
Developing & Testing Automotive Software on
Multi-SoC ECU Architectures using Virtual

Prototyping

Sam Tennent

Synopsys

© Accellera Systems Initiative 1

Agenda

• Automotive Trend Towards less ECUs/more Integration

• MCU SoC RTOS and Applications

• Simple ADAS Demonstration

• Demonstration Video and Results.

• Summary

© Accellera Systems Initiative 2

© Accellera Systems Initiative 3

Consumers who arrived in Las Vegas for the 2017 Consumer Electronics Show—one of
the premiere exhibitions of new technologies for the general public—might have
wondered if they were at an auto show.

www.mckinsey.com

Less is More!
Less ECUs… More Integration

• Demands for more complex and more powerful
features in Automotive is rapidly driving technology.
– Infotainment: Connectivity, SWOTA and Security

– ADAS: autonomous driving, sensor fusion.

– Gateway: High bandwidth traffic routing and consolidation

– Powertrain, Chassis: Hybrid, Electric, Integrated need for
timing critical responses.

• These accelerating demands are leading to:
– Large compute core clusters.

– Integrated MCU domains with Compute Clusters.

– Integrated ‘smart’ communication gateways

– Unprecedented challenges in Automotive Software
Development.

© Accellera Systems Initiative 4

Nikkei Automotive Technology

Toyota Motor Company

SW Development and Test Challenges
Unprecedented Solutions Required

• Software Development and Verification
– Debugging of high complexity multicore problems.
– Difficult to expose and detect underlying problems when functionality is correct.

• Software performance, driver setup errors……

• System Integration with Tool and Hardware Test Ecosystem
– HIL testing is on the critical path
– Complex and costly system level verification.

• Functional Safety Testing.
– More software, More features, More tests.
– Need to cover more to increase Software quality (ISO26262)

• Communications Verification.
– Large Scale High Bandwidth Multi-Protocol Verification.
– CAN, LIN, ETHERNET, SPI, PCIe, FLEXRAY, I2C

© Accellera Systems Initiative 5

MCU/SOC Real-time Operating Systems
AUTOSAR + Linux – Demand Real Time Performance

• Automotive chips with defined core clusters and domains.

– Multiple OS on same silicon – Linux, AUTOSAR, Qnx etc.

– Application specific domains with hypervisors.

• Typical MCUs (or MCU domains) still need to..

– Meet strict timing requirements for sensor and I/O servicing.

• AUTOSAR is built on the OSEK/VDX OS specification

– Predictable and precise scheduling.

– Still the dominating choice for Timing and Safety Critical

• Mixed Linux and AUTOSAR clusters commonplace.

• Linux dominating choice for compute intensive apps.

© Accellera Systems Initiative 6

AUTOSAR

Linux

Autosar.org

• Multicore applications need careful mapping to maximize performance

– How can we validate these requirements?

• High bandwidth multicore resource access is crucial for high performance

– How can that be verified under a changing SW load?

• Changing Automotive standards and versions is ongoing.

– Re-verification of AUTOSAR versions is a big effort.

• On-Chip, multi domain silicon (AUTOSAR + Linux etc) with hypervisors..

– Requires integration tasks previously not seen on previous generation chips.

• High degrees of visibility into the OS is required to satisfy these challenges.

ECU OS Application Development Challenges
OS Scheduling is typically not high visibility

© Accellera Systems Initiative 7

Virtualizer Development Kit
VDK - More than just simulation models

© Accellera Systems Initiative
8

Multicore

Synchronized

HW/SW Debugging

Virtual MCU

Interfaces
to 3rd party

debug
tools

MCU Cores,
Memory and

Peripherals models

Interfaces
to 3rd

party
tools

Virtual IO

VDK

Tools for VDK

VDK console, Platform level debug, SW analysis

Virtualizer Tools

Powerful Scripting Frameworks for complex

Debugging, Analysis, Fault Injection and

Stimulus

Virtualizer Tools

• Simulink
• CANoe
• SABER

Synchronized

Co-Simulation with
SW

Development

ECU System
Integration and

Testing

(vHIL)

Functional Safety

(Fault and Coverage
Testing)

Embedded Software Code Coverage

Functional Safety and Coverage Based Fault
Injection

© Accellera Systems Initiative 9

• Software Quality is key for Automotive products.

