
Data-Driven Approach to Accelerate Coverage
Closure on Highly Configurable ASIC Designs

Tulio Pereira Bitencourt, Rasadhi Attale, Samuel Man-Shun Wong,
Po-Shao Cheng, Anton Tschank

Tessent Embedded Analytics – Siemens

Agenda

1. Introduction – Tessent Embedded Analytics

2. Challenges of Working with Highly Configurable IPs

3. Requirement Management and Verification Planning

4. Structure for Effective Regressions

5. Accumulated Coverage Structure

6. Traffic Light System & Unreachability

7. Real-time and Interactive Dashboards

8. Early Bug Detection – Conclusion

Tessent Embedded Analytics functional monitoring​

Observing non-intrusively if your SoC behaves as it was meant to

Full visibility into HW/SW interactions in deployed systems enabling
optimizations and debugging throughout the entire system lifecycle from lab to
deployment

• Real-time debug and trace environment

• Optimize software to achieve better performance and efficiency

• Use historical performance data to inform designs of next generation
designs

Bus Monitor
Status

Monitor
Trace

Encoder
NoC

Monitor

Direct
Memory
Access

Static
Instrumen-

tation

CPU Debug
Module

Trace
Receiver

AI Data Centre Automotive 5G/6G Storage Audio

Introduction – Tessent Embedded Analytics

Host Suite

3rd party SW

Orchestration /
analytics app

Host Suite

Embedded
SDK

Capture/
processing

app

Smart monitors
Range of ~40 IP blocks including run-time

configurable monitors, infrastructure, and

interfaces that enables non-intrusive debug and

performance monitoring

Software for interactive

debug and optimization
Debug software running on a separate PC is

used to interact with the EA smart monitors

Edge analytics enablement
Applications developed using the Embedded

SDK interact with the monitors, capture, and

process results

Fleet monitoring enablement
Applications developed using Host Suite can

automate data orchestration and analytics from

one or multiple devices

Tools & Requirements

• Requirement tracking tool (documentation) (e.g., Polarion)

• Verification management tool (e.g., VIQ)

• Digital simulation tool (e.g., QuestaOne)

• Regression running tool (e.g., VRM)

• Coverage visualization & merging tool (e.g., Visualizer)

• Regression scheduler & CI/CD (e.g., Jenkins)

• Metrics, data visualization and dashboards (e.g., VIQ)

Vendor-agnostic flow!

Challenges of Working with
Highly Configurable IPs

Highly-Configurable IPs

"Highly-Configurable"
o Designs with many RTL parameters
o Compile-time constant, large impact on synthesis results
o “CONFIG” = “set of parameters”

Who
o IP vendors must provide configurable designs

▪ Standard protocols, AXI, USB etc.
▪ Optional features/optimisation
▪ E.g. Tessent Embedded Analytics has extremely high configurability

o Scaling up means increasingly modular designs
▪ Accumulates wider range of configurability
▪ More inter-dependencies that result in bugs or invalid configurations

