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Outline

= Overview about Neural Networks
= Ways to model, train, and validate Shallow Neural Networks
=  Quantization

- RTL and report generation

= Vector-Matrix Multiplication optimization ¢
= Functional Verification

= Deep Learning Network implementation optlo
= Questions
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Neural Networks

In Machine Learning, a Neural Network is a model inspired by the structure and
function of biological neural networks in brains.

= Nodes model neurons, these are connected by edges which model synapses
= Nodes/Neurons are aggregated into layers: Input, Hidden, and Output

= Qutputs of Neurons are the sums of weighted inputs throuah a non-linear
activation function

Inputs ~~ @— Outputs

Input Layer Output Layer

Hidden Layers
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Kinds of Neural Networks

There are numerous neural networks, each featuring its own distinct structure
and purpose. For example:

- Feedforward Neural Networks (FNN) O
— using Fully Connected Layers with an Activation Function O

= Convolutional Neural Networks (CNN)
— also requires Convolutional Layers which are computing sliding dot-products

= Recurrent Neural Networks (RNN) o )
orget pdate utput
— Having internal states which are used to compute the next state ., _ 2 5 AV

- Long Short-Term Memory networks (LSTM) e][i])[o
— As RNNs, having internal states but can forget as well




Shallow vs. Deep Neural Network
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When becomes a Neural Network a Deep Neural Network?

_ Shallow Neural Network Deep Neural Network

Number of hidden layers
Complexity of the layers
Learning capability

Risk of overfitting
Memory for parameters

Examples

a few (maybe 1-5)

low

limited

lower

low (normally less than 1 KB)

Regression networks (FNNS)

1

A direct implementation
IS possible and beneficial

many (tens or hundreds)
high

great

higher

high (often more than 1 MB)

CNNs for image recognition

1

A processor or FSM
Implementation is necessary
together with RAM access
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How getting the Neural Network?

Statistics and Machine Learning Toolbox to define,
train, validate, and model

= Shallow Regression Networks or

Shallow Classification Networks

Deep Learning Toolbox for designing and
Implementing deep neural networks with algorithms,
pretrained models, and apps. Features:

Build, edit, combine

Load, import, analyze,

Train and monitor (inclusive transfer learning)
Quantize

Export networks
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Example — Battery State of Charge (SoC)

SoC estimation remains a significant challenge because of
= Nonlinear temperature and battery health
= Traditional approaches require precise parameters and battery knowledge

A data-driven approach using Neural Networks
= Requires minimal knowledge of the battery and its nonlinear characteristics
= Can predict the SoC as good as complex traditional methods (e.g.: Kalman)

Example is based on: Deploy Neural Network Regression Model to FPGA/ASIC Platform

- ™
voltage —

current ——
temperature —— Al — SOC
mov avgq. voltage ——
mov. avg. current ————



https://www.mathworks.com/help/stats/deploy-neural-network-regression-model-to-fpga-platform.html

Battery SoC — Load Data, Define, and Train a Neural Network

The original battery data used for training and validation comes from:

LG 18650HG?2 Li-ion Battery Data and Example - McMaster University

For keeping the network small and hardware friendly we decide for

= 2 Hidden layers with sizes 10
= Activations using RELU

Training can be achieved using

= Regression Learner App, or
= Function £itrnet
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Regression
Learner

[+ New Session from Workspace - [m] ®
Data set Validation
Data Set Variable Validation Scheme
| trainDatasmall €773x6 table v | [ Cross-validation v |
REspoase 4\ Regression Learner - untitled® = a X
(®) From data set variable LEARN TEST EXPLAIN (2]
) From workspace . “oumm | .
) T =
@ e O £ open ) = | > ===
e S o All Quick-To- Al Allsimulink |7 (|| yse | Train Response  Predicted vs. | ™| Results Layout
Session v Train Supported Parallel | All ~ Table  ~
Predictors FILE MODELS TRAIN EXPORT
Models : Model 1 Model 2
(=2 Type Ranog ‘ Sort by | Model Number | v |[ 4 || )| TSommany %
v double 0.00214223 .. 0.977625 — = =
(%1 Tree Draft Model 2: Optimizable Neural Network
[ double 0.0879874 .. 0.999894 = Stalus: Draft
Last change: Fine Tree 5/5 features
Temp double 0.00312538 .. 0.877337 —
||| 2 Neural Network Drait| = Model Hyperparameters
V_avg double 0177713 . 0.977546 = 5
Last change: Hyperparameter option(s) 55 features i
I_avg double 0.604765 .. 0.875519 Optimize Hyperparameters Values
7 ioiE LLzi ] hd []  Number of fully connected layers |2 v
[ Add All | Remove All O First layer size =
[]  Second layersize B
How to prepare data |&3 Refresh |

