2022

DESIGH AMND VERIFICATION ™

DV

CONMFEREMCE AND EXHIBITION

Efficient Regression Management with Smart
Data Mining Technique

Tejbal Prasad
Cadence Design Systems

Abstract- With the increasing complexity of design, every design has multiple modes and features. Efficient regression
management is the key to project execution & success. The verification team's biggest effort goes into making sure that the
existing status remains intact while making progress on the new features. On top of that at any point in time, there will be known
failures such as TB issues, known design & VIP bugs, etc. Filtering these known failures to focus on the real issues is a
cumbersome job, often done manually. Knowing the holistic status of the project is a very challenging task across different
modes & features on a day-to-day basis. One needs an automated way to replicate top category unique failures after filtering
known issues from the regression run on the cloud to local server. This paper talks about how smart data mining is done over the
vManager regression data with Python/Jenkins script is helping us overcome these problems. The first part talks about how
changes done in VSIF are solving the daily regression triage problem. The second part talks about how a python script does data
mining and filters out all the known failures in an efficient manner. The third part talks about how we are making use of the data
mining script and its extensions to auto-rerun top category failures. It shows the author's experience and its deployment in a
multimillion gate IP to successfully converge on the verification signoff.

Keywords— IP, SoC, Regression, vManager, Jenkins

I. INTRODUCTION

Efficient regression management is the key to project execution & success in today’s era. As the design’s
complexity is growing every year, verification complexity is growing exponentially. Verification team need to stress
the design with positive, negative & error scenarios while testing all the features and modes of the design.

In regression management following are main problems.

e Holistic Status of Project: Design undergoes multiple fixes every day and we don’t know how those fixes
are going to impact other feature and modes of the design. And knowing the holistic status of project with
respect to different features across each mode is a challenging task.

e Known Issue Tracking: To focus on the new failures, one needs to filter out the existing known issues.
Management of known issues/failures and filtering it out from regression status is another cumbersome
task.

e Auto Failure Re-Creation: After filtering out the known issues, replication of failures with additional debug
info is a manual job, which should be automated to speed up the verification process.

2022

DESIGH AMND VERIFICATION ™

DV

CONFEREMNCE AND EXHIBITION

Smartly Structured VSIF

Holistic Status of Project l

Regression

J

Known Issue Tracking(KIT)

Known Issue Filtering & Auto Filtering
Auto Failure Failure 1 Failure 2 Failure N
Recreation
&
Debug
Debug Debug Debug

Figure 1: Proposed Solution

This paper reflects our project experience where we solved these problems and automated the flow using vManager,
Python & Jenkins scripts. Figure 1 shows the proposed solution.

Il. HoLISTIC STATUS OF PROJECT

Various features of the design and presence of various modes of the design where all features of the design
should be exercised makes the status tracking process cumbersome. Often there’s a confusion on whether some
feature “Fi” is verified in one of the modes “Mj” or not and what is its status in current regression. Normally to get
this information we depend on functional coverage database, or we rely on the expertise of the individual engineers
working on it. While the project is in development phase where only some features/modes are enabled, getting the
latest and greatest information from coverage database is not practical as coverage enabled database takes a longer
run time compared to non-coverage enabled runs and also it requires lot of area for dumping coverage information.

This paper talks about how smart structuring was done in regression setup to overcome this problem. This enables us
to extract the overall health of the design for each feature in every mode just by looking at the regression result.

We used the features provided by vManager to efficiently resolve this. In vManager regression flow we use VSIF
which has session and can have one or multiple groups. Each group contain one or multiple tests.

We came up with a strategy of using above feature in a manner that we get a cross of feature with mode. We made
these changes in the environment.

2022

DESIGH AMD WERIFICATION ™

DVCON

COMNFEREMCE AMD EXHIBITION

i Random Test: Each test targets a feature (“Fi”) of the design and is agnostic of the Mode of the design. In
vManager we have Test Args and Test Name which can be different for different test. Using this we track
each feature of the design.

ii. Random Test List: All the random Test are added in the Random Test List. This ensures that when we use
this random test list all the features are getting verified.

iii. Regression: In regression inside session, we have multiple groups. Same Random Test List is called inside
each group. Each group corresponds to a Mode (“Mj”) of the design. We pass high level control knob
which is different in each group. In vManager we have group_args which is used for passing this control
knob.