• Challenges with Safety Management

• Specified Failures (handled)

– Failures that can happen and have specified hardware behaviour.

– Communications errors, power or clock tree faults

• Unexpected Failures (not handled)

– Failures not expected to happen and unspecified hardware behaviour.

– Driver set-up errors, open/short circuit, transients, EMC

• Meeting these challenges with quantifiable SW coverage metrics is key to
qualifying SW quality with safety critical systems.

SW Verification and Test Challenges
ISO26262 guidelines are challenging for large scale projects

© Accellera Systems Initiative 10

• Virtual Prototypes provide a framework for advanced fault-
injection (Simulation Probes)

• Simulation Probes used to influence the HW from outside the
SW.

• Virtual Prototypes can be used to make testing more cost-
effective through code-coverage measurements

• Fault Injection testing can be automated and measured
during regressions

• May be used as testing evidence for certification

Virtual Prototypes for Functional Safety
ISO26262 guidelines are challenging for large scale projects

© Accellera Systems Initiative 11

Simulation Probes

VDK

• eSW Code coverage helps achieving cost-effective testing, i.e. same result with fewer
tests (eliminate redundant tests)

• What to measure?
– Function Coverage: Has each function in SW been called?
– Call Coverage: Has each different function been covered once?
– Statement Coverage: Has each statement in the SW been executed?
– Branch Coverage: has each possible branch been taken?
– Decision coverage has every decision taken all possible outcomes at least once?
– Condition coverage has each Boolean sub-expression evaluated both true and false?
– Modified Condition/Decision Coverage (MCDC)

Code Coverage Overview
Functional Safety Testing made more efficient

© Accellera Systems Initiative 12

Supported natively in Virtualizer

Supported by tool integration (Tessy, T32)

• Flow

– Gather Coverage Metrics

– Use Fault Injection and Stimulus Generation to fill the gaps

– Re-run Coverage Metrics and Re-evaluate

• Can be used for ‘Hard to Test’ Scenarios

– Signal Integrity Problems -Transients, “Stuck At” issues

– Damaging Power based faults.

– Test cascading effects applicable from driver to application.

• Highly complimentary flow to ISO26262 guidelines.

• Let Coverage metrics tell you what needs to be covered

• Use Simulation Probes to add Coverage and increase quality

Coverage Based Fault Injection Flow
Functional Safety Testing made easier

© Accellera Systems Initiative 13

VDK

ADAS Feature Demonstration

Simple ADAS Demonstration on System ECUs
(SoC + Gateway) + MCU)

© Accellera Systems Initiative 14

Simple ADAS Feature Demonstration

• Cruise Control (and the more involved Adaptive Cruise Control) is a good
example of a simple ADAS feature.

– Cruise Control Ability to maintain speed at a user defined level considering the effects of
the environment.

– Adaptive Cruise Control: Ability to maintain speed and distance from surrounding
vehicles.

© Accellera Systems Initiative 15

We will look at an example interaction of multiple ECUs in delivering

this feature.

Driverless.global

ADAS, Compute, Control and the ECU

© Accellera Systems Initiative 16

Engine Management

Highly Integrated Compute + Control

Rest Of System

Sensors/Actuators

COMPUTE

GatewayMCU

infotainment

powertrain

ADAS chassis

High Bandwidth

Sensors

Vision, Radar,

MMI

System ECU Hardware Example

© Accellera Systems Initiative
17

ECU1- SoC and GATEWAY Application

ECU2- MCU

PCIe

https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-

microcontroller/aurix-safety-joins-performance/aurix-2nd-generation-tc3xx/

https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/aurix-safety-joins-performance/aurix-2nd-generation-tc3xx/

Simple ADAS System ECU Demonstration

• Automatic Gearbox SW implementation
– Control the gearbox in ALL modes, based on current engine state

• Simple Cruise Control Override
– Override the manual throttle but accept increments and decrements to the

chosen speed.

• Adaptive Cruise Control
– Test MCU responsiveness in a tracking scenario of forward vehicle.

