
Developing Complex Systems using Model-Based
Cybertronic Systems Engineering Methodology

Petri Solanti

Siemens EDA, DTEG

Agenda

• Cybertronics Systems

• Cybertronics Challenge

• Taming the Beast - Tackling the Cybertronics Challenge with MBCSE

• Design Example
• Top-level System Modeling

• Cybertronics Subsystem

• System-on-Chip Subsystem

• Architecture Performance Analysis

Cybertronics Systems
An Overview

Definition of Cybertronics

Cybertronics is the engineering discipline of functional co-architecting
of electronics and software to realize new software defined,

semiconductor enabled systems.

• The definition of cybertronics covers
• Network level
• Electronic unit (Multi-PCB enclosure)
• PCB
• SoC
• FPGA and Chiplet level
• Embedded software

System-of-Systems subsystem hierarchy

Cybertronics
Subsystem

Mission

Network Vehicle Infrastructure
Control
Center

Chassis
Platform
Network

Engine

Communication
ECU

Network
Switch

Intelligent
Sensor

Mechanics Cooling Electronics

...

...

...

...

Structure of Cybertronics System-of-Subsystems

Cybertronics Challenge
New dimensions of system design complexity

Cybertronics challenge

• Cybertronics systems design challenges are not faced at any other
type of system design

• The main challenges in cybertronics design
• Multi-disciplinary system with dynamic configuration changes

• Requirements allocation, propagation and tracing

• Complexity

• Function allocation

• Verification

Multi-disciplinary systems

• Cybertronics system contains different implementation domains
• Network

• PCB

• Integrated circuits (SoC, FPGA, ASIP, 3DIC, HW IP, Chiplet)

• Embedded software

• Multiple architecture options available → Optimization based on e.g.,
• Area and cost

• Performance and power

• Optimization requires understanding of implementation technologies

Requirements allocation, propagation and
tracing
• System-level requirements decomposed to subsystem requirements

• Parameterized requirements for automated requirements verification

• Additional requirements specified during the decomposition process

• Cybertronics requirements challenge:
• Different requirement management tools and strategies in different domains

• Interpretation of requirements in different design domains

• Requirements tracing in multi-disciplinary design environment

Complexity

• Multiple dimensions to be considered
• Computational load
• Data movement and caching
• Real-time requirements
• Power consumption

• Complexity is orders of magnitude higher than in mechanical systems
• Millions of lines of SW code in multiple SW stacks
• Billions of gates in an average size SoC

• Managing the cybertronics complexity with traditional design
methodologies is not possible

Function allocation

• Cybertronics functionality can have different implementations
• Software executed on different processor architectures
• Hardware accelerators on SoC or FPGA
• Application specific standard components
• Specific devices (e.g., network routers)

• Diversity of the implementation options leads to a huge solution
space

• Different function allocations lead to different metrics (e.g.,
performance, cost, power consumption)

• Quick exploration of different architecture options is necessary

Verification

• Verification complexity:
• Thousands of requirements

• Millions of tests

• Multi-level, multi-domain verification

• Due to multi-disciplinary system nature, a multi-level, multi-domain
verification is required, but
• Domain specific verification flows

• Multiple repository architectures and formats

• Flat verification approach → Huge number of tests to be traced

Taming the Beast
Tackling the Cybertronics Challenge with MBCSE

What should a cybertronics system design
methodology provide?
• Multi-disciplinary system modeling

• Information hiding and abstraction
• Model-based engineering approach for seamless communication between

design teams
• Adding domain specific information only where needed
• Links to domain specific implementation flows

• Complexity management
• Clear separation between function and structure
• Gradual increment of fidelity during the modeling process
• Dividing design into subsystems for more detailed decomposition
• Design integrity management

What should a cybertronics system design
methodology provide?
• Requirements handling

• Assisted allocation of requirements and parameters to the model

• Automatic propagation of requirements and parameters throughout the process

• Function allocation
• Free allocation of functions to different structural elements

• Exploration of different function allocations

• Verification
• Requirements driven digitally threaded verification throughout the design process

• Integration of domain specific verification processes

Model-Based Cybertronics Systems
Engineering methodology
MBCSE methodology borrows concepts from several methodologies:
• Arcadia provides a structured approach to system decomposition

• Subsystem hierarchy concept
• Clear separation between function and structure
• Integrated requirement and property handling
• Automated transitions ensure integrity between design layers and subsystems

• Property Model Methodology for validation and verification
• Formalized, property-based requirements
• Continuous refinement of requirements and constraints
• Simulation-based analysis

• Verification Capture Point -based digital verification threading
• Universal data object for digitally threaded verification