After doing all above changes we get the regression result where we get the per mode regression view as well as per
feature view inside every mode. When a feature is failing in all the modes would indicate that this feature needs
verification attention. Whereas when pass percentage of certain mode is down that implies that this specific mode of
the design is broken. Now just the regression status across different modes and features gives the holistic status of
the design so we don’t really need a coverage enabled regression on day-to-day basis.

g Tess Hiesarch s

Name Test Status Overall Covered Overall Average Gr
« = Test-Case Model = 89.06% 13496 / 15154 (89.06%) w; 87.97%
« - default D} 89.06% 13496 / 15154 (89.06%) m 87.97%

» m default_hpa_his_top_ep_512bit_regression_testlist] 96.82% 1186/ 1225 (96.82%) o 96.88%

» mdefault_hpa_his_top_rp_512bit_regression_testlist Bl 97.77% 10957 1120(97.77%) = 97.86%

» mdefault_hpa_his_top_ep_128bit_regression_testlist B 07.4% 599 /615 (97.4%) = 97.33%

+ m default_hpa_his_top_rp_128bit_regression_testlist B 97.86% 548 / 560 (97.86%) s 97.82% !

» m default_hpa_his_top_ep_256bit_regression_testlist B 96.26% 592 /615 (96.26%) s 96.69%

» mdefault_hpa_his_top_rp_256bit_regression_testlist] 98.04% 549 / 560 (98.04%) = 97.96%

» mdefault_CXL_512_EP g 95-16% 1161 /1220 (95.16%) e 95.25%

» o default_CXL_512_RP D 95.18% 1047 7 1100 (95.18%) m 94.78%

» o default_cxl_fpga_mode_1 Bl 60% 127 20 (60%) == 60%

» » default_cxl_fpga_mode_2 R 60% 12/ 20 (60%) == 60%

» o default_CXL_256_EP :l 89.42% 541 7/ 605 (89.42%) s 89.07%

» o default_CXL_256_RP B 95.64% 526 / 550 (95.64%) s 95.65%

» mdefault_CXL_128_EP B 89.09% 539/ 605 (89.09%) == 90.09%
@ wuom W Text-Cave Mode -~

Figure 2: Snippet of regression result across modes

As shown is Figure 2 each group represent one of the major modes (Mj) of the design. So here just by looking at the
regression result one can figure out which all modes require verification attention. Like in the current case
“cxl_fpga_mode_1” & “cxl_fpga_mode_2” need more attention, as pass percentage in these modes are less
compared to other modes. Similarly, we get a view of all the modes.

2022

DESIGH AMD WERIFICATION ™

DVCON

COMNFEREMCE AMD EXHIBITION

Name Test Status Overall Covered Overall Average Gr
« « Test-Case Model =] 89.06% 13496 / 15154 (89.06%) = 87.97%
« -« default :ﬂ 89.06% 13496 / 15154 (89.06%) = 87.97%
« mdefault_hpa_hls_top_ep_512bit_regression_testlist B 96.82% 1186/ 1225 (96.82%) = 96.88%
7 Cor_ecc_test B 95% 197 20 (95%) = 95%
3 uncor_ecc_test) 100% 20/ 20 (100%) 100%
base_test = 100% 20/ 20 (100%) 100%
2 sanity_traffic_test] 100% 20/ 20 (100%) 100%
all_traffic_base_test_medium [:] 96% 96 / 100 (96%) = 96%
a2 all_traffic_base_test_small B 95% 197 20 (95%) mm 95%
alitraffic_link_fir_test_wo_traffic B 95% 19720 (95%) m 95%
2 alltraffic_Im_fir_test_wo_traffic B 100% 20/ 20 (100%) 100%
9 alltraffic_linkdown_test_wo_traffic 58 80% 16 / 20 (80%) = 80%
g alltraffic_linkdown_test_with_traffic B 100% 20/ 20 (100%) 100%
» hard_reset_test [100% 20/ 20 (100%) 100%
o alltraffic_max_pfvf_mode1_test B 20% 18/ 20 (90%) == 90%

Figure 3: Snippet of regression result across function in each mode

Figure 3 shows per feature (“Fi”) view where each test represents a design feature. Same Test List is called inside
each group so, which means every feature is getting tested in each mode. When same test is failing in multiple
modes which implies that this feature requires verification attention.

With this anyone can get to know the holistic status of the design just by looking at regression status. We have
achieved this using the vManager tool and a similar setup can be done in any other regression management tool.

1. SMART DATA MINING: KNOWN ISSUE TRACKER(KIT)

At any point of the verification cycle there will be known failures in regression. The known failures could be
because of incomplete design feature/TB checker, known Design/VIP bugs etc. Efficient management of these
failures and filtering out these failures from the current regression to focus on the new/unknown failures is very
important.

