
Efficient Debugging on Virtual Prototype using
Reverse Engineering Method

Sandeep Puttappa, Senior Staff Engineer

Dineshkumar Selvaraj, Lead Principal Engineer

Ankit Kumar, Associate Engineer

Agenda

• Background

• Traditional debugging approaches on VP and its Limitations

• Reverse Engineering Method Implementation

• Proof of Concept

• Next Steps

Background

Microcontroller

Tier1
suppliers

OEMs

Tool
Partners

Chip
suppliers

Ease of Use

Early Availability

Longer Maintenance lifespan

Superior debugging and tracing

Capabilities

How to Debug Issues on Virtual Prototype in the absence of SW?

S
W

H
W
/
V
P

Traditional VP Debugging Approaches

Sharing Simulation Log Sharing Stripped-down
Binary

Joint Debugging

Limited Debug Information

Dependency on External
Models

Co-ordination challenges

Significant Manual Effort for
longer simulation analysis

Complex Dependency among
SW components

1 2 3

Proposed Solution – Reverse Engineering
Method

Log

SW

IP

SystemC

Model

Reproducer
Model

Standalone Reproducer Top
Reverse Engineering Method

Instrumentation of Logging into IP SystemC model

Generation of Reproducer sequences from Simulation log

Replicating the behaviour in standalone reproducer environment

Implementation

1. Instrumentation Of Logging into IP SystemC model

2. Creation of Standalone Reproducer environment

Implemented using In-house Automation
Framework

Instrumentation of Logging (1/3)

Model Configuration Changes

IP

SystemC

Model

Register Transactions

Interface Modifications

ELABORATION PHASE

SIMULATION PHASE

IP Functional Block Model design using
• SystemC
• TLM2.0

MODEL BOUNDARY EVENTS

Instrumentation of Logging (2/3)

Model Constructor (Model Name, Data Type1 Parameter Name1, Data Type2 Parameter Name2, …)

{

CONFIGURATION, 1, Data Type1, Parameter Name1, Value1

CONFIGURATION, 2, Data Type2, Parameter Name2, Value2

……

}

Register Access Function (Transaction Object)

{

REGISTER, Simulation Time, Address, Read/Write, Data, Data Length

}

SC_METHOD(reset_in_value_changed)

Sensitive << reset_in;

void reset_in _value_changed ()

{

INTERFACE, Simulation Time, INTERFACE_NAME, TYPE, CURRENT_VALUE

}

IP

SystemC

Model

Configuration
Changes

Register
Transactions

Interface
Modifications

Constructor

TLM transport
function

sc_method

Instrumentation of Logging (3/3)

IP

SystemC

Model

Configuration
Changes

Register
Transactions

Interface
Modifications

Creation of Standalone Reproducer
environment (1/2)

IP

SystemC

Model

Automation Framework

IP

SystemC Model

(with record

feature)
IP

SystemC

Model

Reproducer

Model

Standalone Reproducer Top
IP

SystemC
Model

Standalone Reproducer Environment

Reproduc
er

(thread)

Reproduc
er Base

(interface
)

Reproducer Top

IP

SystemC

Model

Standalone Reproducer Environment

Reproducer

(thread)

Reproducer

Base

(interface)

Reproducer Top

Creation of Standalone Reproducer
environment(2/2)

IP
SystemC
Model

Standalone Reproducer Environment

Reproduc
er

(thread)

Reproduc
er Base

(interface
)

Reproducer Top

IP

SystemC

Model

Standalone Reproducer Environment

Reproducer

(thread)

Reproducer

Base

(interface)

Reproducer Top

Reproducer Base with Complementary Interfaces

Reproducer thread to execute Trigger sequences

Proof of Concept using AURIXTM Interrupt
Controller

Log

SW

Interrupt

controller

SystemC

Model

Reproducer
Model

Standalone Reproducer TopReverse Engineering Method

*

* ECU like Virtual Platform

Next Steps

• Implementation for all models of Infineon next generation
automotive microcontrollers

• Adaptation of the methodology for
• serial communication interfaces

• bus master interfaces

• Configuration to enable/disable the instrumentation of logging
• Instrumentation should be enabled only for debugging purpose

• For a normal simulation, Instrumentation should be disabled, as it degrades
the performance

Questions