protocolA_channel_width

Parameter-space Scales Exponentially

protocolA_channel_width

protocolA_num_channels

Parameter-space Scales Exponentially

protocolA_channel_width

protocolA_num_channels

protocolB_data_width1

Parameter-space Scales Exponentially

protocolA_channel_width

protocolA_num_channels

protocolB_data_width1

protocolB_data_width2

Parameter-space Scales Exponentially

protocolA_channel_width

protocolA_num_channels

protocolB_data_width1

protocolB_data_width2

protocolB_option1

Parameter-space Scales Exponentially

protocolA_channel_width

protocolA_num_channels

protocolB_data_width1

protocolB_data_width2

protocolB_option1

protocolB_option2

Parameter-space Scales Exponentially

protocolA_channel_width

protocolA_num_channels

protocolB_data_width1

protocolB_data_width2

protocolB_option1

protocolB_option2

Parameter-space Scales Exponentially

protocolA_channel_width

protocolA_num_channels

protocolB_data_width1

protocolB_data_width2

protocolB_option1

protocolB_option2

buffer_size

num_buffers

Parameter-space Scales Exponentially

protocolA_channel_width

protocolA_num_channels

protocolB_data_width1

protocolB_data_width2

protocolB_option1

protocolB_option2

buffer_size

num_buffers

retiming_options

reset_value

Parameter-space Scales Exponentially

protocolA_channel_width

protocolA_num_channels

protocolB_data_width1

protocolB_data_width2

protocolB_option1

protocolB_option2

buffer_size

num_buffers

retiming_options

reset_value

optional_optimisation

more_feature_support

Parameter-space Scales Exponentially

protocolA_channel_width

protocolA_num_channels

protocolB_data_width1

protocolB_data_width2

protocolB_option1

protocolB_option2

buffer_size

num_buffers

retiming_options

reset_value

optional_optimisation

more_feature_support

Parameter-space Scales Exponentially

protocolA_channel_width

protocolA_num_channels

protocolB_data_width1

protocolB_data_width2

protocolB_option1

protocolB_option2

buffer_size

num_buffers

retiming_options

reset_value

optional_optimisation

more_feature_support

Parameter-space Scales Exponentially

Trace and track progress of many configurable
requirements in documentation

Managing complex verification plans for both shared and
unique features

Manage compatibility of verification execution with all
parameter sets

Gather metrics to give confidence of high verification
quality across all configurable functionality

Visualizing verification metrics across all configurations
for quick feedback

Verification Challenges

Many more test scenarios to cover

Many more bugs to find

Incomplete insight into verification progress

Unclear where best to invest resources

Time-to-market scales drastically

Verification complexity scales exponentially with design ... … So a data-driven methodology is needed.

Verification
Execution

Requirements
SW / Driver RTL Design

Coverage

Testbench Design

DUT

Coverage

Assertions

Stimulus

Checking

Verification Management

Verification plan

Gather metrics

Database management

Requirements
statistics

Regression
statistics

Data visualization

Summary of the proposed flow

Requirement Management
and Verification Planning

Specification Management

• Itemised requirements for each IP module

• Referenced specification from common
components/interface/module

oMaximise reusability

o Easier to maintain

oOnly need to be formally reviewed once

• Customised approval flow/work
items/scripts, baseline, branching, and
much more …

Common
Component
Spec

Common
Interface
Spec

Module Specification

• REQ-001
• REQ-002
• REQ-003

Requirement Traceability

• Ensure every requirement is linked to
the test plan

• Traceability is straight forward and
easy to read

• Window pop-out showing details of
the test plan item

• Crucial aspect of adhering to industry
standards e.g. ISO 26262 and DO-254

Requirement Traceability Dashboards

01
RTL Implementation
Requirements linked to the
actual RTL implementation e.g.
VHDL, Verilog using pragmas. 02

Test Plan
Requirements linked to the
Test Plan. 03

Coverage Results
Shows coverage number for
each test plan items that the
requirements are linked to.

Exporting Data from Specification

• Single source of truth

• API to access its database

• Auto-generated YAML files

• Further automated process

oAuto-generated RTL sub-components

oAuto-constraining parameters of the
designs

Script
Use API to request data

Filter and check data

Requirements Database
Contains Work Item Data
Provides API to access

YAML
All necessary data with
agreed structure

RTL
Verification
ASCII Docs
IPXACT

~~~~~
~~~~~
~~~~

~~~~~
~~~~~
~~~~

~~~~~
~~~~~
~~~~

~~~~~
~~~~~
~~~~

Scripts
Read YAML

Check against files
Generate files

VIQ - Testplan Author

• Parameters used in the test plan – highly configurable reuseable

• Maximise reusability across multiple IP modules for common components, interfaces, protocols