Usually, these failures are managed manually, which is cumbersome, error prone and time-consuming process.

We solved this problem using a smart data mining technique by developing Python and Jenkin script (Known Issue
Tracker/KIT script)

e ltis tightly integrated with vManger

e It filters out the known failures from the regression result

o Itis called after regression run in Jenkins setup

o Automatically it populates all the information after regression is over
It eliminates all the manual intervention that is usually required and gives us the new failures signature sorted with
the order failure impact.

Structured Known issue list: As we are taking about know issue tracking so we will have to maintain a known
issue list. To support automation, we defined a structure so that scripts can parse it. We also added features so that
we will not have to enter the same signature again and again, while having a provision to capture the signatures
which are applicable for a specific feature and/or mode.

2022

DESIGH AMD WERIFICATION ™

DVCON

COMNFEREMCE AMD EXHIBITION

1 alltraffic_link flr_test ALL FAIL run_368 inconsistent _internal_data_structure_in_pcie VIPSR 554

_wo_traffic 6 cfg.cpp_24626 pc 4331
2 alltraffic_linkdown_te ALL FAIL run_369 Tried to_decrement the passive_credit cou VIPSR 120
st_with_traffic 2 nt_on_channel 0001
3 ALL ALL FAIL run_2 TX_ FATAL_MalformedTlp_ TL TLP_M JIRA CXL1
F_INVALID_TAGSCAL 234
4 ALL cxl FAIL run_125 TX_ NONFATAL_UnsupportedRequest VIPSR_465
TL_TLP_USERTAG 2__ 32491
5 loopback ALL FAIL run_286 cfg 0 0 TL_CFG_UNKQID_4__ TB_ISSUE_
LOOPB
6 ALL ALL FAIL run_194 PL_SRIS _SKP_TX_NONE__ VIPSR_11
5

Table 1: Structured Known issue format

Table 1 shows Structured Known issue format. We have these columns in this CSV file:

e 1%tcolumnis just an index.
e 2" column is Test Name (TEST_NAME): Name of the test that is expected to fail due to a known reason.
e 3"column is the Group Name (GRP_NAME): Name of the Group where test is expected to fail due to a
known reason
e 4" column is run_dir, this is ignored by this script. These are used in Failure Auto replication, so we have
kept them here.
o 5" column is the test status, this is also ignored by this script. These are again used in Failure Auto
replication.
e 6th column is the First failure description (FIRST_FAILURE_DESC)
o This is the 1st failure signature which will be looked while processing any new regression result.
e 7th column captures the analysis (ANALYSIS) that user has done against each failure signature.
o Every row corresponds to one known failure entry.
o We capture each known failure signature with Test Name (TEST_NAME), Group Name
(GRP_NAME) and First Failure Signature Description (FIRST_FAILURE_DESC).

2022

DESIGH AMD WERIFICATION ™

DVCON

COMNFEREMCE AMD EXHIBITION

1 alltraffic_link_flr_test wo_traffic ALL
2 alltraffic_linkdown_test with_traffic ALL
3 ALL ALL
4 ALL exl

5 loopback ALL
6 ALL ALL

Table 2: Handling Generic Failure

Handling Generic failures: While capturing the known failure signatures we have added provisions for handling
generic failures. This helps in reducing the number of failure signatures that we must maintain.

o If afailure is independent of the test name, in that case in place of the Test Name we use “ALL”
o Similarly, if a signature is independent of the group name, in place of the Group Name we again use “ALL”
e Partial Substring Matching is enabled in Test Name, Group Name and First Failure description.
o In place of test name “pl_loopback_test wo_traffic” and “pl_loopback_with_traffic” we can
use “loopback”
o Inplaceof“cfg 0 0 PL SRIS _SKP_TX_NONE__” and
“cfg_ 1.2 PL_SRIS SKP_TX_NONE__”we can use “PL_SRIS_SKP_TX_ NONE”in
FIRST_FAILURE_DESC

Known Issue Tracker (KIT) Script: It’s a python script that auto populate the known failure after vManager
regression is over. These are the inputs needed to run KIT script.

e Existing Failure Analysis Table in CSV format like it was shown in Table 1.
e Session Directory Path
e Output Directory Path (Optional)

Steps done by the KIT script.

o |t parses the entire regression and captures the status of the regression in CSV file, where is captures Test
Name, Group Name, Test Status & First Failure signature for each run in the regression.

e Then for each failing test it checks the First Failure Signature with the existing failure table. It will match
the Test Name, Group Name and First Failure Signature. All the Generic Failure matching that we
described are checked here while matching the error signature.

e If a Match is found it updates Analysis content from the existing Failure Table.

e If no match is found in the existing table, then it will be updated as “NEW_FAILURE”.

e Asaresult, it dumps out the failure signature table in different flavor after filtering and populating the
known failures.