[0  Actvation (ReLu

Iteration limit

v)

1000 =]

[  Regularization strength (Lambda) EE{

[]  Stendardize data (o

Read more about neural network model options

» Feature Selection: 5/5 individual features selected
» PCA: Disabled

» Optimizer: Bayesian optimization

v)

Data sef: trainDataSmall ~ Observations: 6773  Size: 320 kB

Predictors: 5

Response: Y

Validation: 5-fold cross-validation

10



https://data.mendeley.com/datasets/cp3473x7xv/3
https://www.mathworks.com/help/stats/regressionlearner-app.html
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Battery SoC — Import Network Model to Simulink for Prediction

The Statistics and Machine Learning Toolbox

Library comes with two blocks:

A Testbench model can be used with the
Regression Neural Network Predict block.

Block Parameters: RegressicnNeuralMetwork Predict
RegressionNeuralNetwork Predict (mask)

Predict responses using neural networks

Trained Machine Learning Model
Layer sizes: [10,10]
Activations: relu

Standardized: false

Main  Data Types

Select trained machine learning model nnetMdl

Cancel

Help

Apply

X )

The trained Regression FNN model is

the parameter for the block.

| measuredsSOC

HE Simulink Library Browser = ] X
<« |Emersea‘.‘ vh-E-TOr e =0

Statistics and Machine Learning Toolbox

~ Statistics and Machine Learning Toolbox
Classification

Cluster Analysis
> Incremental Learning

Nx @ T label P
Python Models

Regression
\assificationNeuralNetwork Predict
Jx @ yfit P

‘ RegressionNeuralNetwork Predict

Newral Network

.
&)

s0C
| - ourren
B true - | f e woltage D current D
s »[E]

temperature

] true

Copyright 2022 The MathWorks, Inc.
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emo — Battery SoC — From Training to Model

LIVE EDITOR

b &

= L8] Refactor > E‘ [E] section Break

‘ﬂj - ﬁ (=] compare = <@ [Aa| Normal =
New Open Save St g, QFind - e BTUMB g fun B RunendAdvance o Step Stop

v |@Epot v v [A Bookmark ¥ =E - - Section P2} Run to End

FILE NAVIGATE TerT cope secTion RUN =

Deploy Neural Network Regression Model to FPGA/ASIC Platform

This example shows how to train a neural network regression model, use the trained regression model in a Simulink® model that estimates the state of charge of a battery, and generate HDL code from the Simulink model for deployment to an FPGA/ASIC (Field-Programmable Gate Array / Application-Specific Integrated Circuit) platform
i

State of charge (SoC) is the level of charge of an electric battery relative 1o its capacity, measured as a percentage. SoC is critical for a vehicle’s energy management system. You cannot measure SoC directly; therefore, you must estimate it. The SoC estimation must be accurate to ensure reliable and affordable electrified vehicles (EY). However,
because of the nonlinear temperature, health, and SoC-dependent behavior of Li-ion batteries, SoC estimation remains a significant challenge in automotive engineering. Traditional approaches to this problem, such as electrochemical models, usually require precise parameters and knowledge of the battery composition and physical respanse

In contrast, modeling SoC with neural networks is a data-driven approach that requires minimal knowledge of the battery and its nenlinear characteristics [1]. This example uses a neural network regression model to predict SoC from the battery's current, voltage, and temperature measurements [2]
The Simulink model in this example includes a plant simulation of the battery and a battery management system (8MS). The BMS monitors the battery state, manages the battery temperature, and ensures safe operation For example, the BMS helps to avoid overcharging and overdischarging. From the battery sensors, the BMS collects information on

