
1© 2024 The MathWorks, Inc.

Efficient AI

Mastering Shallow Neural Networks

from Training to RTL Implementation

Tom Richter, Application Engineer, MathWorks

trichte@mathworks.com

mailto:trichte@mathworks.com


2

Outline

▪ Overview about Neural Networks

▪ Ways to model, train, and validate Shallow Neural Networks

▪ Quantization

▪ RTL and report generation

▪ Vector-Matrix Multiplication optimization options

▪ Functional Verification

▪ Deep Learning Network implementation options

▪ Questions



3

Overview about Neural Networks
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Neural Networks

In Machine Learning, a Neural Network is a model inspired by the structure and 

function of biological neural networks in brains.

▪ Nodes model neurons, these are connected by edges which model synapses

▪ Nodes/Neurons are aggregated into layers: Input, Hidden, and Output

▪ Outputs of Neurons are the sums of weighted inputs through a non-linear 

activation function
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Kinds of Neural Networks

There are numerous neural networks, each featuring its own distinct structure 

and purpose. For example:

▪ Feedforward Neural Networks (FNN)

– using Fully Connected Layers with an Activation Function

▪ Convolutional Neural Networks (CNN)

– also requires Convolutional Layers which are computing sliding dot-products

▪ Recurrent Neural Networks (RNN)

– Having internal states which are used to compute the next state

▪ Long Short-Term Memory networks (LSTM)

– As RNNs, having internal states but can forget as well
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Shallow vs. Deep Neural Network

When becomes a Neural Network a Deep Neural Network?

Shallow Neural Network Deep Neural Network

Number of hidden layers a few (maybe 1-5) many (tens or hundreds)

Complexity of the layers low high

Learning capability limited great

Risk of overfitting lower higher

Memory for parameters low (normally less than 1 KB) high (often more than 1 MB)

Examples Regression networks (FNNs) CNNs for image recognition

A direct implementation

is possible and beneficial

A processor or FSM 

implementation is necessary 

together with RAM access
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Ways to model, train, and validate 

Shallow Neural Networks
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How getting the Neural Network?

Statistics and Machine Learning Toolbox to define, 

train, validate, and model

▪ Shallow Regression Networks or 

▪ Shallow Classification Networks

Deep Learning Toolbox for designing and 

implementing deep neural networks with algorithms, 

pretrained models, and apps. Features:

▪ Build, edit, combine

▪ Load, import, analyze, 

▪ Train and monitor (inclusive transfer learning)

▪ Quantize

▪ Export networks
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Example – Battery State of Charge (SoC)

SoC estimation remains a significant challenge because of 

▪ Nonlinear temperature and battery health

▪ Traditional approaches require precise parameters and battery knowledge

A data-driven approach using Neural Networks

▪ Requires minimal knowledge of the battery and its nonlinear characteristics

▪ Can predict the SoC as good as complex traditional methods (e.g.: Kalman)

Example is based on: Deploy Neural Network Regression Model to FPGA/ASIC Platform

https://www.mathworks.com/help/stats/deploy-neural-network-regression-model-to-fpga-platform.html
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Battery SoC – Load Data, Define, and Train a Neural Network

The original battery data used for training and validation comes from:

LG 18650HG2 Li-ion Battery Data and Example - McMaster University

For keeping the network small and hardware friendly we decide for

▪ 2 Hidden layers with sizes 10

▪ Activations using RELU 

Training can be achieved using

▪ Regression Learner App, or

▪ Function fitrnet

https://data.mendeley.com/datasets/cp3473x7xv/3
https://www.mathworks.com/help/stats/regressionlearner-app.html
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Battery SoC – Import Network Model to Simulink for Prediction

The Statistics and Machine Learning Toolbox 

Library comes with two blocks:

A Testbench model can be used with the 

Regression Neural Network Predict block.

The trained Regression FNN model is 

the parameter for the block.  
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Demo – Battery SoC – From Training to Model
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Quantization
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Quantization or Fixed-Point Conversion

There exist several options for Fixed-Point conversion:

Automate with a Script or 

interactive using an App
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Demo – Battery SoC – Convert Simulink Model to Fixed-Point

Document the data type conversion steps by using the command line interface:
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RTL and Report Generation
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RTL Generation, Optimization, and Verification

RTL Generation:

▪ Portable for FPGAs and ASICs

▪ Synthesizable Verilog, SystemVerilog, and VHDL code

▪ Specific features are:

– Two-way traceability between Model and Code (Report)

– Timing and Area optimization options

– Floating-Point Support for IEEE-754 double, single, and half-precision data types with

▪ Denormal Numbers

▪ Exceptions such as NaN, Inf, and Zero

▪ Customizable latency options

▪ Many supported math and trigonometric functions

Functional Verification:

▪ Generate testbenches 

(Co-Simulation, SystemVerilog and UVM) 
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Demo – Battery SoC – RTL Generation

First, prepare the model.                     Second, generate code and reports.
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Vector-Matrix Multiplication 

Optimization Options
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Vector-Matrix Multiplication with Bias – Default 

Vector-Matrix or even Matrix-Matrix multiplication can increase the area usage 

extremely when using no optimizations and default architectures.

▪ The product 1xn * nxm = 1*m, requires n*m multipliers and (n-1)*m adders. 

For n = m = 10, that is 100 multipliers and 90 adders.

