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Abstract—This paper describes a new verification methodology used on a highly scalable multi-core memory 

subsystem using a Transactional Test bench. This memory subsystem design is part of an enterprise class ARMv8 

server-on-chip that integrates large number of CPU cores along with Level2 (L2) and Level3 (L3) caches, multiple 

high-bandwidth memory controllers and an IO subsystem. A key design point of the test bench is the ability to map 

standard multi processor algorithms that stress memory coherency and consistency from the instruction set to a 

transactional domain. The test bench is developed in SystemVerilog using the OVM methodology.  

Keywords—  multi processor verification; ARM server;  sub system verification;  memory coherency; transactional 

test bench   

I.  INTRODUCTION  

This paper will introduce a fully featured enterprise class ARMv8 server CPU design that integrates large 

number of processor cores along with multiple Level 2 (L2) and Level 3 (L3) caches, multiple high bandwidth 

memory controllers and an IO (Input/Output) subsystem. The challenges of verifying this complex and scalable 

multi-core memory subsystem is described and details about a new verification methodology  using a 

transactional sub-system test bench is introduced. Results are described in terms of how this methodology helped 

in rapid and continuous integration testing of memory subsystem, finding multi-processor coherency and 

consistency bugs, improving simulation efficiency and early performance benchmarking of the design.  

A. ARMv8 Server Memory Subsystem:  

Figure 1 shows a block diagram of the multi-core CPU design along with the memory sub system which is 

being verified using the approach described in this paper.  The design is highly scalable in terms of number of 

cores (1 to “N”) as shown in the figure.  The L2 caches are shared for a pair of cores and are connected to the 

central switch fabric which takes care of the ordering of memory requests from multiple cores and also has the 

functionality of a snoop controller. Multiple L3 caches, memory bridges and an IO bridge also are connected to 

the central switch and are part of the system coherence domain. Multiple high bandwidth memory controllers sit 

behind the Memory Bridge and connect to standard DRAM memories. The IO Bridge interfaces between the 

SOC and the process cores. A custom communication protocol is implemented which describes the process by 

which memory is accessed and the means through which memory is kept coherent across all of these agents.  
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B. Multi-core Memory Subsystem Verification challenges:  

Multi-core processors are designed to enhance the execution throughput of instructions by executing them in 

parallel on multiple cores. This increased throughput however, can be utilized to its fullest only when memory 

dependency between instructions is minimal. This problem is further enhanced due to the presence of caching 

agents where, recently accessed or recently computed data tends to sit longer, therefore being invisible to the 

other cores.  The coherency protocol ensures that all cores have a ‘coherent’ view of each memory location in 

each of the caching agents. In addition to maintaining memory coherency, different processor architectures also 

define a set of rules governing how the memory system processes memory operations from different processors, 

known as a memory consistency model.  The ARM v8 architecture, that this design implements has a weakly 

ordered consistency model. 

The verification of a coherence protocol and consistency model must address the challenge of state transitions 

of the entire system which increases exponentially with increasing number of cores and levels of caches. For 

instance, the fairly common MESI protocol can be described as a finite state machine having four states per 

caching agent. For a multi-core system using the MESI protocol with ‘N’ caching agents, the system level 

coherence protocol FSM can potentially contain 4
N
 states. This exponential rise in the complexity of the FSM is 

more challenging in server class processors, which, tend to have a higher number of caching agents as compared 

to other embedded processors.  In order to stress the memory coherency protocol, instructions executed on each 

individual core need to use addresses from a shared pool which triggers the maximum state transitions across 

multiple agents.  Furthermore, the verification scheme must be highly scalable and configurable to verify designs 

with a large number of cores and caching agents, without extensive changes to the test bench. This flexibility is 

important from the perspective of reusability, since every new generation of processors increase the number of 

cores and caching agents. In addition to stressing the coherence protocol, micro-architectural details must be 

stressed in conjunction with coherence protocol messages for greater coverage. This is important as it serves to 

uncover potential micro-architectural deadlocks or live locks arising from snoops which are harder to cover in 

unit level tests. 

 Traditionally a lot of multi-core verification happens using tests written in a high level language like C and 

translating into assembly instructions. These are then simulated on a full processor model including the cores. 

This is not a very efficient approach especially if the focus of the tests are to cover different aspects of coherency 

implementation in the memory subsystem rather than the core.  This approach is also harder when there is a need 

to exercise coherent traffic between a CPU core and IO sub system in which either the whole IO subsystem needs 

Figure1. Multi-core memory sub system design  
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to be part of the design under simulation or need to implement some handshake between the C test and the BFM 

modeling IO subsystem. The programmatic stimulus running on a full multiprocessor model is also not the 

efficient approach to generate long harmonic patterns that stress cache state transitions, address collisions, 

resource starvation and several other micro architectural details concurrently.  These are best verified at a sub 

system level which includes all components part of the coherence domain and which can be simulated faster and 

longer. 