the current, voltage, and temperature in a closed-loop system

Stateltaquest

BMS_TestSequence |

BMS_Softaare

S N -

Battory_Model

| )
BMS StateRequest
| Py — wons o — >D
st Sequence Variani
Y= oy
| L
[y
I Train Regression Model at Command Line
Zoom: 110% script
e =
P = & B B ¥
e | i Cige o Respose | Predictec v i i
=t = UE s Fgts - ousle (5)
Models Vo2 || Compare Results 1 % input | INpUl true
Sortby [ Mosel numeer | + |1 )(1) [T Summary | Response Fiot X
[ 2 Neural Metwork. | RMSE (vaidation) 0.029526)
Last change Hyperparameler optionis)  5/5 features| Responss Plot for Predicsions: model 2 Meural Network estim
1 —
P soc
3 »{IC]
0s A‘ “
g |: > >
.
08 4 > (D] eurrant
‘ ™ [0 ———»
] a
07 'f i "@ voltage
> 1 *
5" { < B temperature
< v . .
Zos % X (oot oty inputSignals
& 4 " HOW 10 Use Ihe [E5ponse Alot
"y ! measuredSOC I > [A] - (1)
true estim
ot [
. v current
o B ()
" — voltage
01 X
Copyright 2022 The MathWorks, Inc.
4450 4500 4550 4600 4650 lempera‘“‘lra
Record number
5] Data st wanDataSmal  ODservatons 6773 SQe 320kB  Predictlors 5 Response Y Valdation 5-Told cross-validanon
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Quantization
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Quantization or Fixed-Point Conversion

There exist several options for Fixed-Point conversion: " "

FIXED-POINT TOOL

New

WORKFLOW

Welcome to the Fixed-Point Tool

Select a Workflow

g Optimized Fixed-Point Conversion @
Automatically convert your model to use optimized fixed-point data
types

Example Help

Iterative Fixed-Point Conversion (2)
Automatically propose fixed-point data types and manually select which
data types to apply to your model.

Example Help

@ Range Collection (2)
Explore numerical behavior of your model pre- or post-conversion.

Example Help
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ufix15_En13

ufix15_En14 [1x5] D4
e

% Set Opt ions RegressionNeuralNetwork Predict

opt = fxpOptimizationOptions('AllowableWordLengths', 10:24);
addTolerance(opt, sud, 1, "AbsTol’', 10@e-2);

% Run conversion
result = fxpopt(model,
% Explore results
explore(result);

sud vt Automate with a Script or
Interactive using an App

EXPLORE (2]

@, Zoom In

ITERATIVE FIXED-POINT CONVERSION

et

ke %

Run to compare in SDI

Zoom: 100%

New Settings  Propose ~
v - Data Types €2 Reset Zoom
WORKFLOW | PREPARE COLLECT CONVERT VERIFY MANAGE Z00M ry
g setup Name Specified DT [Compiled DT [SimMin & |Sim Max ‘ ork/RegressionNeuralNetwork -
EOE =3 K Predict/getScore/outputlayer/Add : Output Inherit Inherit v.. | double 026118973472... | 1021235876003 - || PredictigetScore/outputLayer/Product
' |RegressionNeuralNetwork Predict/getScore/outputlayer/Data Type Conversion Inherit: Inherit v... |double 0.26118973472... |1.021235876003¢
L |Reg N k P g /hiddenLayers/hiddenLayer relu/Switch | Inherit: Inherit v... | double 0 2022029743337¢ Property Specified Data Type
' |RegressionNeuralNetwork Predict/getScore/hiddenLayers/hiddenLayer2/Activation/relu/Switch | Inherit: Inherit v... |double 0 1.699205682325¢| || | DataTvpe Inherit: Inherit via internal rule
O [Regressi INetwork P Layer/Product Inherit: Inherit v... |double -0.72199843920... [ 1.982343775093¢ | || Minimum
' | RegressionNeuralNetwork Predict/getScore/outputlayer/Add : Accumulator Inherit: Inherit v... |double -0.81315584879... | 1834391724891z || | Maximum
1 |RegressionNeuralNetwork Predict/g /hiddenLayers/hiddenLayer]/Product Inherit: Inherit v... |double -145297611378... | 2446204571505¢ || |Precision
' |RegressionNeuralNetwork Predict/getScore/hiddenLayers/hiddenLayer1/Add : Accumulator | Inherit: Inherit v... |double -1.91131945232...| 2446204571505¢
L |Regressi k g /hiddenLayers/hiddenLayer1/Add : Output Inherit: Inherit v... | double -1.91131945232... | 2022029743337¢ v || Range Information
- : e Property Minimum  |Maximum {
~ Model Hierarchy Visualization of Simulation Data !
E Simulation -0.72199843... |1.982343775...

v *i Simulink Root
E Data Objects
- E] slexFPGAPredictExample
» [Pa] Subsystem

= £
P&} neural_network i
g ]
..
B ——  Overflows e
"""""""""""""""""""""""""""" Representable|  Values | Potential In-Range Potential
——  In-Range Overflows Underflows
Underflo Positive W0  m49402 0
""""" nderows || Negative | %0 #6515 0
Zero 0 26613 0
- Zoom: 100% ¥

Histograms of all results in the model

Simulation Data Overview using double

[JLog-scale (Y-axis)
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Demo — Battery SoC — Convert Simulink Model to Fixed-Point
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Document the data type conversion steps by using the command line interface:

25
26
27
28
29
30
31
32
33
34

35
36
37
38

mdlInfo = get_param(modelName, 'DataloggingOverride’);
sud = [modelName, '/neural_network'];
options = fxpOptimizationOptions();

options.AdvancedOptions.PerformieighborhoodSearch = false; % Perform a neighborhood search to further optimize.
% Safety margin to allow for higher ranges.

options.AdvancedOptions.SafetyMargin = 100;
options.AllowableWordLengths = 13:18;

addTolerance(options, sud, 1, 'RelTol’, 0.01);
result = fxpopt(modelName, sud, options);

% Word lengths that can be used.