▪ For the Bias, additional m adders are required (10 adders)

However, do you need such a high throughput here?
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Vector-Matrix Multiplication with Bias – Streaming

With the Optimization features Streaming or Sharing you can reduce the 

hardware costs in exchange of reducing the maximal throughput.

𝑐𝐵

𝑏

𝑎

𝑑

𝑎𝑖𝐵𝑖  , 0 ≤ 𝑖 < 𝑛
Multiplication of the 𝑖-th row of 𝐵 with scalar 𝑎𝑖 

and then accumulation of the result.

All this is carried out m-times and 

so the throughput is m-times lower 

when using the same base clock. 
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Vector-Matrix Multiplication with Bias – Architecture Setting

The Matrix-Multiply block has additional architecture settings that can be used 

together with Streaming.

𝑐𝐵

𝑏

𝑎

𝑑

𝑎𝐵𝑗  , 0 ≤ 𝑗 < 𝑚

Scalar-multiplication of 𝑎 with the 𝑗-th column of 𝐵
by using a Multiply-Accumulate block.

Throughput is again m-times lower 

when using the same base clock.

Overall hardware costs are lower. 

Note: The number of adders is higher, 

but most are small (3 or 4 bit).
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Creating your own Blocks and Libraries

You don’t have to stick to existing blocks and their settings. 

▪ Create your own models from basic library blocks (Add, Product, Delay, etc.)

▪ Test the model against existing blocks (Matrix-Multiply, Filter, etc.) 

▪ Create a dialog for your model or subsystem for parameterization (masking)

▪ Add the new block together with a documentation to a library
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Vector-Matrix Multiplication with Bias – Custom Architectures

You can dramatically reduce the costs by creating your own library blocks. 

𝐵

𝑏

𝑎
𝑑

Note: Throughput is now (n*m)-times 

lower when using the same base clock.

Custom Interleaver without register 

usage because of constant input.

Small change – big impact.

𝐵

𝑏

𝑎
𝑑
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Functional Verification
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Demo – Battery SoC – RTL Verification

Once you generated code you can also generate a testbench model:
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RTL Verification – Further Options

Co-simulation and other options can also be used to verify manually written 

code:

▪ SystemVerilog DPI-C component generation 

▪ UVM component and testbench generation 

▪ Option to generate a testbench to test individual SV, UVM components

▪ SystemC TLM component generation
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Test, Prototype and Debug on FPGA

Use FPGAs and SoCs for verification and prototyping:

▪ FPGA-in-the-Loop

▪ Prototyping and debugging

– AXI Manager (synthesize, send, receive, and analyze data with MATLAB)

– FPGA Data Capture (Capture data in real-time and analyze it then with MATLAB) 
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Deep Learning Network 

Implementation Options
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What about Deep Learning Networks?

They can also be implemented using Deep Learning HDL Toolbox.

HDL Coder

IP core interface

DL Processor 

HDL

Application 

logic

Deep Learning Processor

Quantize
Compile & 

Deploy Network

FPGA Bitstream

Analyze 

Profile

Build Processor
Customize
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Memory Access Arbiters

Activation 

Data
Weight

Data

Debugger/ Instruction

Data

Layer Processing Modules

Scheduler Convolution
Fully-

Connected
Addition Profiler & 

Debugger

Layer 

control 

instructions

Weights & 

Activations
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Deep Learning Layer Blocks

You now can export Deep Learning Networks (also shallow ones) to Simulink.  

Library Blocks
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Questions


	Slide 1: Efficient AI Mastering Shallow Neural Networks from Training to RTL Implementation
	Slide 2: Outline
	Slide 3: Overview about Neural Networks 
	Slide 4: Neural Networks
	Slide 5: Kinds of Neural Networks
	Slide 6: Shallow vs. Deep Neural Network
	Slide 7: Ways to model, train, and validate  Shallow Neural Networks  
	Slide 8: How getting the Neural Network?
	Slide 9: Example – Battery State of Charge (SoC)
	Slide 10: Battery SoC – Load Data, Define, and Train a Neural Network
	Slide 11: Battery SoC – Import Network Model to Simulink for Prediction
	Slide 12: Demo – Battery SoC – From Training to Model
	Slide 13: Quantization
	Slide 14: Quantization or Fixed-Point Conversion
	Slide 15: Demo – Battery SoC – Convert Simulink Model to Fixed-Point
	Slide 16: RTL and Report Generation
	Slide 17: RTL Generation, Optimization, and Verification
	Slide 19: Demo – Battery SoC – RTL Generation
	Slide 20: Vector-Matrix Multiplication  Optimization Options
	Slide 21: Vector-Matrix Multiplication with Bias – Default 
	Slide 22: Vector-Matrix Multiplication with Bias – Streaming
	Slide 23: Vector-Matrix Multiplication with Bias – Architecture Setting
	Slide 24: Creating your own Blocks and Libraries
	Slide 25: Vector-Matrix Multiplication with Bias – Custom Architectures
	Slide 26: Functional Verification
	Slide 27: Demo – Battery SoC – RTL Verification
	Slide 28: RTL Verification – Further Options
	Slide 29: Test, Prototype and Debug on FPGA
	Slide 31: Deep Learning Network  Implementation Options
	Slide 32: What about Deep Learning Networks?
	Slide 33: Deep Learning Layer Blocks
	Slide 34: Questions