• Simple Automatic Avoidance Measures
– Emergency Stop, Safe Stop etc.

• SoC running Linux with Simple Drive Cycle Test Application
• Gateway MCU coordinating CAN/PCIE communication with SoC and MCU.
• MCU running AUTOSAR variant.

© Accellera Systems Initiative 18

System vHIL Simulation

© Accellera Systems Initiative 19

CAN Bus

Gear, Throttle,

Brake

Rpm

Speed,

Foot Throttle

..

Infineon MCU

ARM SoC

Controller ECU

NXP Gateway

PCIE
Compute and

Comms ECU

SoC DriveApp
Communication with Gateway
• Simple Linux Application running on ARMv7 CPU_SS – DriveApp

• Communicates with Gateway MCU through PCIE in the ARMv7 design (
Linux Console App)

© Accellera Systems Initiative 20

DriveApp

PCIE Driver

PCIE
Root

Complex

ARMv7 SP

CPU_SS

Connects

to PCIe

EP

Device in

Gateway

Gateway Application
S32 Processing Platform

© Accellera Systems Initiative 21

PCIE
EP

Can Bus to System

ECUs

CAN
Connects

to PCIe

RC

Device in

ARM SoC

Command from MCU

Request Block

GearDrive ID: 0x100
Engine_Rpm ID: 0x123
Engine_Throttle ID: 0x101
Speed ID: 0x102
Ctrl_Status ID: 0x234
Brake_State ID: 0x543

Lights ID: 0x321

Command ID: 0x555

Dist_Front_Vehicle ID: 0x710

Trip_Distance ID: 0x720

Req_Cruise_Speed ID: 0x718

Trip_Duration ID: 0x730

System Info Block

S32 System DRAM

mapped to PCIe RC BAR0

Gateway Software Tasks

© Accellera Systems Initiative 22

Task Func.
OS Task

Schedule
Description

OS_TASK_10MS 10 ms Update PCIe System Data Structure with CAN data

OS_TASK_20MS 20 ms Get Trip Speed , Trip Time and Trip Distance

OS_TASK_50MS 50 ms Send CAN messages

OS_TASK_100MS 100 ms Get the command data from the MCU

OS_TASK_200MS 200 ms Calculate Trip Distance Travelled

MCU Multicore AUTOSAR Task Mapping

© Accellera Systems Initiative 23

Task Func.
OS Task

Schedule
CPU ID Description

task_sensors 10 ms CPU0 Reading Sensor Interface Data

task_gearbox 50 ms CPU2 Controls Gearbox based on Engine State

task_drive_modes
80 ms CPU2

Processes User Modes
Modes are Manual, SafeStop, EmergencyStop, Cruise
Control.

task_transmit_can 20 ms CPU1 Writing Engine State to CAN bus

task_output_drive 30 ms CPU0 Updating MCU Engine state to the System

task_comms 100 ms CPU1 Reading user commands Sent to the MCU

CPU0 = Master CPU1=Slave CPU2=Slave

Basic Tasks and Background Tasks not shown.

MCU CAN BUS System Interface Spec.

© Accellera Systems Initiative
24

MCU_Speed ID: 0x102

MCU_Engine_Throttle ID: 0x101

MCU_Engine_Rpm ID: 0x123

GearDrive

MCU_GearDrive ID: 0x100

Reserved

0

863

AutopilotRequested Cruise Speed
LastDrive

Mode

817 16

DriveMode

RpmReserved

0

1663

RpmReserved

63

Rpm

0

16

ThrottleReserved

63

Throttle Foot Throttle

3248

RpmReserved

0

1663

SpeedReserved

63

MCU_Ctrl_Status ID: 0x234

MCU_Brake_State ID: 0x543

Rpm

0

16

BrakeTorqueReserved

63

Throttle Foot BrakeTorque

3248

Reserved

63

Reserved

Virtualizer VDK vHIL
(Infineon + NXP + ARM v7)

© Accellera Systems Initiative 25

eSW Build Tools

(OSEK/VDX)

Simulink Plant Model

Vector CANoe

Scripting

Linux eSW Dev

(Linaro Linux)

Synopsys Virtualizer

Demonstration

• SoC Functionality
– Application Behaviour

– Drive Cycle Mode Testing

– eSW Debugging

• Gateway Functionality
– Communications Visualisation

– eSW Debugging

• MCU Functionality
– Ecosystem Tools Connectivity (Simulink/Vector CANoe)

– AUTOSAR OS visualization.

