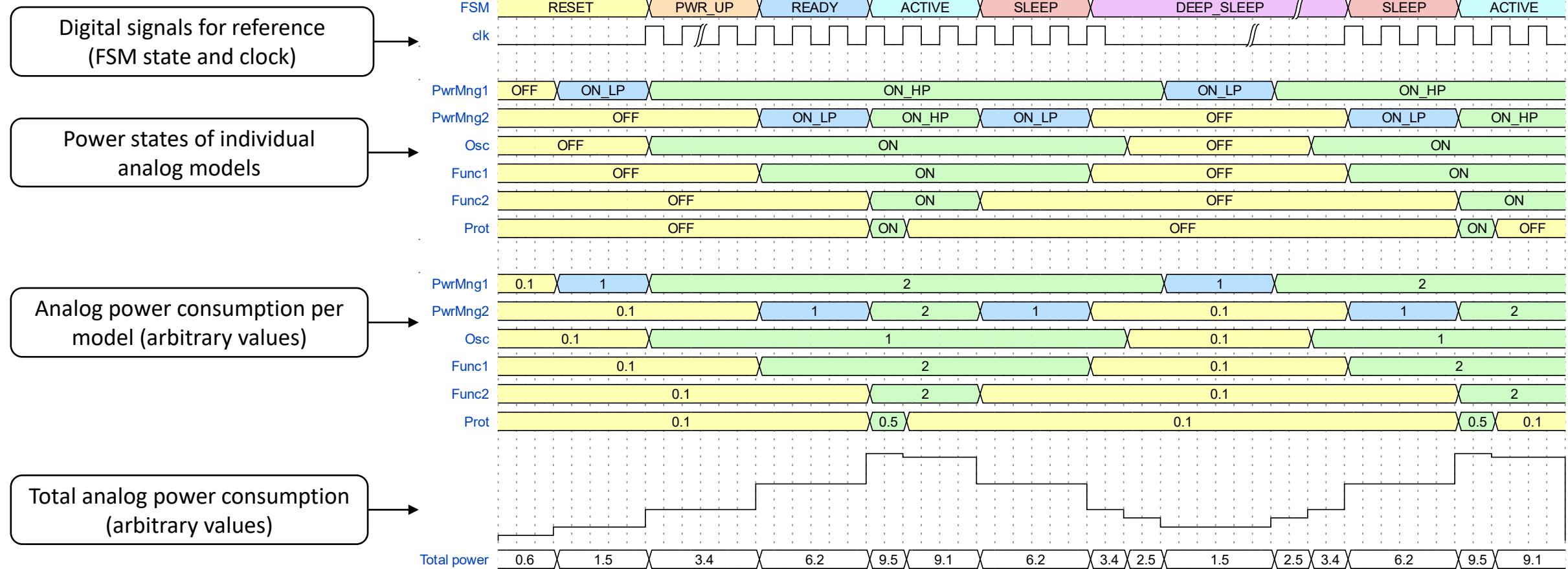


am
OSRAM

Early Chip-Level Power Estimation Using Digital Mixed-Signal Simulations

Ricardo Dantas, Akib Mohammad Azam Zaidi, Gabriela Alecu
ams OSRAM Group


Pre-Silicon Power Estimation Overview

- Part of verification process, required to ensure that power consumption does not exceed power budget
 - May lead to architecture/design changes if power specification is not met
- Common sign-off criteria in mixed-signal designs:
 - Analog domain: chip-level analog mixed-signal (AMS) simulation
Very long simulations (days or weeks) at later phase of a project (when whole design is mature); limit turn-around time in case power violations are found
 - Digital domain: gate-level simulation (GLS) data processed by power estimation tools
Possible only after place-and-route (PnR) but faster results than analog

Proposed Method

- Not a replacement for AMS simulations
 - The method is able to provide preliminary power estimation results, so that power violations can be detected before time-consuming AMS simulations start
- Based on digital mixed-signal (DMS) simulations
 - Chip-level simulations with analog behavioral models (instead of design schematics)
 - Analog models capable of inferring their own power states during simulation
 - Model power states mapped to current consumption (specified or simulated)
 - Overall current consumption consolidated per power domain/rail
 - Faster simulations (minutes or hours) able to run extensive/random scenarios

