

## Dependable microcontroller architectures – challenges and opportunities in a fast-changing automotive market

Thomas Böhm Senior Vice President Automotive Microcontroller October 2024





### Infineon at a glance



### **Growth areas**



### **Market Position & Share**

#1 Automotive Microcontroller

#1 Automotive Power Semiconductors

#2 Automotive Sensors

TechInsights: Automotive Semiconductor Vendor Market Shares. March 2024. Sensors: S&P Global: Automotive Semiconductor Market Share Database. April 2024.

### FY23 revenue by segment<sup>1</sup>

- Automotive (ATV)
- Green Industrial Power (GIP)
- Power & Sensor Systems (PSS)
- Connected Secure Systems (CSS)



### Employees<sup>1</sup>



For further information: Infineon Annual Report.

1 2023 Fiscal year (as of 30 September 2023) | 2 As of 1 August 2024

### Automotive Megatrends & Microcontroller Innovation SDV hype is turning – full focus on cost and complexity reduction



Software Defined Vehicle





- > Zone ECUs require scalability & cost efficiency
- > User experience differentiates OEMs
- > Al enters infotainment solutions







- > Electrified drivetrain integration
- > Hybrid solutions gain momentum
- > Battery innovation is a key market driver
- > X-by-wire technology





### Automotive Megatrends & Microcontroller Innovation Security becomes a critical factor, AI technologies emerge



Cyber-security Post-quantum technology

ر م

- > Quantum computers emerge
- Increased vulnerability of current cryptographic systems such as RSA and ECC
- > New security accelerator technology needed



"Breakpoint for current microcontroller unit platform are security capabilities"

– T1 customer –

"Security can kill a microcontroller unit platform, because it doesn't scale" – OEM –



Sensor Fusion

for AD L2+

BMS &

Fast Charging



- > Al based control
- > Local data processing on the device
- > Faster response times & improved data security
- > Cost Savings







### Software Defined Vehicle



Major innovations are software driven Number of vehicle Electronic Control Units (ECU) is reducing Automotive industry design cycles are shortening

### Huge market potential, but ...





### no new architecture standards yet.







Microcontrollers innovation runs out of steam, no more new products, no more disruption?

Wait a minute ...

Major innovations are software driven Number of vehicle Electronic Control Units (ECU) is reducing Automotive industry design cycles are shortening Here's how open-source technologies can enable affordable and dependable car architectures

## Performance, Cost & Dependability: Microcontroller architectures have undergone major innovations in the last 25 years



| Performance                                                                                                                                                   | 9                                      | Security & Safety                                                                                                                                                        | Software & Al                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>2000: 8 &amp; 16bit is standard, 32bit gas share in &gt;2005</li> <li>2008-2010: Memorian integration &amp; 16bit instructions introduced</li> </ul> | ains<br>ory<br>t                       | <ul> <li>2010-2015: Security<br/>extension added:<br/>instructions, HSM module</li> <li>2015-2020: Safety<br/>becomes a standard:<br/>ISO26262</li> <li>26262</li> </ul> | <ul> <li>2020-2025: Software:<br/>Virtualization, SOTA and<br/>new types of Non-volatile<br/>Memory (NVM)</li> <li>2020-2025: Security:<br/>CSRM security<br/>acceleration</li> </ul> |
| 2000                                                                                                                                                          |                                        | 2010                                                                                                                                                                     | 2020                                                                                                                                                                                  |
| <ul> <li>2008-2010: Real-<br/>capabilities: interr<br/>latency minimized<br/>fast context switch</li> <li>2008-2010: Safet<br/>Memory protectio</li> </ul>    | time<br>oupt<br>d &<br>hing<br>y:<br>n | • 2015-2020: Performance:<br>Direct Non-volatile<br>Memory (NVM) access &<br>application-specific<br>accelerators, e.g. radar<br>processing                              | <ul> <li>2020-2025: Performance:<br/>Al acceleration</li> <li>2020-2025: Performance:<br/>Data routing acceleration</li> </ul>                                                        |

## Enabling SDV: Key innovation areas for automotive microcontroller platforms in future vehicle architectures



Performance and throughput

Handling of **large amounts of parallel tasks and I/O** without compromising real-time performance



### Determinism and low latency

Reliability and availability

Safety and security

**Reuse and Scalability** 

# Source: Vitesco, Inverter design

- Predictable execution time and guaranteed timing of computations
- Minimal downtime, robust fault tolerance and fast recovery mechanisms
- > Hardware redundancy and software diversity
- High diagnostic coverage, fault detection and mitigation, mechanism to brings systems to safe state
- Secure boot, restricted access to resources and data encryption



Source: Arnold NextG, X-by-wire



- > Modularity and reuse of existing software components
- Ability to adapt to software loads, memory, communication capabilities and system target costs
- Copyright © Infineon Technologies AG 2024. All rights reserved.