2022

DESIGH AMD WERIFICATION ™

DVCON

COMNFEREMCE AMD EXHIBITION

[]
of failures is at the top.

Output of the Script: As shown in figure 4, KIT generates report in multiple formats.
e *L0*is for Level O report sorted with failure count wrt just failure signature
e *L1*jsfor Level 1 report sorted with test name and failure signature
e *L2*is for Level 2 report sorted with test name, Group Name and failure signature
L]

1s /s/scratch02/pcie/tejbal/pcie hpa genS5 rundir/Temp
failure run detail.html Ll.html N1.html
grp_test.csv L2.html N2.html
LO.html NO.html status full.csv

Figure 4: KIT output reports

status_full.L0.csv
status full.Ll.csv
status_full.L2.csv

Similarly, NO, N1 & N2 reports are for the same granularity after filtering the known failures.

All the results are sorted in the order of impact, the failure signature that is causing the maximum number

status_full.NO.csv
status full.Nl.csv
status_full.N2.csv

As shown in Figure 5, Level 0 (LO.html) report will contain the updated status with prefilled existing analysis & it
will be grouped only wrt First Failure description. This gives an overall picture about which failure signature is

causing major damage in the regression.

{ 0 file:///siscratch02/pcie/tejbal/pcie_hpa_genS_rundir/Temp/LO.html

[FIRST FAILURE DESC [ANALYSIS [Count
[0 [cfg 0 0 TX PL TCTRL ENHANCED LINK BEHAVIOR DONT MATCH [NEW FAILURE (1237
1 [TEST HUNG [NEW FAILURE (65
2 [cfg 0 0 TX PL SRIS SKP TX NONE _ [VIPSR 46513335 (34
[3 [Explicit timeout of 820.000 us_hit indicating a_probable te [NEW FAILURE (31
[4 [cfg 0 0 TL DLF TIMEOUT TX MAX _ [NEW FAILURE [29
[5 [Assertion cdn pcie hpa top.u dut 0.tb wrap.u dut cdnpcie lin [NEW FAILURE [29
[6 [NLW CHK Simulation is running with DUT link width But exp m [NEW FAILURE |26
[7 |cfg 0 0 TX PL SKP TX NONE__ [NEW FAILURE [23
[8 [cfg 0 0 TX PL BLK CPAT LESS TX DCNT _ [NEW FAILURE |20
[0 [cfg 0 0 PL LTSSM CXL SPEED UNEXPECTED _ [NEW FAILURE (19

10 [cfa 0 0 TL CFG UNKQID 4

Figure 5: Level 0 Combined view

[VIPSR 4652615319

As shown in Figure 6, Level 1 (L1.html) report — Adds Test Name while generating & sorting the report. At times
knowing the test name that is mostly failing gives a better picture of the problem. This report enables that.

| @ mesnsiscratcho2ipcieneibalipcie hpa_gens_rundir/Temp/ver /L1 htmi vl [y ®

[FIRST FAILURE DESC [ANALYSIS TEST NAME Count|
[0 [cfg 0 0 TX PL TCTRL ENHANCED LINK BEHAVIOR DONT MATCH |[NEW FAILURE [all traffic base test medium (141
[T Jcfg 0 0_TX PL TCTRL ENHANCED LINK BEHAVIOR DONT MATCH |NEW FAILURE |[pl Is change test 60
[2 [cfg 0 0 TX PL TCTRL_ENHANCED LINK BEHAVIOR DONT MATCH [NEW FAILURE [pl Is Iw change test a9
[3 [cfg 0 0_TX _PL TCTRL ENHANCED LINK BEHAVIOR DONT MATCH [NEW FAILURE [reg cap ps test 45

Figure 6: Level 1 Combined view

2022

DESIGH AMD WERIFICATION ™

DVCON

COMNFEREMCE AMD EXHIBITION

As shown in Figure 7, Level 2 (L2.html) report — Adds Test Name & Group Name while generating & sorting the
report. At times while fixing bug for one mode causes failures in other mode. So having the group information helps
to analyze the report form this angle.