• Strong emphasis on collaboration and effective communication

• Comment, reuse of other testplans, coverage analyzer looking at UCDBs

Test Plan Traceability

• Shows the requirement linked
to the test plan item

• Window pop-out showing
details of the requirement

Coverage Tracking in Test Plan
• Coverage Database linked to the test plan

• Functional coverage

o Test plan is linked to covergroup and/or coverpoints

• Code coverage

• Ports in test plan are linked to toggle coverage

• Test plan coverage

o Shows overall progress of the test plan

o How well the test plan is executed

• Exclusion option available in test plan

Test Plan Coverage Tracking in UCDB

• Test plan merged to the UCDB

• UCDB = Unified Coverage Database

• Automatically merged at the end
of each nightly regression run

• Accumulated UCDB reflected in
test plan

• UCDB flow and VIQ dashboards
covered in later topics

Specification vs. Test Plan vs. Coverage

Specification

Lorem Ipsum is simply dummy text of the
printing and typesetting industry. Lorem
Ipsum is the industry's standard dummy text
ever since the 1500s, when an unknown
printer took a galley of type and scrambled it
to make a type specimen book. It has survived
not only five centuries, but also the leap into
electronic typesetting, remaining essentially
unchanged. It was popularised in the 1960s
with the release of Letraset sheets containing
Lorem Ipsum passages, and more recently
with desktop publishing software like Aldus
PageMaker including versions of Lorem
Ipsum.

Natural Language
REQ-001 → Lorem Ipsum is simply dummy text of
the printing and typesetting industry.

REQ-002 → Lorem Ipsum is the industry's standard
dummy text ever since the 1500s.

REQ-003→ It has survived not only five centuries.

REQ-004→ The leap into electronic typesetting.

REQ-N → Aldus PageMaker including versions of
Lorem Ipsum.

. . .

Requirements

1.1 → Lorem Ipsum is simply dummy text
of the printing and typesetting industry.

1.2 → Lorem Ipsum is the industry's
standard dummy text ever since the
1500s.

1.3 → It has survived not only five
centuries.

1.4→ The leap into electronic typesetting.

m.n → Aldus PageMaker including
versions of Lorem Ipsum.

Test Plan

. . .
%

%

%

%

%

UCDB - Coverage

Test Plan

CC: Branch

CC: Expression

FC: Coverpoint. . .

CC: Toggle

Structure for Effective
Regressions

Cross-platform
automation

&
Highly-configurable

flow

Develop Test
Suite

Parameter
Randomization

Regression
Scheduling

Regression
Engine

Data Extraction

Data
Visualization

Failure
Signatures

Cross-platform
automation

&
Highly-configurable

flow

Develop Test
Suite

Parameter
Randomization

Regression
Scheduling

Regression
Engine

Data Extraction

Data
Visualization

Failure
Signatures

Cross-platform
automation

&
Highly-configurable

flow

Develop Test
Suite

Parameter
Randomization

Regression
Scheduling

Regression
Engine

Data Extraction

Data
Visualization

Failure
Signatures

Parameter Randomization

• Essential for covering param-space

• Seed-based randomization for reproducibility

• Constraints for inter-dependencies (improves
efficacy of batch-runs)

Cross-platform
automation

&
Highly-configurable

flow

Develop Test
Suite

Parameter
Randomization

Regression
Scheduling

Regression
Engine

Data Extraction

Data
Visualization

Failure
Signatures

Regression Scheduling

• Frequency: continuous integration,
nightly & weekends

• Different regression lists for different
purposes:

• Mini (5mins), nightly, long (weekend),
formal, PSS

• Fully flexible for custom test lists
e.g. for specific configurations

Cross-platform
automation

&
Highly-configurable

flow

Develop Test
Suite

Parameter
Randomization

Regression
Scheduling

Regression
Engine

Data Extraction

Data
Visualization

Failure
Signatures

Regression Engine

• Many stages of tests & scripts

• Executes config-randomization, PSS, simulation,
coverage, data extraction

Cross-platform
automation

&
Highly-configurable

flow

Develop Test
Suite

Parameter
Randomization

Regression
Scheduling

Regression
Engine

Data Extraction

Data
Visualization

Failure
Signatures

Data Extraction

• Extractor to port all regression
results and UCDBs to one
location

• In-house flow (Yaml,
Make, Python, Groovy)

• Automated test plan coverage annotation, coverage
merging, unreachability-based waivers & repository
data statistics

Cross-platform
automation

&
Highly-configurable

flow

Develop Test
Suite

Parameter
Randomization

Regression
Scheduling

Regression
Engine

Data Extraction

Data
Visualization

Failure
Signatures

Data Visualization

• Separate datasets can be visualized

• Trigger for regression engine

Cross-platform
automation

&
Highly-configurable

flow

Develop Test
Suite

Parameter
Randomization

Regression
Scheduling

Regression
Engine

Data Extraction

Data
Visualization

Failure
Signatures

Failure Signatures

• Automated data scraping

• View statistics on each failure message

• View failure log and run command with rand-seeds
to rerun the same param config and test stimulus

Accumulated Coverage
Structure

Metric-Driven Verification (MDV)
▪ When should we use it?

