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Cybertronics Systems
An Overview



Definition of Cybertronics

Cybertronics is the engineering discipline of functional co-architecting 
of electronics and software to realize new software defined, 

semiconductor enabled systems.

• The definition of cybertronics covers
• Network level
• Electronic unit (Multi-PCB enclosure)
• PCB
• SoC
• FPGA and Chiplet level
• Embedded software



System-of-Systems subsystem hierarchy
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Structure of Cybertronics System-of-Subsystems



Cybertronics Challenge
New dimensions of system design complexity



Cybertronics challenge

• Cybertronics systems design challenges are not faced at any other 
type of system design

• The main challenges in cybertronics design 
• Multi-disciplinary system with dynamic configuration changes

• Requirements allocation, propagation and tracing

• Complexity

• Function allocation

• Verification



Multi-disciplinary systems

• Cybertronics system contains different implementation domains
• Network

• PCB

• Integrated circuits (SoC, FPGA, ASIP, 3DIC, HW IP, Chiplet)

• Embedded software

• Multiple architecture options available → Optimization based on e.g.,
• Area and cost

• Performance and power

• Optimization requires understanding of implementation technologies



Requirements allocation, propagation and 
tracing
• System-level requirements decomposed to subsystem requirements

• Parameterized requirements for automated requirements verification

• Additional requirements specified during the decomposition process

• Cybertronics requirements challenge:
• Different requirement management tools and strategies in different domains

• Interpretation of requirements in different design domains

• Requirements tracing in multi-disciplinary design environment



Complexity

• Multiple dimensions to be considered
• Computational load
• Data movement and caching
• Real-time requirements
• Power consumption

• Complexity is orders of magnitude higher than in mechanical systems
• Millions of lines of SW code in multiple SW stacks
• Billions of gates in an average size SoC

• Managing the cybertronics complexity with traditional design 
methodologies is not possible



Function allocation

• Cybertronics functionality can have different implementations
• Software executed on different processor architectures
• Hardware accelerators on SoC or FPGA
• Application specific standard components
• Specific devices (e.g., network routers)

• Diversity of the implementation options leads to a huge solution 
space

• Different function allocations lead to different metrics (e.g., 
performance, cost, power consumption)

• Quick exploration of different architecture options is necessary



Verification

• Verification complexity:
• Thousands of requirements

• Millions of tests

• Multi-level, multi-domain verification

• Due to multi-disciplinary system nature, a multi-level, multi-domain 
verification is required, but
• Domain specific verification flows

• Multiple repository architectures and formats

• Flat verification approach → Huge number of tests to be traced



Taming the Beast 
Tackling the Cybertronics Challenge with MBCSE



What should a cybertronics system design 
methodology provide?
• Multi-disciplinary system modeling

• Information hiding and abstraction
• Model-based engineering approach for seamless communication between 

design teams
• Adding domain specific information only where needed
• Links to domain specific implementation flows

• Complexity management
• Clear separation between function and structure
• Gradual increment of fidelity during the modeling process
• Dividing design into subsystems for more detailed decomposition
• Design integrity management



What should a cybertronics system design 
methodology provide?
• Requirements handling

• Assisted allocation of requirements and parameters to the model

• Automatic propagation of requirements and parameters throughout the process

• Function allocation
• Free allocation of functions to different structural elements

• Exploration of different function allocations

• Verification
• Requirements driven digitally threaded verification throughout the design process

• Integration of domain specific verification processes



Model-Based Cybertronics Systems 
Engineering methodology
MBCSE methodology borrows concepts from several methodologies:
• Arcadia provides a structured approach to system decomposition

• Subsystem hierarchy concept
• Clear separation between function and structure
• Integrated requirement and property handling
• Automated transitions ensure integrity between design layers and subsystems

• Property Model Methodology for validation and verification
• Formalized, property-based requirements
• Continuous refinement of requirements and constraints
• Simulation-based analysis

• Verification Capture Point -based digital verification threading
• Universal data object for digitally threaded verification



Cybertronics architecture modeling process
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Cybertronics Systems Integration Lab Framework
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Modeling multi-disciplinary systems

• MBCSE methodology enables specifying 
individual target implementation domain 
for each subsystem level

• Transitioned subsystem is treated as a 
component in the parent system

• Subsystem is handled as a separate project

• Domain specific implementation details 
are inserted using properties and they can 
be extracted from the model
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Managing the complexity

• Many techniques available
• Subsystem hierarchy
• Function breakdown
• Property modeling

• Different components on a subsystem level
• Subsystems
• Library systems, Off-the-shelf components, or 

IP

• Increasing the fidelity gradually 
• Add information to model, where it is needed
• Property groups with specific names for export



Addressing requirements handling

• Allocating requirements and parameters to the 
functions or structures

• Automatic propagation of requirements to
• Other system layers
• Subsystems
• Implementation flows

• Automatic tracing of requirements through
• Allocation
• Implementation
• Verification

• Verification Capture Points link requirement to 
verification



Function allocation 

• Functional, logical and physical architecture layers
• Functional architecture:

