
Efficient use of Virtual Prototypes in HW/SW
Development and Verification

Rocco Jonack, MINRES® Technologies GmbH
Eyck Jentzsch, MINRES® Technologies GmbH

© Accellera Systems Initiative 1

Agenda
• Virtual prototype by example
• VP use in HW Development
• VP use in SW Development

© Accellera Systems Initiative 2

VIRTUAL PROTOTYPE BY EXAMPLE
Eyck Jentzsch

© Accellera Systems Initiative 3

Motivation
• Usage of VP is beneficial as part of cyber-physical systems (CPS)
• CPS– mixture HW, SW running on that HW and the surrounding system

consisting of sensors and actors interacting with environment
• Useful for automotive, medical, (I)IoT but also others
• VPs allow flexible and early prototyping
• This tutorial aims to illustrate these statements

© Accellera Systems Initiative 4

Overview
• The Virtual Prototype shown implements a Brushless-DC (BLDC) motor

control
• As such it contains analog and digital components interacting with each

other
• There are 2 flavors of the VP:

– a pure digital model solely using SystemC
– a analog/mixed signal (AMS) model using SystemC/AMS

© Accellera Systems Initiative 5

Structure of the Platform

© Accellera Systems Initiative 6

The model consists of
• Motor & load model
• ADC, H-Bridge
• Microcontroller

– Peripherals
– Interconnect
– RISC-V ISS

system environment/test bench

6
Wrapper

RISC-V ISS

UARTUART GPIO PWM SPI RAM PLIC

HiFive1

H-Bridge ADC

System components
• BLDC Motor model

– Ordinary Differential Equation (ODE)
model solved using Runge-Kutta
method with fixed step width

• H-Bridge
– simplified Switch Model

• Analog Digital Converter (ADC)
– 8-channel 10bit ADC with SPI Interface
– equivalent to MCP3008

• HiFive1 microcontroller platform

© Accellera Systems Initiative 7

system environment/test bench

7

H-Bridge ADC

HiFive1

HiFive1 Platform components
• Peripherals

– register accurate
– functionality and timing implemented as

needed

• Interconnect
– loosely-timed router

• Wrapper
– SystemC Wrapper containing pure C++

based ISS of RISC-V

© Accellera Systems Initiative 8

8
Wrapper

ISS

UARTUART GPIO PWM SPI RAM PLIC

HiFive1

RISC-V – Some Background
• HiFive1 is the first incarnation of the RISC-V Instruction Set Architecture

– developed by SiFive, a company established by the creators of the RISC-V ISA
– implements the RV32 base instruction set (I) together with the M (Integer

multiplication) and C (compressed instructions) extensions
– There are ports of the design to Xilinx Artix chips

• RISC-V ISA is open source (governed by the RISC-V foundation) and
there are plenty of open- and closed-source IPs and tool chains

• Further information can be found at https://riscv.org/

© Accellera Systems Initiative 9

https://riscv.org/

RISC-V – Some Background
• There are several ISS available. e.g

– Spike – the reference simulator but too slow for SW development
– QEmu – very fast DBT based ISS but GNU license restrictions limit commercial use
– RV8 – DBT based full-system ISS, difficult to tailor to ISA modifications, limited

debugging capabilities

© Accellera Systems Initiative 10

DBT-RISE based RISC-V ISS
• Alternative: DBT-RISE-RISCV

– BSD licensed open-source
– fast ISS (suitable for SW development)
– easy to extend and tailor to ISA combinations and extensions
– easy to integrate into SystemC simulations

• builds on DBT-RISE, an infrastructure and library for rapid
implementation of DBT based instruction set simulators

© Accellera Systems Initiative 11

DBT-RISE-RISCV ISS
• ‘full-system’ simulator based on

DBT-RISE
• uses dynamic binary translation

to achieve high simulation speed
• instruction accurate with cycle

estimation

© Accellera Systems Initiative 12

SystemC Wrapper

RV32
IMAC
VM

RV32
IMAC

VM

AD
AP

TE
R

GD
B

AD
AP

TE
R

SE
RV

ER

ARCH

• generated out of a DSL describing the machine instructions
– fast turn-around times when changing/extending the ISA
– well suited for HW/SW co-design & exploration

DBT-RISE based Implementation Flow

© Accellera Systems Initiative

13

UART

VM

AD
AP

TE
R

GD
B

Ad
ap

te
r

SE
RV

ER

ARCH

UART GPIO SPI PWM RAM

system environment/test bench

PLIC

HiFive1

Target specific C++
RV32IMAC: ~ 1.5k LOC

Generated C++
RV32IMAC: ~ 6k LOC

Core Specification

SystemC Platform
Model

DBT-RISE ISS

DBT-RISE
~ 5k LOC

Core DSL
RISC-V: ~ 500 LOC

Platform Spec.

