embedded UVM, a uvm_component

implements ParContext

© Accellera Systems Initiative September 15, 2017 12 / 17



Embedded UVM is Thread Safe

Design Under Verification (DUV)

uvm_component

uvm objection
mechanism

uvm config
object

uvm_agent

uvm phase
mechanism

uvm_env

uvm_test

sc
or

eb
oa

rd
co

ve
ra

ge

shared objects shared testbench
components

I Embedded UVM takes advantage of the fact that
there is minimal interaction between different
uvm_agents

I UVM constructs (like uvm_objection), that are
shared between the components, are synchronized
in the UVM base library implementation

I Abstraction ParContextmanages parallelization
I In Embedded UVM, a uvm_component

implements ParContext

© Accellera Systems Initiative September 15, 2017 12 / 17



And More…

I SystemVerilog like Verification Features…
I Garbage Collaction
I Constrained Randomization
I Functional Coverage
I Complete port of UVM including Reg package

I Natively compiled (into .so/ELF executable)
I Multicore Enabled
I Multi-simulator andmulti uvm_root
I Completely Free and Opensource

class Foo: uvm_object {
mixin uvm_object_utils;
@rand!8 byte[] foo;
@rand Logic!12 baz;

}
class Bar: Foo {

mixin uvm_object_utils;
@rand ubyte[8] bar;
Constraint! q{
foo.length > 2; // array
baz[0..8] == 16;

} cstFooLength;
Constraint! q{
foreach(i, f; bar) f <= i;
foreach(i, f; foo) {

if(i > 4) /*condition*/
f + i < 32 && f > 16;

}
} cstFoo;

}
void main() {

© Accellera Systems Initiative September 15, 2017 13 / 17



The Opensource Perspective
I Opensource hardware is fast becoming a platform of choice

for many IoT developers
I Typical opensource development flow requires

test/verification on the cloud
I Embedded UVM is 100% Opensource

© Accellera Systems Initiative September 15, 2017 14 / 17



Usecase 1 – SoCFPGA Emulation/Verification

I SHA3 hardware accelerator verification on
SoCFPGA and with Icarus..

I Hardware/Software Coverification
I Do it Yourself – Step-by-step instructions

on http://embeddeduvm.com
I Buy a parallella from https:
//www.parallella.org/buy/

I Or a de10-nano from
http://de10-nano.terasic.com

I Fork me on Github

// start with reset
volatileStore(regs + 3, 0);
auto data = req.phrase;
for (size_t i=0; i!=data.length/4; ++i) {
uint word = 0;
for (size_t j=0; j!=4; ++j) {
word += (cast(uint) data[4*i+j])
<< ((3-j) * 8);

}
volatileStore(regs, word);

}
// last byte_num
uint m = cast(uint) (data.length % 4);
volatileStore(regs + 1, m);
// last
uint word = 0;
for (size_t j=0; j!=m; ++j) {
word += (cast(uint) data[(data.length/4)*4 + j])
<< ((3-j) * 8);

}
volatileStore(regs, word);

© Accellera Systems Initiative September 15, 2017 15 / 17

https://www.parallella.org/buy/
https://www.parallella.org/buy/
http://de10-nano.terasic.com


Usecase 2 – Software Driven Verification

I QEMU is fast becoming the platform of choice for
embedded software development and test

I A convenient way to exchange data with QEMU is
via shared file descriptors

I Embdded UVM directly taps a file descriptor and
feeds the transaction to simulation

I Data coming out of DUT is reverse fed into QEMU

Hardware DUT
Simulation

So
�w

ar
e 

St
ac

k 
Ru

nn
in

g 
on

 Q
EM

U
 G

ue
st

Vlang Ethernet
Verification IP

HOST MACHINE

Et
he

rn
et

Ethernet

Vlang Avalon MM
Verification IP

H
AL

 L
ay

er

© Accellera Systems Initiative September 15, 2017 16 / 17



Questions?

© Accellera Systems Initiative September 15, 2017 17 / 17