• Sometimes, a system has too many possible inputs.

• Brute-force is not, therefore, an option.

• Metric-Driven Verification is based on RANDOMIZATION.

RANDOMIZE

COVERAGE

Check Metrics

FUNCTIONAL

CODE

Repeat

RTL

Send to

Collect

• Collecting coverage for highly-configurable IPs require robust strategy.

• Using automation tools (e.g., Jenkins) is critical to success.

• Two different accumulation approaches will be explored.

• Accumulation is based on merging UCDB files.

Metric-Driven Verification (MDV)

Accum UCDBRun
Regression(s)

Latest UCDB
Config TYPIC

generate

Latest UCDB
Config MIN

generate

Latest UCDB
Config MAXgenerate

merge

merge

merge

Merging Strategy

Merge

Latest UCDB
Config TYPICAL

Accum UCDB

cvg.cp.bin_A cvg.cp.bin_A

cvg.cp.bin_C cvg.cp.bin_B

Merging Strategy

Merge

Latest UCDB
Config TYPICAL

Accum UCDB

Accum UCDB

cvg.cp.bin_A cvg.cp.bin_A

cvg.cp.bin_C cvg.cp.bin_B

UCDB Hierarchy

Run Regression(s)

Config
TYPICAL

Config
MIN

Config
MAX

Config
RANDOM

Latest
Config TYPIC

Latest
Config MIN

Latest
Config MAX

Latest
Config RAND

Accum
Config TYPIC

Accum
Config MIN

Accum
Config MAX

Accum
Config RAND

Accum
ALL CONFIGS

Automation Tool

Job #1

• Single job → All configurations

Automation: Scenario 1

Config
TYPICAL

Config
MIN

Config
MAX

Config
RANDOM

Automation Tool

Job #1

• Single job → All configurations

Automation: Scenario 1

Config
TYPICAL

Config
MIN

Config
MAX

Config
RANDOM

Latest
UCDBs

Accum
UCDBs

Accum
ALL CONFIGS

Local files → within a given job’s workspace

Automation Tool

Automation: Scenario 2

Jo
b

 #
1

Config
TYPICAL

• Single job → Single configuration
Jo

b
 #

2
Jo

b
 #

3
Jo

b
 #

4

Config
MIN

Config
MAX

Config
RANDOM

Automation Tool

Automation: Scenario 2

Jo
b

 #
1

• Single job → Single configuration
Jo

b
 #

2
Jo

b
 #

3
Jo

b
 #

4

Config
TYPICAL

Config
MIN

Config
MAX

Config
RANDOM

Latest
Config TYPIC

Latest
Config MIN

Latest
Config MAX

Latest
Config RND

Accum
Config MIN

Accum
Config TYPIC

Accum
Config MAX

Accum
Config RND

Accum
ALL CONFIGS

Local files → within a given job’s workspace

Global files → shared by multiple jobs

• Choose the right accumulation path based on the structure.

• Analyze intermediary UCDBs as needed.

• Easily check how thoroughly the IP was verified using the ALL_CONFIGS.

Considerations

Traffic Light System &
Unreachability

• In a world with highly configurable IPs, different parts of the RTL
might be unreachable depending on the configuration.

PARAM_ALLOC = 1
RTL

ALLOC_MODULE

…

INVALID_OPERATION

Introduction

ALLOC message

PARAM_ALLOC = 1
RTL

ALLOC_MODULE

…

INVALID_OPERATION

ALLOC message

Introduction

• In a world with highly configurable IPs, different parts of the RTL
might be unreachable depending on the configuration.

PARAM_ALLOC = 1
RTL

ALLOC_MODULE

…

INVALID_OPERATION

ALLOC message

Introduction

PARAM_ALLOC = 0

• In a world with highly configurable IPs, different parts of the RTL
might be unreachable depending on the configuration.