% Relative tolerance for the subsystem output

4\ Simulation Data Inspector - untitled*

I 1 Match
0 Mismatch

REL

[+] More

Baseline: | Enter run or signal name A

Compare 10. | neural_network 1 (solution_Seesaw | » Options

~ Compare solution_5ee8a04352b19864c8e7t & 1

+ Starting data type optimization...

+ Checking for unsupported constructs.

+ Preprocessing

+ Modeling the optimization problem
- Constructing decision variables

+ Running the optimization solver
- Evaluating new solution: cost 650,
- Evaluating new solution: cost 698,
- Evaluating new solution: cost 746,
- Evaluating new solution: cost 794,

- Updated best found solution, cost:

+ Optimization has finished.

+ Fixed-point implementation that satisfies the behavioral constraints found. The best found solution

- Total cost: 794
- Maximum absolute differen

solution =

ce:

set_param(modelName, "SaveQutput’, ‘on’)

does not meet the behavioral constraints.
does not meet the behavioral constraints.
does not meet the behavioral constraints.
meets the behavioral constraints.

794

©.002230
- Use the explore method of the result to explore the implementation.

explore(result); —

set_param(modelName, 'DataloggingOverride’,mdlInfo)

% Reset settings changed by fxpopt

- ] togsout

Properties

Name

Description

Q8 ®PLHI D

Line

Absolute Tolerance
Relative Tolerance
Time Tolerance
Units

Data Type
Sample Time

Run

Align By

Model

Override Global Toleranc yes

0
1.00%

]

double

10

Path

(3]
(/3]

neural_network:1

no

0
0.00%
0

ufix16_Enid
10
solution_See8a04

Path

slexF PGAPredict slexFPGAPTedictE

W neural_network 1 (solution_See3a04352019864cBeT10feBcSeed31207798b_1)

Tolerance

[ 3006+ 00083 000e+3 12084 150eed 15084 210eed

240ev4  270s+4  300ewd 330804

380ess 300844

Tolerance ® Difference

[] 300es3  8.00esd 0ODesd 120eed  150erd 180e+d  210erd

240e+d  270e+4  300erd  330eed

380evs 3.00e+d
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RTL Generation, Optimization, and Verification

RTL Generation:
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Portable for FPGAs and ASICs

= Synthesizable Verilog, SystemVerilog, and VHDL code
= Specific features are:

Functional Verification:

— Two-way traceability between Model and Code (Report)
— Timing and Area optimization options

VHDL Verilog System
Verilog

— Floating-Point Support for IEEE-754 double, single, and half-precision data types with

MATLAB Functions Simulink Models Stateflow Charts Simscape Models
\ o& SNE )
4\ % l?&) " Simsco pe
l ] ]
v
[ HDL Coder
v \ v

= Denormal Numbers
= EXxceptions such as NaN, Inf, and Zero

SYSTEM-LEVEL ENVIRONMENT
Simulink model

Data Source mmsp Algorithm == Analysis

= Customizable latency options

= Many supported math and trigonometric functions

HDL
Verifier

SYSTEMVERILOG UVM ENVIRONMENT

coreboard
Generate testbenches Sequences I— 5 j

(Co-Simulation, SystemVerilog and UVM) .

— Design Under Test — e

(DUT)

17



Demo — Battery SoC — RTL Generation

First, prepare the model.

Second, generate code and reports.