II. STIMULUS GENERATION 

This section describes the different approaches towards stimulus generation used in this new methodology, 

the underlying concepts and the motivation for the same.   

A. Mapping instruction set to transactional domain 

Every instruction set or any software program has three basic constructs, namely, sequential execution 

constructs (assignments, computation etc), loops (for, repeat, while etc) and two-way decision constructs (e.g. 

if..else). One of the key design points of this new methodology is the ability to map these constructs into a 

sequence style implementation.  Implementing response channel on the sequence-driver API enables the sequence 

to model a decision tree based on responses received. These concepts helped in implementing several multi-

processor algorithms in a transactional domain.    

Table I below shows mapping of three basic program constructs into a sequence style implementation. An 

if..else condition can be modeled by a sequence which issues a request to read a memory location and based on 

the read data received traverse in different paths for generation. 

Table I. Sequence Styles for Program Constructs 

Mapping Program Constructs to Sequences 

Program Construct Translated Sequence 

   if (flag ==0) {             

      do_something(); 

   } else { 
       do_something_else(); 

   }  

     start_read_get_response_seq(flag); 

     if (response_data ==0) begin 

         do_something(); 

     end else begin 

         do_something_else(); 
     end  

    while (flag =0) { 
         do_something(); 

     }  

 

    read_get_response_seq(flag);  

    while (response_data ==0) begin 
         do_something(); 

         start_read_get_response_seq(flag);     

         read_get_response_seq.start() 
     end 

     wait (flag ==1)  

 

    

   do begin 
       read_sequence.start(); 

       rand_delay(); 

   end while (response data != 1)  

 

Table II below shows further examples on how these basic sequence styles can be used to model building 

blocks for generating multi-processor algorithms in a transactional domain. The first example shows how an 

atomic increment is implemented using ARMv8 load and store exclusive instructions. A memory location (addr) 

is loaded exclusively into a register “r1”; the value is incremented by 1 and written back to same address using a 

store exclusive instruction.  The loop is repeated until the store exclusive instruction completes successfully.  The 

second column shows an equivalent sequence style implementation in transaction domain.  A sequence issues a 

read transaction to a memory address; the response fill data is incremented by 1 and passed on to a write 

exclusive transaction. The loop is then repeated until the response from the write transaction shows an exclusive 

pass.  

The second row explains a similar translation for a standard producer-consumer program across two cores into 

transaction domain. The third example is for a memory barrier.   A memory barrier instruction (DMB in ARMv8) 

executes to make sure all prior stores are completed and visible. This can be implemented as a request-response 
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transaction on the core to memory subsystem interface which drives the corresponding signals to flush all stores 

and monitor for a pending store signal to get de-asserted as response. Using this same approach several other 

multi-processor programs like message/baton passing algorithms, semaphore get/put implementations, false 

sharing patterns, spin-lock algorithms etc can be implemented using sequences. Most of these sequences were self 

checking as the request-response style of API enabled to check for a set of memory locations against an expected 

value that the sequence can predict. This approach enabled us to build a sequence library of MP (Multi-processor) 

specific stimulus patterns which can then be randomly exercised as combinations on different configurations of 

the memory sub system design.  

Table III. Equivalent Sequence style for basic blocks of MP programs 

Sequence translation for building blocks of basic MP program 

Basic building blocks for MP programs Equivalent sequence style 

atomic increment:  

        loop:  ldex  r1, addr 
                   r1 += 1 

                   stex  r1, addr 

                   retry loop if  stex_fail                 
 

 do begin 

       r1 = rd_get_resp_seq (addr) 
       r1 = r1+1;(); 

       excl_pass = write_excl_seq (addr, r1); 

 end while ( !excl_pass)  
 

 Producer: 
 

While(flag!=0){}; 

  Data =1;  
  flag =1;  

 

 

Consumer: 
 

While(flag!=1){}; 

  print data;  
  flag =0;  

 

 

Producer:  
   

rd_wait_seq(flag,0) 

   write_seq(data,1) 
   write_seq(flag,1)  

 

Consumer:  
 

rd_wait_seq(flag,1) 

rd_seq(data); 
write_seq(flag,0);  

 

DMB  (Memory barriers) 

 

  barrier_seq(): 

         -drive flush stores signal to subsystem 
         -wait till pending stores goes low  

 

 

B. Complex System Level Scenarios  

One other subset of stimulus generation consists of complex system level scenarios that focus on memory 

ordering and coherency across the multi-core memory subsystem while also stressing on the micro architecture 

and coherence protocol implementation. We defined a set of high level scenarios that are of interest from a sub-

system level verification and implemented those as part of a higher layered virtual sequence. The virtual sequence 

would then map these scenarios into multiple sub-sequences that can be run in co-ordination across multiple 

lower layer sequencer/drivers across different agents.  Table III below shows few examples of these higher 

layered scenarios and how those are translated to a lower layer implementation. An example scenario like 

“CPU_MEM_WR_BARRIER_FETCH” would translate to a sequence that streams writes on L1 Data cache 

interface and then starts a barrier sequence followed by a sequence on the L1 Instruction Cache interface that 

streams code fetches. 