Implementation details
• SystemC Configuration and Control Interface used to configure the

entire design
• Transaction tracing using SystemC Verification Library (SCV)
• Modeling blocks taken from SystemC Components library (SCC) available

at https://git.minres.com/SystemC/SystemC-Components
• Register implementation generated from SystemRDL description
• Source available at https://git.minres.com/DVCon2018

© Accellera Systems Initiative 14

https://git.minres.com/SystemC/SystemC-Components
https://git.minres.com/DVCon2018

Demo

© Accellera Systems Initiative 15

VP USE IN HARDWARE DEVELOPMENT
Rocco Jonack

© Accellera Systems Initiative 16

Motivation
• VP model usage for hardware design

– Software driven testing
– Augmentation of HW tests with realistic stimulus
– Bridging gaps in model availability

• Different abstraction level imply different requirements
– Mixing abstraction levels is powerful
– Planning of reasonable use models is required

© Accellera Systems Initiative 17

Modeling abstractions
• Behavioral/untimed

– Used for algorithm modeling

• Functional/loosely timed (LT)
– Used for SW interaction, also called programmers view (PV)
– virtual prototyping (VP)

• Cycle-accurate/approximately timed (AT)
– Used for architectural modeling, also called architecture view (AV)

• Register-transfer-level
– Link into verification domain

© Accellera Systems Initiative 18

Functional/loosely timed (LT)

• The loosely timed model is a
structural and behavioral refinement
of the functional model.

• Mapping of functional blocks to HW
and SW components and
communication interfaces in-between
based on a chosen architecture

• Subsystems can execute ‘ahead-of-
time’

© Accellera Systems Initiative 19

CPU
ACCEL

OS+SW

MEM I/O

Cycle-accurate/approximately timed (AT)

• Approximated timing on bus
communication and on hardware
resource access
– Interface communication time
– Average processing time in hardware IP

• Transactions are broken down into a
number of phases corresponding
much more closely to the phasing of
particular hardware protocols

© Accellera Systems Initiative 20

CPU
ACCEL

OS+SW

MEM I/O

Pin accurate models - RTL
• Pin accurate in SystemC

– Adapter between transactions and pin level
– RTL simulators support pin level interfaces for

standard types
– Requires typically usage of simulator provided

library versions and compilers
• Verification effort

– RTL models are typically more detailed and
require more attention to details

• Bridging multiple abstractions levels
introduces need for interpretation

© Accellera Systems Initiative 21

CPU
ACCEL

OS+SW

MEM

I/O

Integration environments for testing
• Standalone testing environments

– Easier analysis and debugging
• Lighter/faster environments

• Reuse of common transactors
– Using common components like TLM2 BFMs

and memories
• Productivity libraries

• Links to tools and open source projects
– C based environment allows easy integration

22

DUT RTL

© Accellera Systems Initiative

DUT AT

TB TB

RTL components integrated into example system I

• Replacing some components
with RTL through TLM2pin
adapters
– Mix allows stepwise refinement

of prototype

23© Accellera Systems Initiative

system environment/test bench

23
Wrapper

RISC-V ISS

UARTUART GPIO PWM SPI RAM PLIC

HiFive1

H-Bridge ADC

RTL components integrated into example system II

• Replacing some components
with RTL through TLM2pin
adapters
– Mix allows stepwise refinement

of prototype

24© Accellera Systems Initiative

system environment/test bench

24
Wrapper

RISC-V ISS

UARTUART GPIO PWM
SPI RAM

PLIC

HiFive1

H-Bridge ADC

Demo

© Accellera Systems Initiative 25

Recommendations
• Use common interfaces for bridging between abstraction levels

– Preferably well known and standardized interface like AMBA, OCP
• Use libraries of common components

– Productivity libraries decrease turnaround time
– Tools often contain useful components but also imply specific infrastructure

• Planning and testing of components
– Functionality requirements
– Speed requirements
– Debugging and analysis

• Dynamic switching between abstraction levels is very powerful

© Accellera Systems Initiative 26

Architectural exploration & performance analysis
• Mapping of a behavioral model to one or

more points in the architectural space
consisting of different HW
implementations

• Evaluation based on performance
characteristics for different system
architectures, such as a HW/SW split,
communication system, or system
components

• Typical use case for platform authors
• Important properties: accuracy wrt. to

performance metrics i.e. timing, latency,
throughput, power

© Accellera Systems Initiative 27

Tool Flow

Exploration
use case performance

SynthesisP&R

Timing

traffic
scenario

Floorplan Estimation
routing
congestion

Structure
RTL, SystemC
IP-XACT
scripts / constraints

Specification
sockets
domains
memory map

Architecture
switch topology, QoS
buffers, serialization,
pipe stages

floorplan
outline

Verification
testbench
tests

area
estimate

28© Accellera Systems Initiative

AT Simulation

29

NoC
Model

Traffic
Scenario

© Accellera Systems Initiative

RTL Simulation

© Accellera Systems Initiative

RTL

Traffic
Scenario

• Running RTL model provides full signal access
• Reuse of traffic scenarios

Recommendations
• (re-)using a VP for different purposes needs careful planning
• critical components need to provide the important information and

accuracy
• component in different representations need to be compatible wrt. to

communication, build settings etc.