P4 slexFPGAPredictFix16 * - Simulink prerelease use

SIMULATION

MODELING FORMAT
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= P =
Hoy (E) @ @ Code for = =l Mﬁ q::
&) HDL Code Advisor - slexFPGAPredictFix16/neural_network I
Generic Workflow | HDL Property | HDL Code Settings neural network I { I Generate View Generate Share
Edit Help HDL Code ~ Advisor Inspector ~ Advisor - = —  HDL Code Code Testbench -
OUTPUT | ASSISTANCE|  MODELING PREPARE GENERATE CODE DEPLOY _ |REVIEW RESULTS|  VERIFY SHARE ry
Find: M
| Code Generation Report - O X
Check package file names ) —
v @ L4 HDL Code Advisor Analysis < € Ffnd: ¥ 4 ¥ MatchCase ‘
> @ L@ Checks for blocks and block settings Check file name containing packages Contents Generic Resource Report for slexFPGAPredictFix16
Summary
v @ [d Industry standard check .
@ MGy sncarc checks Run This Check 0 Warnings, 0 Messages
@ @ Check architecture name Clock Summary, Summary
8 @ Check clock settings Result: A Warning Code Interface Report
Timing And Area Report s
@ A Check clock, reset, and enable signals Warn : Check package file names High-level Resource Report Multipliers 160
- ; f - Adders/Subtractors 160
Check file extension . . oating-Point Resource .
Warning : The postfix for the package file is Report Registers 0
8 @ Check generics '_pkg'. Industry standards recommend '_pac' O_ptmzation - General Total 1-Bit Registers 0
@ @ Check naming conventions as the postfix name. Delay Balancing RAMs 0
. i i Multiplexers 40
@ A Check package file names o slexFPGAPredictFixl6 Hierarchy Flattening .p
) Code Reuse /0 Bits 96
@ @ Check signal and port names Optimization - Area Static Shift operators 0
8 @ Check entity and architecture Streaming and Sharing Dynamic Shift operators 0
ty
8 @ Check module/entity names Optimization -.Tlmlmlg
ao Action | _Clock Rate Pipelining neural_network || View All | neural_network o
Check top-level subsystem/port names | it o afing . 8
P y P Update the generated package file postfix to _pac Distributed Tipelining © | [Pal slexFPGAPredictFix16 » 53] neural_network - ~ Main S
> @ [d Model configuration checks - Adaptive Pipelining ShowPortLa... FromPorticor | €
. . . f ; | Optimization - 1/O €l Permissions  ReadWrite 2
> @ L@ Native Floating Point checks Modify Settings | P / : 2
Frame to Sample o} ErrorFen 3
> @ Lg Checks for ports and subsystems Result: Traceability Report : PermitHierar._. All E
@ TreatAsAto... on
Generated Source Files ufix16_Ent5 ufixt6_Ent5 [1 ufic16_Ent4 ShowSubsy... off
Comesgirpeesmey, @ W o) | vingtoop. or
neural_network_pac.vhd input : el umeEntt S5e .
SystemSam... -1
luvh Code Generation
Help Apply / pehd 8 » e .
RTWSvatam Autn
OK Help
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Vector-Matrix Multiplication with Bias — Default

Vector-Matrix or even Matrix-Matrix multiplication can increase the area usage
extremely when using no optimizations and default architectures.

n—1
1 B
sfix18_En13 [1x10] , = .
a ®1 [1x107 Matrix |s36_En23(1x10) [ B i Cl ak ki
N"_ sfix18_En10 [10x10] Multiply | ¢ (1x10] sfix37_En23 [1x10]
A _ , -
B Ez} [10x1(; N [1x1 d k_O
INZ__ sfix18_En13 (10 ou )
h G " 0<i<m
In3 a * —
HEHNEEEEEEE m—lerrrr LI

= The product 1xn * nxm = 1*m, requires n*m multipliers and (n-1)*m adders.
For n =m = 10, that is 100 multipliers and 90 adders.

Multipliers 160

- For the Bias, additional m adders are required (10 adders) [;‘j;iifj“b”a“"“ =
Total 1-Bit Registers 0

RAMs 0

. Multiplexers 40

However, do you need such a high throughput here? ot %
Static Shift operators 0

Dynamic Shh: operators 0

21



Vector-Matrix Multiplication with Bias — Streaming

With the Optimization features Streaming or Sharing you can reduce the
hardware costs in exchange of reducing the maximal throughput.

0
10
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SharingFa ctor
StreamingFactor
sfix18_En13 [1x10]
aCD) .
, [1x10]| Matrix |sfix36_En23 [1x10]
B &sﬁxm_rznm[mxm] ,| Muitply [ c [1x10]
X [10x10] .
N2 sfix18_En13 (10) 10
b GO
In3
:;17 o ufix16_En15,
54 in1 g0 o
Serializer_Subnetwgyf2 10 Ent2 () outd -m
MMul_dot_product

o " f |sxte_Ents)

Multiplication of the i-th row of B with scalar a;
and then accumulation of the result.

