

Efficient Regression Management with Smart

Data Mining Technique

Tejbal Prasad
Cadence Design Systems

Abstract- With the increasing complexity of design, every design has multiple modes and features. Efficient regression

management is the key to project execution & success. The verification team's biggest effort goes into making sure that the
existing status remains intact while making progress on the new features. On top of that at any point in time, there will be known
failures such as TB issues, known design & VIP bugs, etc. Filtering these known failures to focus on the real issues is a
cumbersome job, often done manually. Knowing the holistic status of the project is a very challenging task across different
modes & features on a day-to-day basis. One needs an automated way to replicate top category unique failures after filtering
known issues from the regression run on the cloud to local server. This paper talks about how smart data mining is done over the
vManager regression data with Python/Jenkins script is helping us overcome these problems. The first part talks about how

changes done in VSIF are solving the daily regression triage problem. The second part talks about how a python script does data
mining and filters out all the known failures in an efficient manner. The third part talks about how we are making use of the data
mining script and its extensions to auto-rerun top category failures. It shows the author's experience and its deployment in a
multimillion gate IP to successfully converge on the verification signoff.

 Keywords— IP, SoC, Regression, vManager, Jenkins

I. INTRODUCTION

Efficient regression management is the key to project execution & success in today’s era. As the design’s

complexity is growing every year, verification complexity is growing exponentially. Verification team need to stress

the design with positive, negative & error scenarios while testing all the features and modes of the design.

In regression management following are main problems.

• Holistic Status of Project: Design undergoes multiple fixes every day and we don’t know how those fixes

are going to impact other feature and modes of the design. And knowing the holistic status of project with

respect to different features across each mode is a challenging task.

• Known Issue Tracking: To focus on the new failures, one needs to filter out the existing known issues.

Management of known issues/failures and filtering it out from regression status is another cumbersome

task.

• Auto Failure Re-Creation: After filtering out the known issues, replication of failures with additional debug

info is a manual job, which should be automated to speed up the verification process.

Holistic Status of Project

Known Issue Filtering

Auto Failure
Recreation

&
Debug

Smartly Structured VSIF

Regression

Known Issue Tracking(KIT)
& Auto Filtering

Failure 1 Failure 2 Failure N

Debug Debug Debug

Figure 1: Proposed Solution

This paper reflects our project experience where we solved these problems and automated the flow using vManager,

Python & Jenkins scripts. Figure 1 shows the proposed solution.

II. HOLISTIC STATUS OF PROJECT

Various features of the design and presence of various modes of the design where all features of the design

should be exercised makes the status tracking process cumbersome. Often there’s a confusion on whether some

feature “Fi” is verified in one of the modes “Mj” or not and what is its status in current regression. Normally to get

this information we depend on functional coverage database, or we rely on the expertise of the individual engineers

working on it. While the project is in development phase where only some features/modes are enabled, getting the

latest and greatest information from coverage database is not practical as coverage enabled database takes a longer

run time compared to non-coverage enabled runs and also it requires lot of area for dumping coverage information.

This paper talks about how smart structuring was done in regression setup to overcome this problem. This enables us

to extract the overall health of the design for each feature in every mode just by looking at the regression result.

We used the features provided by vManager to efficiently resolve this. In vManager regression flow we use VSIF

which has session and can have one or multiple groups. Each group contain one or multiple tests.

We came up with a strategy of using above feature in a manner that we get a cross of feature with mode. We made

these changes in the environment.

i. Random Test: Each test targets a feature (“Fi”) of the design and is agnostic of the Mode of the design. In

vManager we have Test Args and Test Name which can be different for different test. Using this we track

each feature of the design.

ii. Random Test List: All the random Test are added in the Random Test List. This ensures that when we use

this random test list all the features are getting verified.

iii. Regression: In regression inside session, we have multiple groups. Same Random Test List is called inside

each group. Each group corresponds to a Mode (“Mj”) of the design. We pass high level control knob

which is different in each group. In vManager we have group_args which is used for passing this control

knob.

After doing all above changes we get the regression result where we get the per mode regression view as well as per

feature view inside every mode. When a feature is failing in all the modes would indicate that this feature needs

verification attention. Whereas when pass percentage of certain mode is down that implies that this specific mode of

the design is broken. Now just the regression status across different modes and features gives the holistic status of

the design so we don’t really need a coverage enabled regression on day-to-day basis.

Figure 2: Snippet of regression result across modes

As shown is Figure 2 each group represent one of the major modes (Mj) of the design. So here just by looking at the

regression result one can figure out which all modes require verification attention. Like in the current case

“cxl_fpga_mode_1” & “cxl_fpga_mode_2” need more attention, as pass percentage in these modes are less

compared to other modes. Similarly, we get a view of all the modes.