Cybertronics architecture modeling process

Functional
Architecture

Model

Logical
Architecture

Model

Physical
Architecture

Model

Behavioral
Simulation

Behavioral
Models &
Properties

Performance
Properties

Performance
Simulation

HW/SW
Cosimulation

Architectural
Properties

Requirements

Implementation Flows

PCB Design

IC/FPGA Design

SW Design

Implementation
Properties

Subsystem
Transitioning

Subsystem relevant functions,
requirements and properties

Specification,
Parameters

Propagate functions, components, and properties
automatically to the next level

Cybertronics Systems Integration Lab Framework

Requirement

s

Requirement

Parameters

Compliance Status

VS

Requirements

Architecture

Modeling

Model-based
Design and
Verification

P
a
ra

m
e

te
riz

e
s

Parameterized

by

Allocated

to

Constrains

Verifies

Verified

by

Verification

Capture

Points

MBCSE-CORE

PCB

3DIC

SoC/FPGA

Workflows

& Specifies

Modeling multi-disciplinary systems

• MBCSE methodology enables specifying
individual target implementation domain
for each subsystem level

• Transitioned subsystem is treated as a
component in the parent system

• Subsystem is handled as a separate project

• Domain specific implementation details
are inserted using properties and they can
be extracted from the model

*)

*) Source: Adobe Stock

*)

Managing the complexity

• Many techniques available
• Subsystem hierarchy
• Function breakdown
• Property modeling

• Different components on a subsystem level
• Subsystems
• Library systems, Off-the-shelf components, or

IP

• Increasing the fidelity gradually
• Add information to model, where it is needed
• Property groups with specific names for export

Addressing requirements handling

• Allocating requirements and parameters to the
functions or structures

• Automatic propagation of requirements to
• Other system layers
• Subsystems
• Implementation flows

• Automatic tracing of requirements through
• Allocation
• Implementation
• Verification

• Verification Capture Points link requirement to
verification

Function allocation

• Functional, logical and physical architecture layers
• Functional architecture:

• Description of system functions and data exchanges
• Related information can be added as properties

• Logical architecture:
• Allocation of system functions to logical components
• Allocation of function data exchanges to logical channels
• Performance analysis based on performance properties

• Physical architecture:
• Allocation of logical components to physical components
• Allocation of logical channels to physical links
• Implementation specification for domain specific flow

Source: https://mbse-capella.org/arcadia.html

Digital verification threading using Verification
Capture Points
• VCP enables automated verification threading

• Verification Capture Point links together
• Requirement and requirement parameters

• Model or implementation to be verified

• Test model

• Test configuration

• Verification result

Design Example

Example system

• Hand-held scanner to read hand-written postal codes

• System design has multiple implementation domains
• System enclosure (mechanical)
• Electronics subsystem (PCB)
• System-on-Chip (embedded HW/SW system)

• The example covers following aspects
• Functional definition of the system and requirements allocation
• Allocation of functions to mechanical and cybertronics parts
• Decomposition of cybertronics subsystem to components on PCB
• Optimization of HW/SW allocation on SoC
• SoC architecture specification for digital IC implementation flow

*)

*) Source: Adobe Stock

*)

System decomposition and implementation

Requirements

Algorithms

Concepts

Transition electronics module to a subsystem

What the system shall accomplish How the system will work How the system will be implemented

Functional Architecture Logical Architecture Physical Architecture

All electronics
and software
functions

All digital
and software
functions

Transition SoC component to a subsystem

*)

*) Source: Adobe Stock

*)

Top-Level System Modeling

Functional capability model of scanner device

• Operational environment and capabilities of the device

• Defines device functions and actors the device is interacting with

Map capabilities into a functional architecture

Allocate requirements and parameters

Map functions to logical components

Requirements and parameters
are propagated automatically
into the logical architecture

Model physical architecture of the device
Physical components
inside scanner enclosure

Additional
constraints
for
electronics
subsystem

Transition to a new
subsystem All SW and electronics related functionality

allocated to Cybertronics module

Requirements and parameters
are propagated automatically

Scanner enclosure

*)

*) Source: Adobe Stock

Why system to subsystem transition?

• Subsystem transition is part of the system decomposition process
• Enables development of large systems of subsystems
• Propagates all relevant information to the new subsystem project
• Unlimited subsystem hierarchy
• Integral part of Arcadia methodology

• Benefits:
• Maintains design abstraction
• Minimizes amount of detailed information in the upper system level
• Maintains integrity of the design through automatic transition
• Subsystem has visibility to the upper level only through the transition

interface

Cybertronics Subsystem
Modeling and Analysis of PCB-Subsystem

Transition Cybertronics Module to subsystem

Additional
constraints for
electronics
subsystem

Creating logical architecture

Break down power supply function
Into more detailed description

Analyzing feasibility

• Does the function allocation meet
requirements, e.g.,
• Performance

• Power consumption

• This design needs a custom IC

Interval 100ms
Target is 20ms

Physical architecture of Cybertronics module

Additional
constraints for
SoC subsystem

Transition to a new
SoC subsystem

Component information
to PCB design flow

System-on-Chip Subsystem
Digging into Details

Transitioned SoC subsystem

Functional decomposition of the algorithm

• Each function implements a partial behavior of the architecture

Add functional implementation properties

Allocate functions to logical components

Create a performance model

• Performance analysis model uses
partitioning in the Logical Architecture
• Logical System as an ECU

• Executable functions on SoC with one or more
CPU clusters

• Logical components as CPU cores with the
allocated functions on SW components.

