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Background
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Traditional VP Debugging Approaches

Sharing Simulation Log Sharing Stripped-down 
Binary 

Joint Debugging

Limited Debug Information 

Dependency on External 
Models

Co-ordination challenges

Significant Manual Effort for 
longer simulation analysis  

Complex Dependency among 
SW components 
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Proposed Solution – Reverse Engineering 
Method
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Instrumentation of Logging into IP SystemC model

Generation of Reproducer sequences from Simulation log

Replicating the behaviour in standalone reproducer environment



Implementation

1. Instrumentation Of Logging into IP SystemC model

2. Creation of Standalone Reproducer environment

Implemented using In-house Automation 
Framework   



Instrumentation of Logging  (1/3)

Model Configuration Changes

IP

SystemC

Model

Register Transactions

Interface Modifications

ELABORATION PHASE

SIMULATION PHASE

IP Functional Block Model design using
• SystemC 
• TLM2.0

MODEL BOUNDARY EVENTS



Instrumentation of Logging (2/3)

Model Constructor (Model Name, Data Type1 Parameter Name1, Data Type2 Parameter Name2, …) 

{ 

CONFIGURATION, 1, Data Type1, Parameter Name1, Value1 

CONFIGURATION, 2, Data Type2, Parameter Name2, Value2 

……

} 

Register Access Function (Transaction Object) 

{

REGISTER, Simulation Time, Address, Read/Write, Data, Data Length 

}

SC_METHOD(reset_in_value_changed) 

Sensitive << reset_in; 

void reset_in _value_changed () 

{

INTERFACE, Simulation Time, INTERFACE_NAME, TYPE, CURRENT_VALUE 

}
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Instrumentation of Logging (3/3)
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Creation of Standalone Reproducer 
environment (1/2)
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Creation of Standalone Reproducer 
environment(2/2)
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Reproducer Base with Complementary Interfaces

Reproducer thread to execute Trigger sequences 



Proof of Concept using AURIXTM Interrupt 
Controller
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Next Steps

• Implementation for all models of Infineon next generation 
automotive microcontrollers 

• Adaptation of the methodology for 
• serial communication interfaces 

• bus master interfaces 

• Configuration to enable/disable the instrumentation of logging
• Instrumentation should be enabled only for debugging purpose

• For a normal simulation, Instrumentation should be disabled, as it degrades 
the performance



Questions


