
1© 2024 The MathWorks, Inc.

Efficient AI

Mastering Shallow Neural Networks

from Training to RTL Implementation

Tom Richter, Application Engineer, MathWorks

trichte@mathworks.com

mailto:trichte@mathworks.com

2

Outline

▪ Overview about Neural Networks

▪ Ways to model, train, and validate Shallow Neural Networks

▪ Quantization

▪ RTL and report generation

▪ Vector-Matrix Multiplication optimization options

▪ Functional Verification

▪ Deep Learning Network implementation options

▪ Questions

3

Overview about Neural Networks

4

Neural Networks

In Machine Learning, a Neural Network is a model inspired by the structure and

function of biological neural networks in brains.

▪ Nodes model neurons, these are connected by edges which model synapses

▪ Nodes/Neurons are aggregated into layers: Input, Hidden, and Output

▪ Outputs of Neurons are the sums of weighted inputs through a non-linear

activation function

5

Kinds of Neural Networks

There are numerous neural networks, each featuring its own distinct structure

and purpose. For example:

▪ Feedforward Neural Networks (FNN)

– using Fully Connected Layers with an Activation Function

▪ Convolutional Neural Networks (CNN)

– also requires Convolutional Layers which are computing sliding dot-products

▪ Recurrent Neural Networks (RNN)

– Having internal states which are used to compute the next state

▪ Long Short-Term Memory networks (LSTM)

– As RNNs, having internal states but can forget as well

6

Shallow vs. Deep Neural Network

When becomes a Neural Network a Deep Neural Network?

Shallow Neural Network Deep Neural Network

Number of hidden layers a few (maybe 1-5) many (tens or hundreds)

Complexity of the layers low high

Learning capability limited great

Risk of overfitting lower higher

Memory for parameters low (normally less than 1 KB) high (often more than 1 MB)

Examples Regression networks (FNNs) CNNs for image recognition

A direct implementation

is possible and beneficial

A processor or FSM

implementation is necessary

together with RAM access

7

Ways to model, train, and validate

Shallow Neural Networks

8

How getting the Neural Network?

Statistics and Machine Learning Toolbox to define,

train, validate, and model

▪ Shallow Regression Networks or

▪ Shallow Classification Networks

Deep Learning Toolbox for designing and

implementing deep neural networks with algorithms,

pretrained models, and apps. Features:

▪ Build, edit, combine

▪ Load, import, analyze,

▪ Train and monitor (inclusive transfer learning)

▪ Quantize

▪ Export networks

9

Example – Battery State of Charge (SoC)

SoC estimation remains a significant challenge because of

▪ Nonlinear temperature and battery health

▪ Traditional approaches require precise parameters and battery knowledge

A data-driven approach using Neural Networks

▪ Requires minimal knowledge of the battery and its nonlinear characteristics

▪ Can predict the SoC as good as complex traditional methods (e.g.: Kalman)

Example is based on: Deploy Neural Network Regression Model to FPGA/ASIC Platform

https://www.mathworks.com/help/stats/deploy-neural-network-regression-model-to-fpga-platform.html

10

Battery SoC – Load Data, Define, and Train a Neural Network

The original battery data used for training and validation comes from:

LG 18650HG2 Li-ion Battery Data and Example - McMaster University

For keeping the network small and hardware friendly we decide for

▪ 2 Hidden layers with sizes 10

▪ Activations using RELU

Training can be achieved using

▪ Regression Learner App, or

▪ Function fitrnet

https://data.mendeley.com/datasets/cp3473x7xv/3
https://www.mathworks.com/help/stats/regressionlearner-app.html

11

Battery SoC – Import Network Model to Simulink for Prediction

The Statistics and Machine Learning Toolbox

Library comes with two blocks:

A Testbench model can be used with the

Regression Neural Network Predict block.

The trained Regression FNN model is

the parameter for the block.

12

Demo – Battery SoC – From Training to Model

13

Quantization

14

Quantization or Fixed-Point Conversion

There exist several options for Fixed-Point conversion:

Automate with a Script or

interactive using an App

15

Demo – Battery SoC – Convert Simulink Model to Fixed-Point

Document the data type conversion steps by using the command line interface:

16

RTL and Report Generation

17

RTL Generation, Optimization, and Verification

RTL Generation:

▪ Portable for FPGAs and ASICs

▪ Synthesizable Verilog, SystemVerilog, and VHDL code

▪ Specific features are:

– Two-way traceability between Model and Code (Report)

– Timing and Area optimization options

– Floating-Point Support for IEEE-754 double, single, and half-precision data types with

▪ Denormal Numbers

▪ Exceptions such as NaN, Inf, and Zero

▪ Customizable latency options

▪ Many supported math and trigonometric functions

Functional Verification:

▪ Generate testbenches

(Co-Simulation, SystemVerilog and UVM)

19

Demo – Battery SoC – RTL Generation

First, prepare the model. Second, generate code and reports.

20

Vector-Matrix Multiplication

Optimization Options

21

Vector-Matrix Multiplication with Bias – Default

Vector-Matrix or even Matrix-Matrix multiplication can increase the area usage

extremely when using no optimizations and default architectures.

▪ The product 1xn * nxm = 1*m, requires n*m multipliers and (n-1)*m adders.

For n = m = 10, that is 100 multipliers and 90 adders.

▪ For the Bias, additional m adders are required (10 adders)

However, do you need such a high throughput here?