Figure 3: Snippet of regression result across function in each mode

Figure 3 shows per feature (“Fi”) view where each test represents a design feature. Same Test List is called inside

each group so, which means every feature is getting tested in each mode. When same test is failing in multiple

modes which implies that this feature requires verification attention.

With this anyone can get to know the holistic status of the design just by looking at regression status. We have

achieved this using the vManager tool and a similar setup can be done in any other regression management tool.

III. SMART DATA MINING: KNOWN ISSUE TRACKER(KIT)

At any point of the verification cycle there will be known failures in regression. The known failures could be

because of incomplete design feature/TB checker, known Design/VIP bugs etc. Efficient management of these

failures and filtering out these failures from the current regression to focus on the new/unknown failures is very

important.

Usually, these failures are managed manually, which is cumbersome, error prone and time-consuming process.

We solved this problem using a smart data mining technique by developing Python and Jenkin script (Known Issue

Tracker/KIT script)

• It is tightly integrated with vManger

• It filters out the known failures from the regression result

• It is called after regression run in Jenkins setup

• Automatically it populates all the information after regression is over

It eliminates all the manual intervention that is usually required and gives us the new failures signature sorted with

the order failure impact.

Structured Known issue list: As we are taking about know issue tracking so we will have to maintain a known

issue list. To support automation, we defined a structure so that scripts can parse it. We also added features so that

we will not have to enter the same signature again and again, while having a provision to capture the signatures

which are applicable for a specific feature and/or mode.

TEST_NAME GRP_N

AME

TEST_

STATU

S

RUN_D

IR

FIRST_FAILURE_DESC ANALYSIS

1 alltraffic_link_flr_test

_wo_traffic

ALL FAIL run_368

6

inconsistent_internal_data_structure_in_pcie

cfg.cpp_24626_pc

VIPSR_554

4331

2 alltraffic_linkdown_te

st_with_traffic

ALL FAIL run_369

2

Tried_to_decrement_the_passive_credit_cou

nt_on_channel

VIPSR_120

0001

3 ALL ALL FAIL run_2 TX__FATAL_MalformedTlp__TL_TLP_M

F_INVALID_TAGSCAL

JIRA_CXL1

234

4 ALL cxl FAIL run_125 TX__NONFATAL_UnsupportedRequest__

TL_TLP_USERTAG_2__

VIPSR_465

32491

5 loopback ALL FAIL run_286 cfg_0_0____TL_CFG_UNKQID_4__ TB_ISSUE_

LOOPB

6 ALL ALL FAIL run_194

5

PL_SRIS_SKP_TX_NONE__ VIPSR_11

Table 1: Structured Known issue format

Table 1 shows Structured Known issue format. We have these columns in this CSV file:

• 1st column is just an index.

• 2nd column is Test Name (TEST_NAME): Name of the test that is expected to fail due to a known reason.

• 3rd column is the Group Name (GRP_NAME): Name of the Group where test is expected to fail due to a

known reason

• 4th column is run_dir, this is ignored by this script. These are used in Failure Auto replication, so we have

kept them here.

• 5th column is the test status, this is also ignored by this script. These are again used in Failure Auto

replication.

• 6th column is the First failure description (FIRST_FAILURE_DESC)

o This is the 1st failure signature which will be looked while processing any new regression result.

• 7th column captures the analysis (ANALYSIS) that user has done against each failure signature.

• Every row corresponds to one known failure entry.

o We capture each known failure signature with Test Name (TEST_NAME), Group Name

(GRP_NAME) and First Failure Signature Description (FIRST_FAILURE_DESC).

TEST_NAME GRP_NAME

1 alltraffic_link_flr_test_wo_traffic ALL

2 alltraffic_linkdown_test_with_traffic ALL

3 ALL ALL

4 ALL cxl

5 loopback ALL

6 ALL ALL

Table 2: Handling Generic Failure

Handling Generic failures: While capturing the known failure signatures we have added provisions for handling

generic failures. This helps in reducing the number of failure signatures that we must maintain.

• If a failure is independent of the test name, in that case in place of the Test Name we use “ALL”

• Similarly, if a signature is independent of the group name, in place of the Group Name we again use “ALL”

• Partial Substring Matching is enabled in Test Name, Group Name and First Failure description.

o In place of test name “pl_loopback_test_wo_traffic” and “pl_loopback_with_traffic” we can

use “loopback”

o In place of “cfg_0_0____PL_SRIS_SKP_TX_NONE__” and

“cfg_1_2____PL_SRIS_SKP_TX_NONE__” we can use “PL_SRIS_SKP_TX_NONE” in

FIRST_FAILURE_DESC

Known Issue Tracker (KIT) Script: It’s a python script that auto populate the known failure after vManager

regression is over. These are the inputs needed to run KIT script.