‘ [@ fle:/i/s/scratch02/pcieftejbalipcie_hpa gens_rundir/Tamp/Verl/L2 htmi v z’ |,§‘v

[FIRST_FAILURE_DESC ANALYSIS {TEST NAME {GRP_NAME [Count|
o kfg 00 _TX __ PL TCTRL ENHANCED LINK BEHAVIOR DONT MATCH__ [NEW FAILURE [all traffic base test medium {default CXI1. 512 RP [52
[t g 00 TX _ PL TCTRL ENHANCED LINK BEHAVIOR DONT MATCH _[NEW FAILURE [all traffic base test medium [default CXL 512 EP f |
[2 kg 0 0_TX__ PL TCTRL ENHANCED LINK BEHAVIOR DONT MATCH__NEW FAILURE |pi Is change test [defauit CX1. 512 EP faa |
[3 kg 0 0_TX__ PL TCTRL ENHANCED LINK BEHAVIOR DONT MATCH _[NEW FAILURE [pi Is Iw_change test [default CX1 EP 18|
[4 kfg 0.0 _TX__ PL TCTRL_ENHANCED LINK BEHAVIOR DONT MATCH__INEW FAILURE |pi_Is_change test {default CX1. 512 RP 16|
[5 g 00 TX _ PL TCTRL ENHANCED LINK BEHAVIOR DONT MATCH _[NEW FAILURE jreg cap ps test [default CXI. 512 EP 16
[6 kg 00 _TX _ PL TCTRL ENHANCED LINK BEHAVIOR DONT MATCH [NEW FAILURE |pi Iw _change test fdefault CXL 512 RP)

Figure 7: Level 2 Combined view

As shown in Figure 8, Level 0 (NO.html) report — This report is the filtered version of the LO report. So, all the
known issues are filtered out, and only new failures are kept in this report sorted with respect failure impact.

FIRST_FAILURE_DESC ANALYSIS Count
0 ||Assertion_cdn_pcie_hpa_top.u_dut_0.tb_wrap.u_dut_cdnpcie_lin INEW_FAILURE|[1069
1 |[TEST_HUNG NEW_FAILURE|258
2 |lefg 0.0 RX PL SYNC_LN_GAP_COMPLIANCE _ NEW_FAILURE|22
3 |RX_L0S_ DUT_moved_to_Recovery_from RX LOs_not within NFTS _ti INEW_FAILURE|2
4 |np p_ Actual from exp _q Bypass_happen on_invalid conditio INEW_FAILURE|1
|5 |lexp_np_q is_not_empty size 2_ NEW_FAILURE|1
6 |cfg_ 0 4 TX NONFATAL UnsupportedRequest TL TLP USERTAG 2 INEW_FAILURE(1
7 |lefg_0_0__ TX_NONFATAL_UnsupportedRequest_ TL_TLP_vITxPmDPkg_ INEW_FAILURE|1
8 |lefg_0_0_ RX NONFATAL UnsupportedRequest TL_TLP_vIRxPmDPkg_ NEW_FAILURE|1
9 Jlefe_0_0__RX__COR_Receiver_ PL_FRAME_TLP_END__ INEW_FAILURE(1
[10[_CDN_HPA_PCIE_TLP_CPL_INVALID_REQ_TAG_UNEXP_ERR_ Detected_E|NEW_FAILURE|L

Figure 8: Level 0 Filtered view

As shown in Figure 9, Level 1 (N1.html) report — This report is the filtered version of the L1 report. So, all the
known issues are filtered, and only new failures are kept in this report sorted with respect to most failing Failure
Signature & Test Name.