sfix16
utd
in1
rializer_Subietwork7
MMul_add_01

in0
sfix T\ Er}12

rializer_Subnetwork8

b} in0
sfix16_En12

out0

in1
ufix4
Deserializer_Subnetwork 1
a;B; ,0 <

MMul_add_12
MMul_add_23

i <n

MMul_add_

sfi

in0
2 [1x10)
outd
in1
sfixd

in0
_En12 f
out
in1
ufixd

Deserializer_Subnet

sfix16_En12

+
Serializer_Subnetwork ">

fix37_En23 [1x10
sfix37_En [x]d

[1x10]

out

Code Generation Report

< € Find:

4+ Vv Match Case

Optimization - General
Delay Balancing
Hierarchy Flattening

Code Reuse
Optimization - Area
Streaming and Sharing

Subsystem: hiddenLayerl

StreamingFactor: 10

Highlight streaming groups and diagnostics

>
sfix16_En12

All this is carried out m-times and
so the throughput is m-times lower
when using the same base clock.

Optimization - Timing Group Id Inferred Streaming Factor Blocks in Group Color Legend
Clock Rate Pipelining 1 10 Group 1
Distributed Pipelining o 10 Group 2 _
_Adaptive Pipelining 3 10 G 3
Optimization - I/O =2foup 2 _ =
P in0 i€ . .
5"“6—5"‘1 . owof Multipliers 25
ufix4
Deserializer Sut Adders/Subtractors 28
Registers 738
Total 1-Bit Registers 11721
RAMs 0
Multiplexers 63
1/O Bits 100
Static Shift operators 0
Dynamic Shift operators 0
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Vector-Matrix Multiplication with Bias — Architecture Setting
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The Matrix-Multiply block has additional architecture settings that can be used

together with Streaming.

4 ¥ Match Case

Subsystem: hiddenLayerl

Highlight streaming groups and diagnostics

Group Id Inferred Streaming Factor

Group 1

Blocks in Group

Color Legend

Note: The number of adders is higher,
but most are small (3 or 4 bit).

DotProductStrategy Serial Multiply-Aaccumulate T ———
<@ &  Find:
DSFSt}' none W
a ®sﬁx1 8 _En13 [1x10] le Code Reuse * | Streaming Report
. Optimization - Area
in1 [1)(10] Matrix SﬁXSS—En23 [1,"10] | Streaming and Sharing
sfix18_En10 [10x10] Multiply 1x10 sfix37_En23 [1x10] Optimization - Timing '
B ( 2 } > C [ ] d Clock Rate Pipelining StreamingFactor: 10
o [10x10] + [1x10] out Distributed Pipelining
b @Sﬁ)ﬂ B_EITI 3 (10) 10 _Adaptive Pipelining
Optimization - I/O
Frame to Sample
In3 Traceability Report 1 10
aB; ,0<j<m
jo Y=
. [
i Ya(i)b(ijdataOut f——pli
@uwnh’tn!t\‘lb, ' ‘ 3 x P‘plahmaTgls(,T
“ = e . | e E— _E@ sfixi6_En12 [1x10] sfix16_En12
> Reshape 00 r: ) PlpsinaTioghitet m ;:::mt + prory==i1 Y T sfix16_En12 [1x10)
weights = IE TSI smsjn“ Aetation D lizer_Subnetwork
“"—l Sali)bi)data0l . bias it g=
ﬂ . ain ' Throughput is again m-times lower

Scalar-multiplication of a with the j-th column of B
by using a Multiply-Accumulate block.

when using the same base clock.
Overall hardware costs are lower.

Multipliers 30
Adders/Subtractors 55
Registers 137
Total 1-Bit Registers 1575
RAMSs 0
Multiplexers 135
1/O Bits 100
Static Shift operators 0
Dynamic Shift operators 0
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Creating your own Blocks and Libraries

You don’t have to stick to existing blocks and their settings.

= Create your own models from basic library blocks (Add, Product, Delay, etc.)
= Test the model against existing blocks (Matrix-Multiply, Filter, etc.)

= Create a dialog for your model or subsystem for parameterization (masking)
- Add the new block together with a documentation to a library

ibrary: addition .HN.
B -
© [ -4
3 y %
z o ) oo | Mdataln

) Vector Txa;rixnr;ﬂ;ltl:r!:s; :f]lth Bias Y weighis Vector-Matrix Muliply with Bias

- der constru xn*nxm=1xm  gata0ut
) with 5 m=10 gblas withn=5,m=10 P

VectorMatrixMultiplyAddSerial gtart
/ VectorMatrixMultiplyAddSerial1

Link will be disabled when
copied to a model.
pi —

Vector-Matrix Multiply with Bias
) 1xn * nxm = 1xm >
) withn=5 m=10
VectorMatrixMultiplyAddSerialLessRegs
S

il

Vector-Matrix Multiply
Y Deserializer for an nxm matrix
withn =5 m=10

VectorMatrixMultiplyAddDeserializer
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Vector-Matrix Multiplication with Bias — Custom Architectures