• Existing Failure Analysis Table in CSV format like it was shown in Table 1.

• Session Directory Path

• Output Directory Path (Optional)

Steps done by the KIT script.

• It parses the entire regression and captures the status of the regression in CSV file, where is captures Test

Name, Group Name, Test Status & First Failure signature for each run in the regression.

• Then for each failing test it checks the First Failure Signature with the existing failure table. It will match

the Test Name, Group Name and First Failure Signature. All the Generic Failure matching that we

described are checked here while matching the error signature.

• If a Match is found it updates Analysis content from the existing Failure Table.

• If no match is found in the existing table, then it will be updated as “NEW_FAILURE”.

• As a result, it dumps out the failure signature table in different flavor after filtering and populating the

known failures.

• All the results are sorted in the order of impact, the failure signature that is causing the maximum number

of failures is at the top.

Output of the Script: As shown in figure 4, KIT generates report in multiple formats.

• *L0* is for Level 0 report sorted with failure count wrt just failure signature

• *L1* is for Level 1 report sorted with test name and failure signature

• *L2* is for Level 2 report sorted with test name, Group Name and failure signature

• Similarly, N0, N1 & N2 reports are for the same granularity after filtering the known failures.

Figure 4: KIT output reports

As shown in Figure 5, Level 0 (L0.html) report will contain the updated status with prefilled existing analysis & it

will be grouped only wrt First Failure description. This gives an overall picture about which failure signature is

causing major damage in the regression.

Figure 5: Level 0 Combined view

As shown in Figure 6, Level 1 (L1.html) report – Adds Test Name while generating & sorting the report. At times

knowing the test name that is mostly failing gives a better picture of the problem. This report enables that.

Figure 6: Level 1 Combined view

As shown in Figure 7, Level 2 (L2.html) report – Adds Test Name & Group Name while generating & sorting the

report. At times while fixing bug for one mode causes failures in other mode. So having the group information helps

to analyze the report form this angle.

Figure 7: Level 2 Combined view

As shown in Figure 8, Level 0 (N0.html) report – This report is the filtered version of the L0 report. So, all the

known issues are filtered out, and only new failures are kept in this report sorted with respect failure impact.

Figure 8: Level 0 Filtered view

As shown in Figure 9, Level 1 (N1.html) report – This report is the filtered version of the L1 report. So, all the

known issues are filtered, and only new failures are kept in this report sorted with respect to most failing Failure

Signature & Test Name.

Figure 9: Level 1 Filtered view

As shown in Figure 10, Level 2 (N3.html) report – This report is the filtered version of the L2 report. So, all the

known issues are filtered, and only new failures are kept in this report sorted with respect to most failing Failure

Signature, Test Name & Group Name.

Figure 10: Level 2 Filtered view

IV. AUTO FAILURE RE-CREATION

A significant portion of the verification time goes in debug. Out of this debug time a good portion of the time is

spent in picking the right failure which will have biggest impact on regression pass percentage & then replicating
them with additional information’s needed for debug. KIT script helps us in picking the right failures that will have

the biggest impact. The next step is to replicate this in the standalone setup with waveform and additional debug

information enabled. Often individual have their own local changes or they are not on the same version on which the

regression is run. So, one need to ensure that he checks out the same version of databases and takes command line

from regression database and would add the additional arguments to enable waveform dumping. On top that now a

days the regressions are run on cloud where one might not have GUI access.

As a solution to this problem, we developed additional script to collect and copy below information from cloud to

local server.

• Run command of each failing test

• N0 report from KIT

• Design version information

At the local server side, we use the design information to get to the same design version and can pick top N (e.g. 10)

failures from the N0 report and recreate them with dump.

$: head status_full.N0.csv

,FIRST_FAILURE_DESC,ANALYSIS,Count

0,Assertion_cdn_pcie_hpa_top.u_dut_0.tb_wrap.u_dut_cdnpcie_lin,NEW_FAILURE,141

1,cfg_0_0__RX__NONFATAL_UnsupportedRequest__TL_TLP_vlRxPmDPkg_,NEW_FAILURE,5

2,Register__local_ep_model_h.PCIe_Link_0_local_ep_ip_cfg_ctrl_,NEW_FAILURE,4

3,cfg_0_0__TX__NONFATAL_UnsupportedRequest__TL_TLP_vlTxPmDPkg_,NEW_FAILURE,3

 After running the script this will run one failure of each type by matching the failure signature.