2022

DESIGH AMD WERIFICATION ™

DVCON

COMNFEREMCE AMD EXHIBITION

FIRST_FAILURE DESC JANALYSIS TEST_NAME [{Count
0 ||Assertion_cdn_pcie_hpa_top.u_dut_0.tb_wrap.u_dut_cdnpecic_lin |INEW_FAILURE|jall_traffic_base_test_medium ; 76
1 Assertion_cdn_peie_hpa_top.u_dut_0.tb_wrap.u_dut_cdnpceie_lin INEW_FAILURE|jreg_be_test |40
2 |Assertion_cdn_pcie_hpa_top.u_dut_0.tb_wrap.u_dut_cdapcie_lin [NEW_FAILURE|reg_hw_reset_test 37
3 : %\gg’en»ion_’cl(ih__pcic’_‘lr\pa:mi?J.Vl_(il.lrt__‘ob.t_b‘__*r:\-l.).u__‘durt__cfinpcic_lilir J‘NE\V_FAILL'RE x'.c‘g_cap_.ljs_fesl;ct'g 35
4 Asscnion cdn_pcie hp'\ top.u_ dul Olb _wrap.u_dut cdupcie lin 13N’E\V_FAILURE reg_read_all_test 35
s pa_ [NEW_FAILURE| .eg";ym test 35
6 Asscﬂxon cdn. i)gxc hpa top u dut Otb \\'mp u dut sdnpc:e lm' JNE\\’_FAILL'RE pl_ls chsnge test 32
7 ||Assertion_cdn_pcie_hpa_top.u_dut_0.tb_wrap.u_dut_cdnpcie_lin |[NEW_FAILURE|pl_lw_change_test 32
8 |[Assertion_cdn_pecic_hpa_top.u_dut_0.tb_wrap.u_dut_cdnpcie_lin INEW_FAILURE|[pl_Is_lw_change_test 30
9 ||Assertion_edn_peie_hpa_top.u_dut_0.tb_wrap.u_dut_cdnpeie_lin NEW_FAILURE |jreg_wr_follow_rd 29
10 |TEST_HUNG INEW_FAILURE|lall_traffic_base_test_medium 27
11 ||Assertion_cdn_pcie_hpa_top.u_ dut _0.tb_wrap.u <lm cdnpc:e lin INEW FAILURE|]pl ep_recovery lock eq_err_test 25
2 Assertion_ecdn puc _hpa_ _top.u, _dut_0.tb, _Wrap.u _dut cdupc:: lin [NEW_FAILURE |[alltaffic_max_pfvi mode2_test 20
13 }Asscnlon cdn _pcic_| hpa topu dut 0.t _wrap. \?c}\;(cdupc: lm NiE{\’_FAII:I.:’RE éllnjafﬁz_max_p no'a;lites(20 2
14 JAsseﬂlOu cdn_pcie_hpa_top.u_dut_0.tb_wrap.u_dut_cdnpcie_lin }NE\V FAILURE |[allraffic_max_pfvf_model_hard_reset lcsleO
15 le\ssenlon sdn_peic_hpa_top.u_dut_0.tb_wrap.u_dut_cdnpeic_lin ‘\NE\V FAILURE||pl_alltraffic_iorccal_framing_crror_test /18 |
16 ||[Assertion cdn_pclc hpa tdp u_ dutv 0.tb \n:\i) u_ “dut n.dnpclc Tin NEW FAILLREI[;S‘I dclay s}nc slgnal test s
= [Assertion_cdn_peie_hpa_top.u_dut_0.tb_wrap.u_dut_cdnpeie_lin INEW _FAILU RE[[pl_nomuml_empt)_mode_lcsl 18
18 [|Assertion_cdn_pcie_hpa_top.u_dut_0.tb_wrap.u_dut_cdupcie_lin INEW_FAILURE [;)l_r);st_elr_sigunl_iest 18
19 ||Assertion_cdn_peie_hpa_top.u_dut_0.tb_wrap.u_dut_cdnpeie_lin NEW_FAILURE|jallraffic_vee_test 18
20 |[Assertion_cdn_pcie_hpa_top.u_dut_0.tb_wrap.u_dut_cdnpeie_lin INEW_FAILURE |reg_write_all 18 |
21 ||Assertion_cdn_pcie_hpa_top.u_dut_0.tb_wrap.u_dut_cdnpeie_lin }NE\V'QFAILURE alltraffic_lm_flr_test_wo_traffic 18 [

Figure 9: Level 1 Filtered view

As shown in Figure 10, Level 2 (N3.html) report — This report is the filtered version of the L2 report. So, all the
known issues are filtered, and only new failures are kept in this report sorted with respect to most failing Failure
Signature, Test Name & Group Name.