© Accellera Systems Initiative 31

VP USE IN SOFTWARE DEVELOPMENT
Eyck Jentzsch

© Accellera Systems Initiative 32

Test-Lab vs. VP

© Accellera Systems Initiative 33

Test-Lab vs. VP
• A classical Test-Lab uses Hardware-in-the-loop (HiL)

– HiL requires expensive Test-Equipment and space
– Bring-up of the lab setup is usually time consuming

• Virtual Prototype is a simulation providing FW a runtime environment
– Test-Suites don’t need much space, just a work station or compute server
– Test-Suites can be scaled easily by adding compute power
– Simulations are reproducible
– internal states can easily be traced
– Environment can be stressed easily
– Simulation can be executed virtually “anywhere”

© Accellera Systems Initiative 34

Anatomy of a VP Test Suite

© Accellera Systems Initiative 35

Hardware (VP)

Firmware

Environment
(VP test bench)

Test Case

Tool-Chain
(i.e. Docker,
LXC, LXD)

Test Suite

Anatomy of a VP Test Suite
• A Test-Suite works as follows:

– Fetch the source code repositories
– Start Container containing stable

and host-independent tool-chain
– Build Firmware
– Build VP
– Build Environment/test-bench
– Run the test case(s)
– Evaluate test case execution and

collect results

© Accellera Systems Initiative 36

Source: https://stefanprodan.com/2016/continuous-integration-with-jenkins-and-disposable-containers/

Integration-Aspects
• Tool-Chain (i.e. Third-Party libs, Compiler version) can be switched back

and forth (i.e. by using different container images)
• Run different FW-Versions on same HW (VP)
• Run same FW-Version on different HW (VPs)
• Failing tests are always reproducible and (i.e. in a Debug-Session on

developers computer)
• Internal states can be traced (VCD, Trace- and Log-Files)

© Accellera Systems Initiative 37

Short Demo

© Accellera Systems Initiative 38

Stressing the Environment
• The VP-Environment is a just a model as well
• A virtual environment can stress your system beyond reality
• Loads can be applied arbitrarily
• Stress the environment (VP-)Model to push FW into corner cases
• Whenever a random scenario causes a failure, the scenario can be

reproduced

© Accellera Systems Initiative 39

Code-Coverage
• An embedded system doesn’t give users much insight into the system

(e.g. CPU states, program counters)
• therefore coverage collection is difficult
• VP-Simulations support Code- and (in some cases) Branch-Coverage

collection
• Contributors (Test-Cases) to overall Code-Coverage can be identified to

streamline testing

© Accellera Systems Initiative 40

Continuous Integration
• A VP-Test-Suite can easily be combined with Git/Gerrit

– Run selected VP-Tests upon every FW-Code-Commit e.g. highest contributors to
code coverage

– Run full VP-Test-Suite over night
– Generate FW-Releases e.g. ‘nightlies’

• Ensures to have stable working mainline
• Combined with a FW test plan it allows to monitor implementation

progress

© Accellera Systems Initiative 41

Benefits of using VP based SW development
• Each SW change is tested before propagating to the main line of

development
• Allows close monitoring of the eSW development progress
• effort of VP development pays off esp. when consistently used in SW

development even after the availability of the HW
• Maximum benefits in situations where one software system addresses

multiple hardware variants in different system contexts

© Accellera Systems Initiative 42

Questions

© Accellera Systems Initiative 43

	Efficient use of Virtual Prototypes in HW/SW Development and Verification
	Agenda
	Virtual prototype by example
	Motivation
	Overview
	Structure of the Platform
	System components
	HiFive1 Platform components
	RISC-V – Some Background
	RISC-V – Some Background
	DBT-RISE based RISC-V ISS
	DBT-RISE-RISCV ISS
	DBT-RISE based Implementation Flow
	Implementation details
	Demo
	VP use in Hardware development
	Motivation
	Modeling abstractions
	Functional/loosely timed (LT)
	Cycle-accurate/approximately timed (AT)
	Pin accurate models - RTL
	Integration environments for testing
	RTL components integrated into example system I
	RTL components integrated into example system II
	Demo
	Recommendations
	Architectural exploration & performance analysis
	 Tool Flow
	AT Simulation
	RTL Simulation
	Recommendations
	VP use in Software development
	Test-Lab vs. VP
	Test-Lab vs. VP
	Anatomy of a VP Test Suite
	Anatomy of a VP Test Suite
	Integration-Aspects
	Short Demo
	Stressing the Environment
	Code-Coverage
	Continuous Integration
	Benefits of using VP based SW development
	Questions