$: ls AUTO_RERUN/* -d

AUTO_RERUN/run_1816.exp_p_q_is_not_empty__size_1_

AUTO_RERUN/run_3742.Register__local_ep_model_h.PCIe_Link_0_local_ep_ip_reg_bank_

AUTO_RERUN/run_5497.Assertion_cdn_pcie_hpa_top.u_dut_0.tb_wrap.u_dut_cdnpcie_lin

AUTO_RERUN/run_5613.cfg_0_0__RX__NONFATAL_UnsupportedRequest__TL_TLP_vlRxPmDPkg_

Run Command inside each auto rerun carries the information about the test name, group name & Actual regression

log path

$: cat run_1816.exp_p_q_is_not_empty__size_1_/run_cmd

Regression PATH

: /s/scratch02/pcie/pciedip/hpa2_link_top_nightly_rundir/results/vmanager/hpa2_link_top_nightly.pciedip.22_0

3_01_04_31_00_8748/chain_0/run_1816/local_log.log

TEST NAME : pl_ptm_test

GRP NAME : default_hpa_hls_top_ep_128bit_regression_testlist

make -f $HPAMF TLBYPASS=1 UVM_VERBOSITY=UVM_DEBUG TEST=cdn_pcie_cxl_base_test

VM_SEED_MODE=1 SEED=989410900 COV=0 CONFIG=hpa2_ga_config CUSTOMER_CONFIG=default

TB_MODE=DUT_VIP run DUMP=1 TRACE=1 RAND_CFG=1 WITH_PHY=0 DONT_GEN_TB=0

CFG_POLICY=cdn_pcie_strap_128bit_random_policy REGR_RUN_ARGS=" +ALL_TRAFFIC=1

+STRAP_IS_RP=0 "

With the addition of this Auto failure regression setup. Now in place of assigning failure signature, we directly point

the waveform and log path of the failing scenario to the respective feature owners. This eliminates the failure

replication hassle and thereby speeds up the verification process.

V. APPLICATION

This framework is useful for any complex IP/Sub-system/SoC verification. It organizes the verification process

and automates the repetitive manual process very efficiently.

VI. RESULTS

We deployed this in PCIe/CXL verification environment. This being one of the most complicated IP with

multiple features and multiple mode was an ideal candidate for deploying this framework. In fact, we developed the

framework because we were not able to handle the regression status efficiently. There was a phase in the project

where everyone was struggling to figure out what is causing major drop in regression. After deploying all these,

things came in right order. Team was able to focus on the right feature set and modes of the design. Auto filtering of

known failures and auto-replication of top failure signature helped the team close the verification on time.

VII. CONCLUSIONS

Smartly Structured VSIF:

• Organizes the regression framework for daily Triage.

• Avoids missing a feature across various modes of the design

• One can see the health of each feature across various modes

KIT Script:

• This filters out the noise in the regression result automatically.

• As the filtering is done by the script so it no more manual, time consuming or error prone.

Auto Failure Rerun:

• This eases out the chores for each verification engineer

• Now instead of assigning a failure signature, one will get dump & log of failing scenario

• Increases the focus & productivity of the team

VIII. REFERENCES

[1] Shahid Ikram & Jim Ellis “Dynamic Regression Suite Generation Using Coverage-Based Clustering” DVCON 2017 [https://dvcon-
proceedings.org/wp-content/uploads/dynamic-regression-suite-generation-using-coverage-based-clustering-presentation.pdf]

[2] David Lacey & Ed Powell “Creating the Optimal Regression Farm Infrastructure That Meets All Your Team’s Simulation Requirements”

DVCON 2018 [https://dvcon-proceedings.org/wp-content/uploads/creating-the-optimal-regression-farm-infrastructure-that-meets-all-

your-teams-simulation-requirements.pdf]

https://dvcon-proceedings.org/wp-content/uploads/dynamic-regression-suite-generation-using-coverage-based-clustering-presentation.pdf
https://dvcon-proceedings.org/wp-content/uploads/dynamic-regression-suite-generation-using-coverage-based-clustering-presentation.pdf
https://dvcon-proceedings.org/wp-content/uploads/creating-the-optimal-regression-farm-infrastructure-that-meets-all-your-teams-simulation-requirements.pdf
https://dvcon-proceedings.org/wp-content/uploads/creating-the-optimal-regression-farm-infrastructure-that-meets-all-your-teams-simulation-requirements.pdf