PARAM_ALLOC = 1
RTL

ALLOC_MODULE

…

INVALID_OPERATION

PARAM_ALLOC = 0

Introduction

• With PARAM_ALLOC disabled,
ALLOC_MODULE can’t be covered.

• How to deal with that?

• In a world with highly configurable IPs, different parts of the RTL
might be unreachable depending on the configuration.

ALLOC message

Traffic Light System: Coverage Goals
• Coverage collected both for function

coverage and code coverage.

• Coverage target goals are:

➢100% Function Coverage

❑Upgraded methodology to be param

aware.

➢100% “explained” Code coverage

❑Explained means there are waivers for

unreachable code.

• Why the Traffic Light System?

➢Allows for initial thorough analysis.

➢ Forces, on Red Waivers, to go back for

more implementation/analysis.

Waiver classifications:
• Red

➢ Reachable, but untested

➢ Requires further attention.

• Amber

➢ Reachable, but only partly tested.

➢ High confidence it will be covered.

➢ Might require further attention.

➢ e.g., Cover Crosses (FC).

• Green

• Unreachable.

• Requires clear justification and

reviews.

• Once accepted, no need for

further attention.

• e.g., different configuration

Traffic Light System

Traffic Light System: Proposed methodology
1. Look for coverage holes.

2. Analyze coverage holes.

3. Classify coverage holes.

4. Propose a classification (e.g., through JIRA).

5. Wait for the approval.

6. Exclude the items.

R

E

D

G

R

E

E

N

AMBER

Unreachability
• Formal Unreachability
➢ Mathematically unreachable.
➢ Formal Verification tools.

• Proposed Methodology:
1. Run unreachability analysis tool.

2. Analyze proposed exclusions.

3. Apply exclusions.

AND
GATE

0 0/1

0

1

Toggle
Expression

AND
GATE

0 0/1

0

1

0/1

AND
GATE

…

Exclusions
• Traffic Light System + Unreachability → Need for Exclusions!

• How to manage exclusions?
• Assume 3 configurations: CONFIG_TYPICAL, CONFIG_MIN, CONFIG_MAX

• Create exclusion files for each configuration.

Green_TYPICAL.do

Green_MIN.do

Green_MAX.do

includes

includes

includes

auto
load

auto
load

auto
load

R

E

G

R

E

S

S

TYPICAL.ucdb

MIN.ucdb

MAX.ucdb

Formal UNR Tool
(e.g. Questa CoverCheck)

UNR_TYPICAL.do

UNR_MIN.do

UNR_MAX.do

generates

• Code Coverage can be excluded; Functional Coverage shall not be for
Green Waiver.

• Introducing Parameter-aware Functional Coverage:
➢Create auto-excluding Covergroups, Coverpoints and Bins based on parameters.

• Covergroups → if (<COND>) cvg = new(“name”);

• Coverpoints:
 option.weight = (<COND>);
 option.at_least = (<COND>);
 type_option.weight = (<COND>);

• Bins → bins b_A = {'h0} with (<COND>);

Parameter-aware Functional Coverage

What if
option.per_instance = 1?

• Randomize all parameters → Allows for covering all possible
 configurations over time.

• Addition of COV_ALL flag.
➢No parameter-aware in RANDOM → We need to see coverage holes.

➢Add covergroup for parameters.

RANDOM Configuration

Collaborative Work – Coverage Analyzer
(VIQ)
• VIQ offers a collaborative work

environment to analyze and
manage coverage.

• It also keeps track of testplans
merged into coverage files

• For Code Coverage, well-maintained Exclusions are
the key to success.

• For Functional Coverage, well-designed parameter-
aware covergroups shall expedite verification.

Considerations

Real-time and Interactive
Dashboards

Dashboards
ASIC Verification Complexity

• Highly configurable IPs require verification across multiple
configurations

• Leads to exponential growth in verification effort (almost infinite
permutations

• Managing diverse configurations and variants creates significant
data challenges

• Need for data-driven decision making thus super important to
present this data in a concise and meaningful way.