• Results, Analysis and Debugging

© Accellera Systems Initiative 26

Demonstration Profile
Adaptive Cruise Control Demo Profile.

© Accellera Systems Initiative 27

Manual

Track Speed

Increase Speed

Decrease Speed

Decrease Speed

!

SoC “DriveApp” Console Interface

7. Auto Drive Mode Adaptive will duplicate

the scenario pictured.

Video One

System Overview & Run Application

© Accellera Systems Initiative 28

Demonstration Test Profile Scenario Summary.

© Accellera Systems Initiative 29

Foot Throttle

Speed

Rpm

Foot Brake

McuGear

McuBrake

McuThrottle

Cruise Started
Cruise Increase

MCU Brake is applied

Cruise Decrease

Throttle demand to

increase speed

MCU Focused Results Analysis

• Hardware Tracing
– MCU interface Boundary Traces.

• Analog sampled inputs

• CAN Bus Data Verification

• Software Tracing
– Function Tracing

– AUTOSAR
• Task Visualisation

• System Calls

• Errors

© Accellera Systems Initiative 30

Video Two

Software and Hardware Analysis of MCU
operation

© Accellera Systems Initiative 31

AUTOSAR Instrumentation Summary
OSEK visualization example with Simulation Probes Scripts

© Accellera Systems Initiative 32

Task Switching

OS Services

Task States

OS Errors

Task Summaries

and more.. ISR2 tracking, Task Stack utilization, custom debugging and application analysis, …….

Python Script

Selectable and customizable visualization

SOC - MCU System Visibility
“End to End” Debugging

• SOC System Visibility

– Tracking Activity from SW Function to Hardware Command

– Debugging the Serial Link Driver in Linux

– System Visibility and System Latency

© Accellera Systems Initiative 33

Video Three

Software and Hardware Analysis of SoC operation

© Accellera Systems Initiative 34

Demo CAN Bus Message Visualization Summary

© Accellera Systems Initiative 35

Can Bus Packet Specification input, allows message and fields to be extracted

and visualized

Synopsys VP Explorer

Specification

Coverage Based Fault Injection
Practical walkthrough.
• Coverage Metrics and Scripting can be used to uncover missing test coverage.

© Accellera Systems Initiative 36

• The file sensors.c, has some large

transient signal detection and

correction logic.

• We are not covering the code

which handles such transients.

• Generating and testing such code

can be difficult on the real

hardware.

If (NewSample >> OldSample)

discard NewSample

Else

store NewSample

Coverage Based Fault Injection
• Using Simulation Probes we inject a transient into the MCU and re-evaluate.

© Accellera Systems Initiative 37

Demonstration Summary
Four Main Use Case Overviews

• Development and Verification
– Virtualizer Software Analysis Tools

– Debugging with 3rdparty HLL debuggers

• Application Verification
– SoC application with vHIL (Simulink, CANoe)

• OS
– Porting and Verification

– Driver development and Testing

– Visualization and Debugging.

• Functional Safety Testing
– Coverage Based Fault Injection

– SW Test and Quality Metrics

© Accellera Systems Initiative 38

Functional
Safety

SW
Development

ECU System
Integration and

Testing

(vHIL)

OS Dev

Session Summary

• In the accelerating Automotive Industry
– Software is key.
– Software will always be on the Critical Path.

• Complexity growth in HW architecture and SW is
exponential.

• For early development or post silicon use Cases
– New challenges are pushing the boundaries of traditional

approaches.

• Virtual Prototyping and VDKs can play a big part in:
– Reducing Product Time-to-Market.
– Accelerating Development.
– Increasing Product Quality and Functional Safety.

© Accellera Systems Initiative 39

SW
Development

ECU System
Integration and

Testing

Functional
Safety Testing

Questions

© Accellera Systems Initiative 40