• SW functions implemented as synthetic
workloads or real SW code

• Data traffic uses a shared memory

Architecture Performance Analysis
Exploring Implementation Options

Performance analysis procedure

Performance analysis is an iterative process

1. Coarse analysis using software implementation of all functions
• Create an initial HW platform model
• Allocate functions to SW tasks using synthetic load values
• Analyze execution results and move functions between the SW tasks
• Pseudo accelerate functions by using HW accelerator latency as load value

2. Fine-grain analysis with Generic Hardware blocks on the HW platform
• Replace the accelerator candidates with Generic HW blocks
• Set data I/O and processing latencies to realistic HW implementation latencies
• Simulate with different latency combinations to specify latency and clock frequency

range for accelerator IP development

Performance simulation model

• First trying full software implementation with 3 CPU cores

Automatic creation

Setting up the simulation

SoC interconnect bitwidth
and clock frequency

Processor family and
clock frequency

Software workload setting

Exploring different load configurations

Interval 100ms

Convolution Accelerator
with 25x parallelism

Results with 2 accelerator candidates

Performance with 2 accelerators and 1 CPU

• Modify performance model

• Analyze required clock frequency

• Requirement met with 200MHz clock

Final SoC implementation architecture
Dedicated HW accelerators
for Convolution and Dense

Single CPU core

Interconnect
memories
peripherals

SW functions

Conclusions

Conclusions
Multi-context modeling

Model-Based Cybertronics Systems Engineering is a new methodology
that extends model-based systems engineering into the electronics

domain and drives cybertronics design automation

• Formalized methodology and tooling to support
• System modeling with multi-project and subcontractor support

• Architecture exploration with early performance analysis

• Verification management with digital threading

• Paths to multiple electronics implementation domains

• MBCSE methodology enables a holistic analysis, exploration and
implementation of cybertronics systems

Conclusions
Verification capture points

• Verification threading via the capture points (VCPs) enables tracking
of all design decisions and verification status

Questions

	Slide 1: Developing Complex Systems using Model-Based Cybertronic Systems Engineering Methodology
	Slide 2: Agenda
	Slide 3: Cybertronics Systems
	Slide 4: Definition of Cybertronics
	Slide 5: System-of-Systems subsystem hierarchy
	Slide 6: Structure of Cybertronics System-of-Subsystems
	Slide 7: Cybertronics Challenge
	Slide 8: Cybertronics challenge
	Slide 9: Multi-disciplinary systems
	Slide 10: Requirements allocation, propagation and tracing
	Slide 11: Complexity
	Slide 12: Function allocation
	Slide 13: Verification
	Slide 14: Taming the Beast
	Slide 15: What should a cybertronics system design methodology provide?
	Slide 16: What should a cybertronics system design methodology provide?
	Slide 17: Model-Based Cybertronics Systems Engineering methodology
	Slide 18: Cybertronics architecture modeling process
	Slide 19: Cybertronics Systems Integration Lab Framework
	Slide 20: Modeling multi-disciplinary systems
	Slide 21: Managing the complexity
	Slide 22: Addressing requirements handling
	Slide 23: Function allocation
	Slide 24: Digital verification threading using Verification Capture Points
	Slide 25: Design Example
	Slide 26: Example system
	Slide 27: System decomposition and implementation
	Slide 28: Top-Level System Modeling
	Slide 29: Functional capability model of scanner device
	Slide 30: Map capabilities into a functional architecture
	Slide 31: Allocate requirements and parameters
	Slide 32: Map functions to logical components
	Slide 33: Model physical architecture of the device
	Slide 34: Why system to subsystem transition?
	Slide 35: Cybertronics Subsystem
	Slide 36: Transition Cybertronics Module to subsystem
	Slide 37: Creating logical architecture
	Slide 38: Analyzing feasibility
	Slide 39: Physical architecture of Cybertronics module
	Slide 40: System-on-Chip Subsystem
	Slide 41: Transitioned SoC subsystem
	Slide 42: Functional decomposition of the algorithm
	Slide 43: Add functional implementation properties
	Slide 44: Allocate functions to logical components
	Slide 45: Create a performance model
	Slide 46: Architecture Performance Analysis
	Slide 47: Performance analysis procedure
	Slide 48: Performance simulation model
	Slide 49: Setting up the simulation
	Slide 50: Exploring different load configurations
	Slide 51: Results with 2 accelerator candidates
	Slide 52: Performance with 2 accelerators and 1 CPU
	Slide 53: Final SoC implementation architecture
	Slide 54: Conclusions
	Slide 55: Conclusions Multi-context modeling
	Slide 56: Conclusions Verification capture points
	Slide 57: Questions