Method Example

Power Mode Calculation

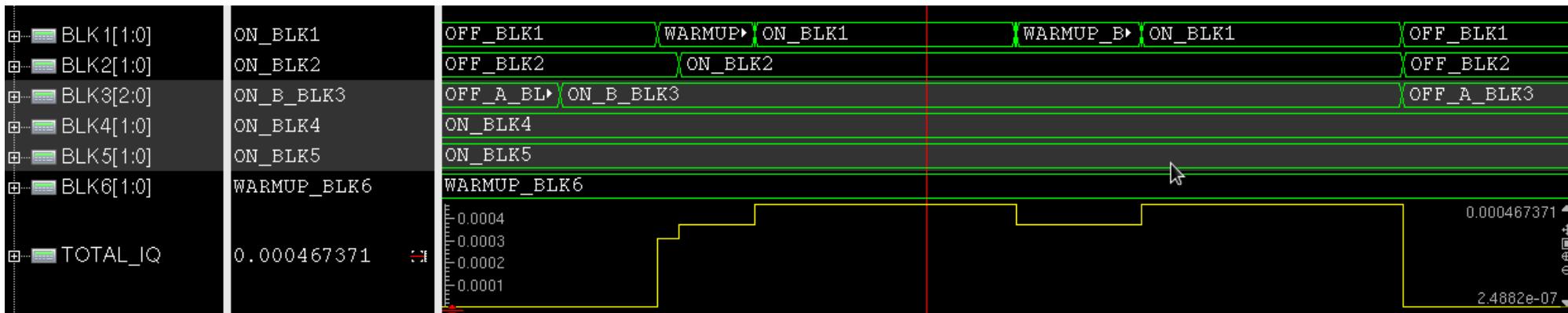
- Analog behavioral models infer their own current power state
 - Solely based on models input signals (combinational or sequential)
 - No information of chip's current operation mode required
- Power states of all models “published” via System Verilog virtual interfaces

```
blk_if pwr_if();          // Interface to "publish" the current power mode

initial begin             // Make interface accessible to other components
  uvm_config_db #(virtual interface blk_if)::set(null,"*",blk_vif,pwr_if);
end

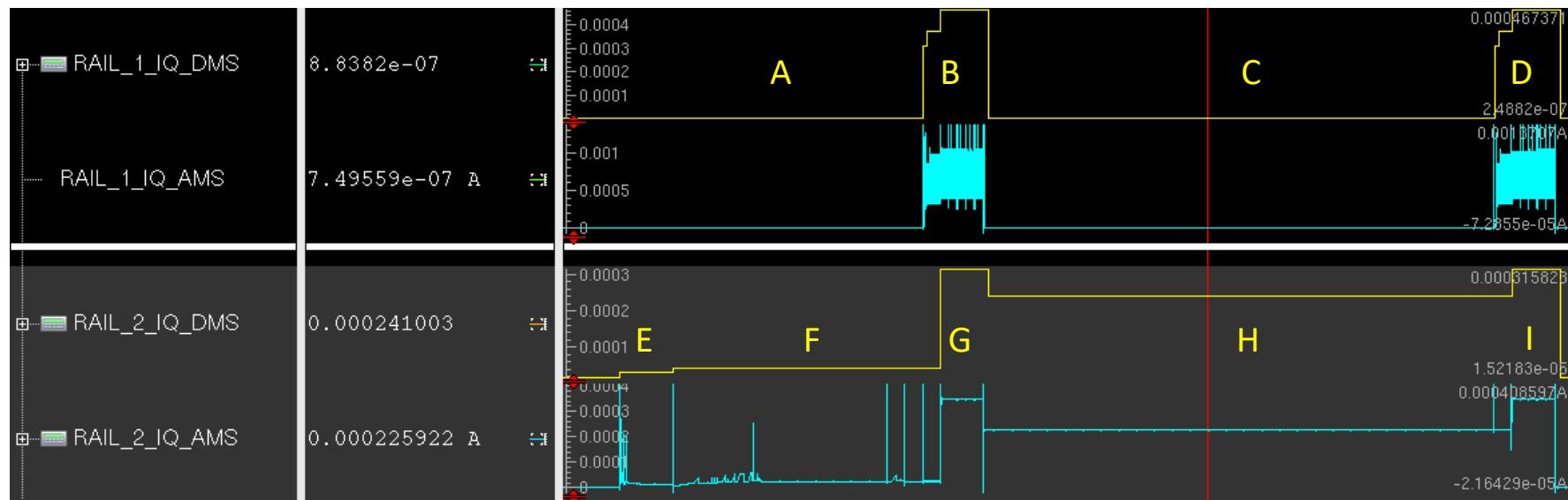
always_comb begin          // Definition of power modes
  if      (supply_ok & ref_ok & en & !en_dly) pwr_if.pwr_state = ON_LP; // low-power
  else if (supply_ok & ref_ok & en &  en_dly) pwr_if.pwr_state = ON_HP; // high-power
  else                               pwr_if.pwr_state = OFF;    // disabled
end
```