• Crucial that data is accurate and Real-Time

Type of Metrics

Regression Pass /
Fail Status

Code and Function
Coverage

Bug tracking
system statistics

Specifications /
requirements

items

Verification plan
items

Repository
statistics

Compute
resources metrics

(CPU, Memory etc)

Test/regression
resource statistics

(e.g. run time)

Challenges Without Real-Time Dashboards

• Delayed insights into verification progress and issues
• Manual collection and correlation of metrics across configurations

can lead into misinterpretation
• Reactive rather than proactive issue detection
• Siloed information between teams and verification stages
• Can lead to stale data very quickly
• Time-consuming report generation and analysis

Benefits of Real-Time & Interactive Dashboards

• Immediate visibility into verification progress
• Early bug detection and trend analysis
• Resource optimization and management
• Comprehensive coverage tracking across configurations
• Data-driven decision making
• Efficient generation of verification health reports.

Benefit 1: Immediate Visibility

• At-a-glance “health status” overview of design and verification
• Real-time status across all regression runs and configurations
• Aggregated view of pass/fail metrics across variants and also

coverage
• Immediate feedback on new test additions or code changes
• Better understanding of verification bottlenecks

Benefit 1: Immediate Visibility

Benefit 2: Early Bug Detection

• Live bug convergence trends highlight potential issues early
• Interactive bug curves allow drill-down into problematic areas
• Cross-configuration bug correlation identifies systemic issues
• Predictive analytics for forecasting time to verification closure

Benefit 2: Early Bug Detection

Benefit 2: Early Bug Detection (2)
• Smart debug - > Using ML

to triage and identify
candidate tests to debug.

• Speeds up debug cycles
helping in earlier bug
detection.

Benefit 3: Comprehensive Coverage Tracking
• Real-time coverage metrics across all configurations and all

coverage types
• Interactive coverage linked and annotated directly to testplan

items
• Gap analysis between configurations highlights untested

scenarios
• Coverage progression tracking shows verification maturity over

time

Benefit 4: Resource Optimization

• CPU / Memory utilization tracking across all tests to identify
performance anomalies

• Test runtime analysis to identify inefficient simulations
• Regression execution patterns reveal infrastructure bottlenecks

Benefit 5: Data-Driven Decision Making

• Actionable insights rather than raw data
• Interactive filtering to isolate specific issues or configurations
• Custom views for different stakeholders (managers, engineers,

leads)
• Historical trend analysis for continuous process improvement

Tessent Embedded Analytics Dashboard (1)
• Use Questa Verification IQ (VIQ) extensively for verification management

and dashboarding
• Various metrics: regression status, coverage scores, database stability, CPU runtimes, etc.

• Each IP has separate Hierarchical dashboard per variant and configuration.

Tessent Embedded Analytics Dashboard (2)

Requirement Traceability Dashboards

01
RTL Implementation
Requirements linked to the
actual RTL implementation e.g.
VHDL, Verilog using pragmas. 02

Test Plan
Requirements linked to the
Test Plan. 03

Coverage Results
Shows coverage number for
each test plan items that the
requirements are linked to.

Bug / Issue Tracking

•Using JIRA for issue/bug tracking

•Will integrate with Verification
Management tool

Early Bug Detection

How our coverage and dashboards help

TO FIND BUGS EARLY –
SPECIALLY DURING THE

PRE-SILICON STAGE

CREATE ROBUST DESIGNS
– HIGH QUALITY DESIGN

DEVELOPMENT TIME IS
FASTER

BETTER RELATIONSHIP
WITH CUSTOMERS

Early Bug Detection

Verification
Checklist

Unlinked
Requirements

Unannotated
Coverage

Git CI failure
Regression

Trends

Failure
Signatures

Coverage
Trends

Early Indicators of Bugs

Verification checklists

• Final link in the methodology

• Created early in the development process of
the release

• Completed prior to code freeze

• Reviewed and approved prior to release

• Captures all aspects of the methodology

• Progress bar in Jira is used to track checklist

Regression Trends & Failing Signatures
Coverage rate for the
regression

Pass/fail trends of the
regressions

Error messages seen in the regression

Coverage Trends

Fluctuations in
coverage can help
identify bugs

Helpful to identify
which areas of the
code is untested

Summary
Automated & Configurable
Flow: Manages complex IP
verification with cross-platform
automation.