FIRST_FAILURE_DESC i i JIANALYSIS |TEST NAME |[GRP_NAME |Count|

0 ||Assertion_cdn_peie_hpa_top.u_dut_0.tb_wrap.u_dut_cdnpeie_lin |INEW_FAILURE [all_traffic_base_test_medium default_hpa | hl» lop_ep_‘l‘bn regression_testlisti41
1 |[TEST_HUNG |[NEW _FAILURE all_traffic_base_test_medium |[default_CXL 256 RP 25
12 J|Assertion_cdn_pcie_hpa_top.u_dut_0.tb_wrap.u_dut_cdnpcie_lin |[NEW_FAILURE [all_traffic_base_test_medium |[default_hpa_hls_top_ep_128bit_regression_testlist|23
3 |lAssertion_cdn_pcie_hpa top.u_dut_0.tb_wrap.u_dut_cdnpcic_lin NEW_FAILURE reg be_test ||default_hpa hls_top_ep_512bit_regression_testlist|20
4 ‘A\ssemon cdn _peie_hpa_top.u_dut 0.tb_wrap.u_dut_cdnpcie_lin NEW_FAILURE jreg cap ps_test cfg |[default_hpa_hls_top ep_512bit mgre;;;c;x‘i‘ testlist|20
S ||Assertion_cdn_pecie_hpa_top.u_dut_0.tb_wrap.u_dut_cdnpeie_lin |INEW_FAILURE jreg_hw_reset_test |(default_hpa_hls_top_ep_512bit_regression_testlist{20
6 |lAssertion_cdn_pcic_hpa_top.u_dut_0.tb_wrap.u_dut cd.upcxc lin ‘.'EV\V_F.;\ILURE reg_sync_test }defau]i_llpa_hls_top_cp_ﬁ 12bit rcgrcssiou téstlis{ 20
7 ||Assertion_cdn_peie_hpa_top.u_ d\u 0.tb_wrap.u_dur_ec |INEW_FAILURE rgg?rqq:;ii_tesl f

8 [|Assertion_cdn_peie_hpa_top.u_dut_0.tb_wrap.u_dut_cdnpcie | lm JINEW_FAILURE [p!_Iw_change_test

i }r\sseﬂm;_cdp _peie_hpa_top. u_d\u_O,rb_“rqp.\t_d\lt_qu{pcxglexn |INEW_FAILURE [pl_Is_change_test V:dexaull hpa hls Wp cp_ﬂ’bﬂ regrcmon lest]m 18
10 |{Assertion_cdn_peie_hpa_top.u_dut_0.tb_wrap.u_dut_cdnpeie_lin |[NEW_FAILURE [pl_Is_lw_change_test ||default_tipa_hls_top_ep_S12bit_regression_testlist|16
11 [|Assertion_cdn_pcic_hpa_top.u_dut_0.tb_wrap.u_dut_cdnpcie_lin {[NEW_FAILURE all_ttafﬁc_base_lesl_m:dium |[default CXL 128 EP 11
12 ||Assertion_cdn_peie_hpa_top.u_dut_0.tb_wrap.u_dut_cdnpcic_lin |[NEW_FAILURE [reg_be_test ||default_hpa hls_top_ep_128bit_regression_testlist{10
13 |lAssertion_cdn_pcic_hpa_topu_dut_0.tb_wrap.u_dut_cdnpcic_lin |[NEW_FAILURE reg_read all test cfy :dcxau!t hp« his_top_ep_512bit_regression_testlist|10
14 |JAssertion_cdn, _pcie_hpa_top,u_dul_OAlb_\tmp,u_dajc‘&u-;c»ie_lin A'E\\'_FAILUR.E reg_read_all_test default. hp'a hls_top_ep_128bit_regression_testlist{10

Figure 10: Level 2 Filtered view

IV. AuTto FAILURE RE-CREATION

A significant portion of the verification time goes in debug. Out of this debug time a good portion of the time is
spent in picking the right failure which will have biggest impact on regression pass percentage & then replicating
them with additional information’s needed for debug. KIT script helps us in picking the right failures that will have
the biggest impact. The next step is to replicate this in the standalone setup with waveform and additional debug
information enabled. Often individual have their own local changes or they are not on the same version on which the
regression is run. So, one need to ensure that he checks out the same version of databases and takes command line
from regression database and would add the additional arguments to enable waveform dumping. On top that now a
days the regressions are run on cloud where one might not have GUI access.

2022

DESIGH AMD WERIFICATION ™

DVCON

COMNFEREMCE AMD EXHIBITION

As a solution to this problem, we developed additional script to collect and copy below information from cloud to
local server.

e Run command of each failing test
e NO report from KIT
e Design version information

At the local server side, we use the design information to get to the same design version and can pick top N (e.g. 10)
failures from the NO report and recreate them with dump.

$: head status_full.NO.csv

,FIRST_FAILURE_DESC,ANALYSIS,Count
0,Assertion_cdn_pcie_hpa_top.u_dut_0.tb_wrap.u_dut_cdnpcie_lin,NEW_FAILURE,141
1,cfg_0_0__RX__NONFATAL_UnsupportedRequest _TL_TLP_vIRxPmDPkg_,NEW_FAILURE,5
2,Register__local_ep_model_h.PCle_Link_0_local_ep_ip_cfg_ctrl_,NEW_FAILURE,4
3,cfg_0_0__TX__NONFATAL_UnsupportedRequest__ TL_TLP_vITxPmDPkg_,NEW_FAILURE,3

After running the script this will run one failure of each type by matching the failure signature.