## Traditionally microcontroller consisted of two building blocks using programable cores:

#### – System management

- Reset management, clock system, memory initialization
- Power mode handling

### Real-time control

- Predictable execution time & low-latency interrupt handling
- RTOS support incl. scheduling, task management

### but complexity has evolved...

### **Microcontroller today: Change in automotive computational tasks** requires specialization, standardization & instruction set reuse





| Sy | <ul> <li>System management</li> <li>&gt; Reset management, clock system, memory initialization</li> <li>&gt; Power mode handling</li> </ul> |                                                                                                                                                                                       |               |  |  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|--|
|    | En                                                                                                                                          | <ul> <li>Embedded accelerators</li> <li>Security sub-systems and accelerators</li> <li>Application-specific signal processing, Networking &amp; protocol engines</li> </ul>           |               |  |  |
|    |                                                                                                                                             | Real-time control         >       Predictable execution time & low-latency interrupt handling         >       RTOS support incl. scheduling, task management                          | 1-6x<br>cores |  |  |
|    | Da                                                                                                                                          | <ul> <li>Ata processing tasks</li> <li>&gt; High-performance handling of complex processing tasks</li> <li>&gt; Memory management support &amp; Privileged execution modes</li> </ul> | 1-4x<br>cores |  |  |
| AI | infe<br>›<br>›                                                                                                                              | erence tasks<br>Specialized hardware for matrix and tensor computations<br>Model compression and optimization support                                                                 | 1-Nx<br>cores |  |  |

## Microcontroller today: Change in automotive computational tasks requires specialization, standardization & instruction set reuse







### Modern core architectures address two main challenges: Dependability & Scalability



### **Challenge: Dependability**

Dependability is a measure of a system's availability, reliability, maintainability, safety and security. The ability to maintain functionality when parts of a system break down is referred to as graceful degradation





-`ᢕੑੑੑ੶

Dependability and graceful degradation requires safe and scalable core portfolio



Core architecture needs to support extensions to support all application domains

## Embedded Security

.....

## New E/E architecture is leading to increasing security requirements and enhanced security cluster demand





Why is an enhanced security cluster needed?



Minimize latency & maximize throughput for "In Vehicle Network" (IVN) communication



**Secure in-vehicle networking** , authentication of >50% and encryption of >15-20% of all IVN messages



**Enable SOTA** based on secured and safe distribution of SW updates



**Increasing number of security use cases** to be addressed in future car architectures

## Next generation security cluster increase throughput by parallel computation and supports upcoming new security standards



### New security cluster architecture



High performance security with high throughput will be a key requirement

### Cyber security satellite (CSS) for parallel computation

- > Parallel HW accelerators for secure communication tasks
  - > Increasing throughput
  - > Minimizing latency
- > Up to 21 individual channels to be used in communication-rich applications, e.g. gateway use cases
- > Provides freedom of interference for domain / zone controllers

### Cyber security real-time module (CSRM) for performance increase

- > TriCore<sup>™</sup> 1.8 based providing ~5-15x performance vs. ARM M3
- > CSRM support of latest security standards, e.g. ISO 21434
- Private memory to enable security SW updates independent of application cores and application code

### Example: AURIX<sup>™</sup> TC4x cybersecurity cluster – designed for postquantum algorithms and next generation security requirements



Traditional security methods are under attack ...



- > Connected cars are becoming more vulnerable
- Car computer and zone ECU designs require continuous update of security functions
- Quantum computing can be used to attack systems
   like RSA and ECC

AURIX<sup>™</sup> TC4x provides safety accelerator technology for latest security systems **Cipher-based Message** RSA 2048 on AURIX<sup>™</sup> TC3x vs. PQC Dilithium 2 on TC4x Authent. Code (CMAC) throughput Signing time TC3x TC4x TC3x TC4x **7X** more throughput\* 8x faster\*



### **Embedded AI offers system-level benefits**



Embedded AI enhances safety and real-time critical classical control and signal processing algorithms with data-driven Artificial Intelligence (AI) approaches



### **Embedded AI offers model predictive approaches**



Model predictive approaches drive the Innovation for Autonomous Driving and Electric Vehicle



- > Embedded AI enables model predictive and model adaptive approaches that can run on MCUs
- Model predictive and adaptive approaches are the key technology to increase energy efficiency, driving comfort and dependability for Autonomous Driving
- > To solve the major challenges **driving distance and fast charging** for Electric Vehicle, **AI approaches** together with conventional models are the **game changer**

## Example: New AURIX<sup>™</sup> data processing architecture supports latest safe AI use cases with new accelerator technology





### AURIX<sup>™</sup> Safe Parallel Processing Unit

- SIMD vector DSP, speeding up computation compared to traditional CPUs
  - > Matrix operation acceleration & Data processing
  - > Neural network-based algorithms
  - High speed control implementations



### AURIX<sup>™</sup> SoC architecture

- > Virtualization enables seamless functional integration
- > PPU acts as a service provider, offloading TriCore™
- > PPU is closely coupled to periperals for low latency implementation

## Embedded AI enables next generation electric drivetrain with significant efficiency gains in battery and power conversion



### On-board Charger and DC-DC Converter

- > Health Observing
- AI based load prediction
- AI based Model Adaptive Control (MAC)

### clear cost-down path and further efficiency increase

**HV Traction Inverter** 

- > Motor Position Sensing
- Health Observing
- Temperature Estimation
- Model Predictive Control (MPC)

### best-in-class system efficiency and cost-reduction

### **Battery-Management**

>

- AI models to reparametrize electrochemical models during run-time
- AI models to predict battery status during fast charging

optimized charging, extended vehicle range and battery life



TriCore<sup>™</sup> performance, e.g. for AI-applications based on 256 bit PPU

### Functional safe AI systems require base standards Industry-wide work groups established to define safety related AI system properties



ISO 8800 (Safety of AI) in development to enable functional safe AI systems

### Key take-aways

- Modern microcontroller architectures are key for delivering the cost and performance promise of the Software Defined Vehicle (SDV)
- Open-source technologies enter the automotive domain industry leaders joined forces to move RISC-V forward
- Post-quantum security solutions are a key area of innovation in the automotive domain
- Safe AI technologies build the basis for more power-efficient systems, lower BoM cost and improved dependability