Real-time Visibility: Interactive
dashboards enable early bug
detection and data-driven
decisions.

Enhanced Coverage: "Traffic
Light System" for parameter-
aware functional coverage.

Integrated
Traceability: Seamless
collaboration via JIRA and
requirement management
integration.

Optimized Resources: Monitors
usage (CPU/memory, runtime)
for efficiency.

Efficient Techniques: Leverages
randomization, coverage
merging, and automated data
extraction.

Questions?

	Default Section
	Slide 1: Data-Driven Approach to Accelerate Coverage Closure on Highly Configurable ASIC Designs

	Agenda
	Slide 2: Agenda

	Intro
	Slide 3: Tessent Embedded Analytics functional monitoring​
	Slide 4: Introduction – Tessent Embedded Analytics
	Slide 5: Tools & Requirements

	Topic 1: Challenges
	Slide 6: Challenges of Working with Highly Configurable IPs
	Slide 7: Highly-Configurable IPs
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Verification Challenges
	Slide 21
	Slide 22: Summary of the proposed flow

	Topic 2: Req Mgnt & Vplan
	Slide 23: Requirement Management and Verification Planning
	Slide 24: Specification Management
	Slide 25: Requirement Traceability
	Slide 26: Requirement Traceability Dashboards
	Slide 27: Exporting Data from Specification
	Slide 28: VIQ - Testplan Author
	Slide 29: Test Plan Traceability
	Slide 30: Coverage Tracking in Test Plan
	Slide 31: Test Plan Coverage Tracking in UCDB
	Slide 32: Specification vs. Test Plan vs. Coverage

	Topic 3: Regress Structure
	Slide 33: Structure for Effective Regressions
	Slide 34
	Slide 35
	Slide 36: Parameter Randomization
	Slide 37: Regression Scheduling
	Slide 38: Regression Engine
	Slide 39: Data Extraction
	Slide 40: Data Visualization
	Slide 41: Failure Signatures

	Topic 4: Accum Cov Structure
	Slide 42: Accumulated Coverage Structure
	Slide 43: Metric-Driven Verification (MDV)
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

	Topic 5: Traffic Light & UNR
	Slide 53: Traffic Light System & Unreachability
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58: Traffic Light System: Coverage Goals
	Slide 59: Traffic Light System
	Slide 60: Traffic Light System: Proposed methodology
	Slide 61: Unreachability
	Slide 62: Exclusions
	Slide 63: Parameter-aware Functional Coverage
	Slide 64
	Slide 67: Collaborative Work – Coverage Analyzer (VIQ)
	Slide 68: Considerations

	Topic 6: Dashboard
	Slide 69: Real-time and Interactive Dashboards
	Slide 70: Dashboards
	Slide 71: Type of Metrics
	Slide 72: Challenges Without Real-Time Dashboards
	Slide 73: Benefits of Real-Time & Interactive Dashboards
	Slide 74: Benefit 1: Immediate Visibility
	Slide 75: Benefit 1: Immediate Visibility
	Slide 76: Benefit 2: Early Bug Detection
	Slide 77: Benefit 2: Early Bug Detection
	Slide 78: Benefit 2: Early Bug Detection (2)
	Slide 79: Benefit 3: Comprehensive Coverage Tracking
	Slide 80: Benefit 4: Resource Optimization
	Slide 81: Benefit 5: Data-Driven Decision Making
	Slide 82: Tessent Embedded Analytics Dashboard (1)
	Slide 83: Tessent Embedded Analytics Dashboard (2)
	Slide 84: Requirement Traceability Dashboards
	Slide 85: Bug / Issue Tracking

	Topic 7: Early Bug Detection
	Slide 86: Early Bug Detection
	Slide 87: How our coverage and dashboards help
	Slide 88: Early Indicators of Bugs
	Slide 89: Verification checklists
	Slide 90: Regression Trends & Failing Signatures
	Slide 91: Coverage Trends
	Slide 92: Summary

	Questions
	Slide 93: Questions?