Power states coded directly in the behavioral model file or in a standalone file connected to the model via System Verilog bind construct.


Power Mode Mapped to Current

- The DMS top-level testbench receives the power states of all models through their respective virtual interfaces and map them to quiescent current (Iq)
 - It is possible to use different Iq values, such as specified value, as well as corner figures obtained from block-level analog simulation, e.g., FF35C, FF75C

```
forever begin
  @ (blk_vif.pwr_state);
  blk_iq =                               // FF @ 35C (sim)           // FF @ 75C (sim)           // typical (spec)
  (blk_vif.pwr_state == OFF) ? ff35 ? pwr_pkg::FF35_OFF : ff75 ? pwr_pkg::FF35_OFF : pwr_pkg::TYPOFF :
  (blk_vif.pwr_state == ON_LP) ? ff35 ? pwr_pkg::FF35_ONLP : ff75 ? pwr_pkg::FF35_ONLP : pwr_pkg::TYPONLP :
  (blk_vif.pwr_state == ON_HP) ? ff35 ? pwr_pkg::FF35_ONHP : ff75 ? pwr_pkg::FF35_ONHP : pwr_pkg::TYPONHP :
                                         1e6; // large value to flag error (default)
end
```


Results

- Power states of 6 models (BLK1 to BLK6) as well as consolidated I_q
 - If required, power states can be refined to include transient response
- I_q value and overall profile can help identify situations where the design functionality might be correct, but a given block is mistakenly enabled, therefore consuming excessive power

Results (cont.)

- Proposed method (yellow curves) compared with full schematic analog simulation (cyan curves) for two different rails (RAIL_1 and RAIL_2)
 - Comparison between both simulations (DMS and AMS) in the next slide

Results (cont.)

- Comparison of I_q estimation of DMS and AMS simulations
- Good correlation of power gain (in dB) between regions

Average I_q (μA)	Rail 1				Rail 2				
	<i>A</i>	<i>B</i>	<i>C</i>	<i>D</i>	<i>E</i>	<i>F</i>	<i>G</i>	<i>H</i>	<i>I</i>
DMS	0.25	441	0.84	414	29.7	41.1	315	24.1	315
AMS	0.29	344	0.75	341	19.3	27.1	349	22.6	349
Gain (dB)		<i>A</i> → <i>B</i>	<i>B</i> → <i>C</i>	<i>C</i> → <i>D</i>		<i>E</i> → <i>F</i>	<i>F</i> → <i>G</i>	<i>G</i> → <i>H</i>	<i>H</i> → <i>I</i>
DMS		64.4	-53.9	53.9		2.8	17.7	-2.3	2.3
AMS		61.5	-53.2	53.2		2.9	22.2	-3.8	3.8

Conclusions

- The proposed method helps to anticipate power violations and avoid late issues demanding re-designs, which could impact the project schedule
 - It has been successfully used in circuits developed for consumer applications, where time cycles can be as short as 6 months
 - It also allows quickly exploration of longer or random scenarios, which would not be practical in full-schematic AMS simulation
- This method also allows the usage of assertions to self-check power intent
- AMS simulations are still executed for sign-off but with higher confidence that power violation bugs will not be found

Questions

Thank you