You can dramatically reduce the costs by creating your own library blocks.

convert

D3 :d

D4 [1x10] fT9 los  [1xi0] Sz:—‘ ,—> I o ‘ J
a ? [1x10] wo [1x1oTP StartOut :I—‘F T ’: | 01 o 1 DT }ZOF:, D3
1
D4 [0x10]  [Tray |04 [100x1] o1 ox ™ ‘
B ? [wchﬂil [100x1] P s
Vector-Matrix Multiply with Bias
b GCO— > o P sp convert |~ "o | 1xn * nxm = 1xm D
in3 " m_m withn=5 m=10
VectorMatrixMultiplyAddSerial
- RT . s D1
@ o4 [1x10] O |os  [1x10] > o1 o1 -
a . (1101 g g | (10| Startout .—:+ O S Ol o
[1x1] [ [

> o1 | [1x1]

D4 [10x10] D1 1x1] X
B [10x10] [:, [100x1] F‘ : s [1x1]
Vector-Matrix Multiply with Bias
b Ps =] £ 1xn * nxm = 1xm
Serializer1D2 o0 with n = 5, m=10
Custom Interleaver without register VectorMatrixMultiplyAddSerialLessRegs

usage because of constant input.
Small change — big impact.

convert

IIIIIIIIIIIIIIIIIIIIIII

DvVCon

Multipliers 3
Adders/Subtractors 13
Registers 267
Total 1-Bit Registers 3827
RAMs 0
Multiplexers 67
/O Bits 94
Static Shift operators 0
Dynamic Shift operators 0
Multipliers 3
Adders/Subtractors 13
Registers 97
Total 1-Bit Registers 1316
RAMSs 0
Multiplexers 63
/O Bits 94
Static Shift operators 0
Dynamic Shift operators 0

Note: Throughput is now (n*m)-times
lower when using the same base clock.
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Functional Verification
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2024

DESIGN AND VERIFICATION ™

CONFERENCE AND EXHIBITION

Demo — Battery SoC — RTL Verification

Once you generated code you can also generate a testbench model:

P4 slexFPGAPredictFix16 * - Simulink prerelease use — m} X 4| compare: SOC — [} %
| File Tools View Simulation Help ~|
ree = o . — = \ = Y.
Code for =] =l .b %o o - :‘ﬂ K:) > & o v K] L'_l N ; |'_\£ M

Generic
HDL Code ~

I Generate View Generate Share
—  HDLCode Code Testbench ~ =

neural_network

GENERATE CODE DEPLO REVIEW RESULTS VERIFY SHARE

| . 1 Open ~ Stop Time | timeVecto \ :

= , 4 @ P 2

New Save ¥ f\_;"a M |1 G - Step RiG ey Data Bird's-Eye -

~ = Print = ble Back ~ - Forward Inspector Al Scope

FILE PREPARE sl LATE
slexFPGAPredictHdIFinal_mq B

@ |[*a|slexFPGAPredictHdIFinal_mgq » -
| &

" " input ufix15_En13 R

£3 input |—¢ input soc 73 >

input ufix15_En14 (5) true

| =

= ToCosimSrc neural_network ToCosimSink - estim
| socC
| = »(Gurrent ?@

N >
| P lrue » vollage @ €] current " D
)
D »
temp @ ) voltage
D temperature
inputSignals

I .
I measuredSOC Al Iﬂ/ estim @

J true

| @ current @
MadelSim @ voltage @
. J E >4
vsimulink -voptargs=+acc work.neural_network input ) soc LV gr——

> Double-click here to launch ModelSim e
) 2
» o . ¢ Sharedem Compare —Rem Sample based [T=39290.000

» neural_network_mgq R EERRR__r_—_—h—wwwwy—]=

‘ Ready 137% NetworkCondition FixedStepDiscrete 27
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RTL Verification — Further Options

Co-simulation and other options can also be used to verify manually written
code:

= SystemVerilog DPI-C component generation

- UVM component and testbench generation

= Option to generate a testbench to test individual SV, UVM components
« SystemC TLM component generation

HDL Algorithm Verification
Verifier | |
'ﬁ HDL Cosimulation Verification IP Export
4\ Svsrcni%rilag“ SV DPI Components
rq_-_—_.___,. "'1
» LUVM UVM Testbenches
R -
- | Avstenc TLM Components
ASIC Testbench
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Test, Prototype and Debug on FPGA

Use FPGAs and SoCs for verification and prototyping:
« FPGA-In-the-Loop
= Prototyping and debugging

— AXI Manager (synthesize, send, receive, and analyze data with MATLAB)
— FPGA Data Capture (Capture data in real-time and analyze it then with MATLAB)

HDL Algorithm Verification
Verifier FPGA Debug

4\ % FPGA-in-the-Loop ﬁ

P
d

AXI Manager

Data Capture

ASIC Testbench
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What about Deep Learning Networks?