$:1s AUTO_RERUN/* -d

AUTO_RERUN/run_1816.exp_p_g_is_not_empty _size_1_
AUTO_RERUN/run_3742.Register__local_ep_model_h.PCle_Link_0_local_ep_ip_reg_bank_
AUTO_RERUN/run_5497.Assertion_cdn_pcie_hpa_top.u_dut_0.tb_wrap.u_dut_cdnpcie_lin
AUTO_RERUN/run_5613.cfg_0_0__RX__NONFATAL_UnsupportedRequest__ TL_TLP_vIRXPmDPkg_

Run Command inside each auto rerun carries the information about the test name, group name & Actual regression
log path

$: cat run_1816.exp_p_q_is_not_empty size 1 /run_cmd

Regression PATH

. Is/scratch02/pcie/pciedip/hpa2_link_top_nightly _rundir/results/vmanager/hpa2_link_top_nightly.pciedip.22_0
3 01 04 31 00 8748/chain_0/run_1816/local log.log

TEST NAME : pl_ptm_test

GRP NAME : default_hpa_hls_top_ep_128bit_regression_testlist

make -f SHPAMF TLBYPASS=1 UVM_VERBOSITY=UVM_DEBUG TEST=cdn_pcie_cxI|_base_test
VM_SEED_MODE=1 SEED=989410900 COV=0 CONFIG=hpa2_ga_config CUSTOMER_CONFIG=default
TB_MODE=DUT_VIP run DUMP=1 TRACE=1 RAND_CFG=1 WITH_PHY=0 DONT_GEN_TB=0
CFG_POLICY=cdn_pcie_strap_128bit_random_policy REGR_RUN_ARGS=" +ALL_TRAFFIC=1
+STRAP_IS RP=0 "

With the addition of this Auto failure regression setup. Now in place of assigning failure signature, we directly point
the waveform and log path of the failing scenario to the respective feature owners. This eliminates the failure
replication hassle and thereby speeds up the verification process.

2022

DESIGH AMND VERIFICATION ™

DV

CONFEREMNCE AND EXHIBITION

V. APPLICATION

This framework is useful for any complex IP/Sub-system/SoC verification. It organizes the verification process
and automates the repetitive manual process very efficiently.

VI. RESULTS

We deployed this in PCle/CXL verification environment. This being one of the most complicated IP with
multiple features and multiple mode was an ideal candidate for deploying this framework. In fact, we developed the
framework because we were not able to handle the regression status efficiently. There was a phase in the project
where everyone was struggling to figure out what is causing major drop in regression. After deploying all these,
things came in right order. Team was able to focus on the right feature set and modes of the design. Auto filtering of
known failures and auto-replication of top failure signature helped the team close the verification on time.

VII. CONCLUSIONS

Smartly Structured VSIF:

e Organizes the regression framework for daily Triage.
e Avoids missing a feature across various modes of the design
e One can see the health of each feature across various modes

KIT Script:

e This filters out the noise in the regression result automatically.
e As the filtering is done by the script so it no more manual, time consuming or error prone.

Auto Failure Rerun:

e This eases out the chores for each verification engineer
e Now instead of assigning a failure signature, one will get dump & log of failing scenario
e Increases the focus & productivity of the team

VIII. REFERENCES

[1] Shahid Ikram & Jim Ellis “Dynamic Regression Suite Generation Using Coverage-Based Clustering” DVCON 2017 [https://dvcon-
proceedings.org/wp-content/uploads/dynamic-regression-suite-generation-using-coverage-based-clustering-presentation. pdf]

[2] David Lacey & Ed Powell “Creating the Optimal Regression Farm Infrastructure That Meets All Your Team’s Simulation Requirements”
DVCON 2018 [https://dvcon-proceedings.org/wp-content/uploads/creating-the-optimal-regression-farm-infrastructure-that-meets-all-
your-teams-simulation-requirements.pdf]

https://dvcon-proceedings.org/wp-content/uploads/dynamic-regression-suite-generation-using-coverage-based-clustering-presentation.pdf
https://dvcon-proceedings.org/wp-content/uploads/dynamic-regression-suite-generation-using-coverage-based-clustering-presentation.pdf
https://dvcon-proceedings.org/wp-content/uploads/creating-the-optimal-regression-farm-infrastructure-that-meets-all-your-teams-simulation-requirements.pdf
https://dvcon-proceedings.org/wp-content/uploads/creating-the-optimal-regression-farm-infrastructure-that-meets-all-your-teams-simulation-requirements.pdf