• Description of system functions and data exchanges
• Related information can be added as properties

• Logical architecture:
• Allocation of system functions to logical components
• Allocation of function data exchanges to logical channels
• Performance analysis based on performance properties

• Physical architecture:
• Allocation of logical components to physical components
• Allocation of logical channels to physical links
• Implementation specification for domain specific flow

Source: https://mbse-capella.org/arcadia.html 



Digital verification threading using Verification 
Capture Points
• VCP enables automated verification threading

• Verification Capture Point links together
• Requirement and requirement parameters

• Model or implementation to be verified

• Test model

• Test configuration

• Verification result



Design Example



Example system

• Hand-held scanner to read hand-written postal codes

• System design has multiple implementation domains
• System enclosure (mechanical)
• Electronics subsystem (PCB)
• System-on-Chip (embedded HW/SW system)

• The example covers following aspects
• Functional definition of the system and requirements allocation
• Allocation of functions to mechanical and cybertronics parts
• Decomposition of cybertronics subsystem to components on PCB
• Optimization of HW/SW allocation on SoC
• SoC architecture specification for digital IC implementation flow

*)
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System decomposition and implementation
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Top-Level System Modeling



Functional capability model of scanner device

• Operational environment and capabilities of the device

• Defines device functions and actors the device is interacting with



Map capabilities into a functional architecture



Allocate requirements and parameters



Map functions to logical components

Requirements and parameters
are propagated automatically
into the logical architecture



Model physical architecture of the device
Physical components
inside scanner enclosure

Additional
constraints 
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electronics
subsystem

Transition to a new 
subsystem All SW and electronics related functionality 

allocated to Cybertronics module

Requirements and parameters
are propagated automatically

Scanner enclosure
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Why system to subsystem transition?

• Subsystem transition is part of the system decomposition process
• Enables development of large systems of subsystems
• Propagates all relevant information to the new subsystem project
• Unlimited subsystem hierarchy
• Integral part of Arcadia methodology

• Benefits:
• Maintains design abstraction
• Minimizes amount of detailed information in the upper system level
• Maintains integrity of the design through automatic transition
• Subsystem has visibility to the upper level only through the transition 

interface



Cybertronics Subsystem
Modeling and Analysis of PCB-Subsystem



Transition Cybertronics Module to subsystem

Additional
constraints for
electronics
subsystem



Creating logical architecture

Break down power supply function
Into more detailed description



Analyzing feasibility

• Does the function allocation meet 
requirements, e.g.,
• Performance

• Power consumption

• This design needs a custom IC

Interval 100ms
Target is 20ms



Physical architecture of Cybertronics module
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System-on-Chip Subsystem
Digging into Details



Transitioned SoC subsystem



Functional decomposition of the algorithm

• Each function implements a partial behavior of the architecture



Add functional implementation properties



Allocate functions to logical components 



Create a performance model 

• Performance analysis model uses 
partitioning in the Logical Architecture
• Logical System as an ECU

• Executable functions on SoC with one or more 
CPU clusters

• Logical components as CPU cores with the 
allocated functions on SW components.

• SW functions implemented as synthetic 
workloads or real SW code

• Data traffic uses a shared memory



Architecture Performance Analysis
Exploring Implementation Options



Performance analysis procedure

Performance analysis is an iterative process

1. Coarse analysis using software implementation of all functions
• Create an initial HW platform model
• Allocate functions to SW tasks using synthetic load values
• Analyze execution results and move functions between the SW tasks
• Pseudo accelerate functions by using HW accelerator latency as load value

2. Fine-grain analysis with Generic Hardware blocks on the HW platform
• Replace the accelerator candidates with Generic HW blocks
• Set data I/O and processing latencies to realistic HW implementation latencies
• Simulate with different latency combinations to specify latency and clock frequency 

range for accelerator IP development



Performance simulation model

• First trying full software implementation with 3 CPU cores

Automatic creation



Setting up the simulation

SoC interconnect bitwidth
and clock frequency

Processor family and
clock frequency

Software workload setting



Exploring different load configurations

Interval 100ms

Convolution Accelerator
with 25x parallelism



Results with 2 accelerator candidates



Performance with 2 accelerators and 1 CPU

• Modify performance model

• Analyze required clock frequency

• Requirement met with 200MHz clock



Final SoC implementation architecture
Dedicated HW accelerators
for Convolution and Dense

Single CPU core

Interconnect 
memories 
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SW functions



Conclusions



Conclusions
Multi-context modeling

Model-Based Cybertronics Systems Engineering is a new methodology 
that extends model-based systems engineering into the electronics 

domain and drives cybertronics design automation

• Formalized methodology and tooling to support
• System modeling with multi-project and subcontractor support

• Architecture exploration with early performance analysis

• Verification management with digital threading

• Paths to multiple electronics implementation domains

• MBCSE methodology enables a holistic analysis, exploration and 
implementation of cybertronics systems



Conclusions
Verification capture points

• Verification threading via the capture points (VCPs) enables tracking 
of all design decisions and verification status



Questions
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