* =

𝑐𝑖 = ෍

𝑘=0

𝑛−1

𝑎𝑘𝐵𝑘𝑖

0 ≤ 𝑖 < 𝑚

𝑐𝐵

𝑏

𝑎 𝐵

𝑎

𝑑

22

Vector-Matrix Multiplication with Bias – Streaming

With the Optimization features Streaming or Sharing you can reduce the

hardware costs in exchange of reducing the maximal throughput.

𝑐𝐵

𝑏

𝑎

𝑑

𝑎𝑖𝐵𝑖 , 0 ≤ 𝑖 < 𝑛
Multiplication of the 𝑖-th row of 𝐵 with scalar 𝑎𝑖

and then accumulation of the result.

All this is carried out m-times and

so the throughput is m-times lower

when using the same base clock.

23

Vector-Matrix Multiplication with Bias – Architecture Setting

The Matrix-Multiply block has additional architecture settings that can be used

together with Streaming.

𝑐𝐵

𝑏

𝑎

𝑑

𝑎𝐵𝑗 , 0 ≤ 𝑗 < 𝑚

Scalar-multiplication of 𝑎 with the 𝑗-th column of 𝐵
by using a Multiply-Accumulate block.

Throughput is again m-times lower

when using the same base clock.

Overall hardware costs are lower.

Note: The number of adders is higher,

but most are small (3 or 4 bit).

24

Creating your own Blocks and Libraries

You don’t have to stick to existing blocks and their settings.

▪ Create your own models from basic library blocks (Add, Product, Delay, etc.)

▪ Test the model against existing blocks (Matrix-Multiply, Filter, etc.)

▪ Create a dialog for your model or subsystem for parameterization (masking)

▪ Add the new block together with a documentation to a library

25

Vector-Matrix Multiplication with Bias – Custom Architectures

You can dramatically reduce the costs by creating your own library blocks.

𝐵

𝑏

𝑎
𝑑

Note: Throughput is now (n*m)-times

lower when using the same base clock.

Custom Interleaver without register

usage because of constant input.

Small change – big impact.

𝐵

𝑏

𝑎
𝑑

26

Functional Verification

27

Demo – Battery SoC – RTL Verification

Once you generated code you can also generate a testbench model:

28

RTL Verification – Further Options

Co-simulation and other options can also be used to verify manually written

code:

▪ SystemVerilog DPI-C component generation

▪ UVM component and testbench generation

▪ Option to generate a testbench to test individual SV, UVM components

▪ SystemC TLM component generation

29

Test, Prototype and Debug on FPGA

Use FPGAs and SoCs for verification and prototyping:

▪ FPGA-in-the-Loop

▪ Prototyping and debugging

– AXI Manager (synthesize, send, receive, and analyze data with MATLAB)

– FPGA Data Capture (Capture data in real-time and analyze it then with MATLAB)

31

Deep Learning Network

Implementation Options

32

What about Deep Learning Networks?

They can also be implemented using Deep Learning HDL Toolbox.

HDL Coder

IP core interface

DL Processor

HDL

Application

logic

Deep Learning Processor

Quantize
Compile &

Deploy Network

FPGA Bitstream

Analyze

Profile

Build Processor
Customize

Estimate

Memory Access Arbiters

Activation

Data
Weight

Data

Debugger/ Instruction

Data

Layer Processing Modules

Scheduler Convolution
Fully-

Connected
Addition Profiler &

Debugger

Layer

control

instructions

Weights &

Activations

33

Deep Learning Layer Blocks

You now can export Deep Learning Networks (also shallow ones) to Simulink.

Library Blocks

34

Questions

	Slide 1: Efficient AI Mastering Shallow Neural Networks from Training to RTL Implementation
	Slide 2: Outline
	Slide 3: Overview about Neural Networks
	Slide 4: Neural Networks
	Slide 5: Kinds of Neural Networks
	Slide 6: Shallow vs. Deep Neural Network
	Slide 7: Ways to model, train, and validate Shallow Neural Networks
	Slide 8: How getting the Neural Network?
	Slide 9: Example – Battery State of Charge (SoC)
	Slide 10: Battery SoC – Load Data, Define, and Train a Neural Network
	Slide 11: Battery SoC – Import Network Model to Simulink for Prediction
	Slide 12: Demo – Battery SoC – From Training to Model
	Slide 13: Quantization
	Slide 14: Quantization or Fixed-Point Conversion
	Slide 15: Demo – Battery SoC – Convert Simulink Model to Fixed-Point
	Slide 16: RTL and Report Generation
	Slide 17: RTL Generation, Optimization, and Verification
	Slide 19: Demo – Battery SoC – RTL Generation
	Slide 20: Vector-Matrix Multiplication Optimization Options
	Slide 21: Vector-Matrix Multiplication with Bias – Default
	Slide 22: Vector-Matrix Multiplication with Bias – Streaming
	Slide 23: Vector-Matrix Multiplication with Bias – Architecture Setting
	Slide 24: Creating your own Blocks and Libraries
	Slide 25: Vector-Matrix Multiplication with Bias – Custom Architectures
	Slide 26: Functional Verification
	Slide 27: Demo – Battery SoC – RTL Verification
	Slide 28: RTL Verification – Further Options
	Slide 29: Test, Prototype and Debug on FPGA
	Slide 31: Deep Learning Network Implementation Options
	Slide 32: What about Deep Learning Networks?
	Slide 33: Deep Learning Layer Blocks
	Slide 34: Questions