DDDDDDDDDDDDDDDDDD

EEEEEEEEEEEEEEEEEEE

They can also be implemented using Deep Learning HDL Toolbox.

Deep Learning Processor

4

Application
logic

Analyze
Profile

Weights &
Activations

Layer
control
instructions

Build Processor

HDL Coder

Activation
Data

I

Weight
Data

N
Debugger/ Instruction
Data

Memory Access Arbiters

!

!

L |

[Convolution][

Fully-

Connected

Profiler &
Debugger

=

Layer Processing Modules

— ———— — — ——— — — — — — — — — — — —

_____________________________________________________________

|

IP core mterface

DL Processor
HDL

\/

N

FPGA Bitstream

IIIII

TION
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DESIGN AND VERIFICATION ™

DVCOIN

CONFERENCE AND EXHIBITION

Deep Learning Layer Blocks R2024b

You now can export Deep Learning Networks (also shallow ones) to Simulink.

¥4 Library: dlactivationlib - Simulink prerelease use - o x
h ™ Open 15
; \ E . gs ! = &
sequenceinput Istm_1 Istm_2 fc i L et sina - =
4 sequencelnput... IstmLayer IstmLayer fullyConnected... v By Pint - E'Wj_ff : — UD":'}‘ . o .
| ¥ > dactrationlls — — — =
- HE -
v A v ia Activation La
yers
dropout_1 E dropout_2 layer X
dropoutLayer dropoutLayer sigmoidLayer 2
g LIBRARY &=
AN / \ / [ Open ~ “-JS - . RelU A LeakyRetU P ) CippedRelu P 3 GELU b
" H zm: ) BL"’“’W ST'gbr,i' N RelLU Layer Leaky ReLU Layer Clipped ReLU Layer GELU Layer
- &8 Prinf - rowser a
mdlInfo = exportNetworkToSimulink(net, ... e e
. o
"ModelName", "BatterySOC_LSTM", ... § © Caldconic ' | o b
"SaveNetworkInModelWorkspace", true, ... = ; Convolution Layers Tarh Loy Sigmoid Laye Sotmar Layer
"OpenSystem", true, ... = .
. " " " L= A Convolution 1D P » @ .
InputDataType”, "double"); , B — |_|brary Blocks

Convolution 1D Layer

Fully Connected Layer

’i BanerySOC \STM/BanerySOC LSTM * - Simulink prerelease use a X |
lsequencelib - Simulink prerelease use - o X
SIMULATION MODELING FORMAT S w
A Convolution 20
dub o %g . . = _ qg QJ HD m Convolution 2D Layer Fully Connected Layer )
, &lsae ~ T Signal ~ [ Normal -) Step  Run Step Data Logic BirdsEye | Y Y ¥ T | Library Signal * | iocked
| -~ G eint ~ e Table o Fast Restart Back ~ - Fem] Inspector Analyzer Scope it = Browser Table Library
FILE LIBRARY PREPARE SIMULATE REVIEW RESULTS = 2 Ll AR R > —
— disequencelib % LSTMPwjectedCore =| 3
| % b W Barenysoc LSTM = g | || disequencelit ¥ - g
| & | ® |[PalsatterySOC_LSTM P [Pa]BatterySOC_LSTM I ‘ A Convolution3D 3
§ ) Sequence Layers §
E Convolution 3D Layer
g ]
(1 )——»| Rescal ic 1D ) L5TM Dropout . Copyright 2023-2024 The MathWorks, Inc.
put | — )
sequenceinput_normalization Istm_1 dropout_1 Ready S 139%  NewworkCondition ) LSTMProjected P 2 Flatten p
L | LSTM Layer LSTM Projected Layer Flatten Layer
LSTM Dropout Fully Connected Sigmoid (1) -
t1
@ ou | .
| Istm_2 dropout_2 fe layer R Copyright 2023-2024 The MathWaorks, Inc.
[
! & ] Ready 156% NetworkCondition
Ready 125% NetworkCondition FixedStepAuto
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