Table IIIII. Higher layer Transactions 

Sample list of higher layer Transactions 

Higher layer transaction Translation to lower layer  

CPU_INST_FETCH          
CPU_PTE_READS 
CPU_MEM_RDS 
CPU_MEM_WRS 

CPU  doing instruction fetches 
One CPU  doing Page Table Reads 
CPU  doing stream of Memory Reads 
CPU doing stream of Memory writes 
 

CPU_MEM_PRFMS CPU doing stream of pre fetch operations 

CPU_MEM_RD_MOD_WR 
 

CPU doing Read-Modify-Write sequence 

CPU_MEM_WR_BARRIER_WR CPU doing stream of writes followed by barrier 
followed by another stream of writes    



 

 

 

 

 

5 

 

Sample list of higher layer Transactions 

Higher layer transaction Translation to lower layer  

CPU_MEM_WR_BARRIER_FETCH CPU doing stream of writes followed by a 
barrier and  followed by instruction fetches 

CPU_BARRIER Barrier on a CPU 

IOB_MEM_RD                                     
IOB_MEM_WR 

 Memory reads and writes from IOB 
 

CPU_TLB_INV                                     
 

 CPU doing stream of TLB invalidates 

 

The implementation of running multiple lower layered sequences was done in a way to make sure that each of 

the interfaces had concurrent traffic for most of the simulation duration. In addition to running tests based on 

transaction count, the methodology also supported running sequences for multiple iterations across interfaces 

until all of them finish around same time. The sequences also had user defined delay controls to exercise design 

with long harmonic patterns which are important for identifying bugs related to resource starvation and arbitration 

related logic.  

The address generation for different transactions was done with plenty of controls to make sure that sequences 

across multiple cores used shared addresses to create colliding patterns at right times to maximize coverage for 

underlying micro architecture. Few examples include maintaining recently used shared and local address pools 

across cores and also having a feedback from the checker to pick addresses colliding with in flight transactions. 

C. Multi Stage generation and feedback from RTL 

As mentioned earlier, in addition to stressing the coherence protocol, it is important to stress the micro-

architectural aspects of the memory sub-system to isolate dependencies, deadlocks and live locks. Sequences that 

stress the memory coherence protocol and provide coverage of all state transitions do not necessarily stress the 

micro-architectural details of the design. As a result, potential flaws arising due to coherency requests are not 

isolated. For instance, system level deadlock and livelock issues that can arise due to limited system buffer sizes 

are not caught by sequences meant for stressing the coherence protocol. Similarly, preferential arbitration 

mechanisms can cause resource starvation at the system level leading to deadlocks and livelocks which are hard 

to isolate in unit level tests. Therefore, to cover micro-architectural features across subsystem components 

adaptive sequences are designed which are intended to target FIFOs, buffers, arbiters and any micro-architectural 

units that are potential dependencies in the memory subsystem. By proving virtual channel independence, we 

ensure the stressing of the micro-architecture along with the coherence protocol.  

The random stimulus generator is used with dynamically altered weights based on a feed-back mechanism 

from the RTL. Figure 2 shows the structure of the weight adaptation process.  

 

                                          

                                                             Figure 2. Sequences with adaptive weights 
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A sequence that generates random transactions is used in multiple modes with modified weights to generate 

certain targeted conditions that create resource constraints in the memory subsystem. An example implementation 

uses following stages – 

1) Pre-Target Stage – In this initial stage, the random stimulus generator is directed to generate transactions 

that target certain RTL states that create bottlenecks in the design. Specifically this targets buffers, FIFOs and 

other resources which can stall forward progress of certain types of transactions like snoops, writes etc. The 

RTL signals are monitored to reach the necessary starvation scenarios. 

2) Target Stage – This stage is reached when the monitored RTL signals are triggered indicating the RTL is 

stressed in a certain stressed state. The weights directing the kind of transactions are modified in this stage. 

3) Post Target Stage – This stage directs transactions which are independent of the starved resources in the 

RTL. Forward progress of these transactions is monitored to ensure no deadlocks or livelocks are encountered. 

This stage stresses the design’s ability to recover from bottlenect scenarios.  

The modified weights required to generate targeted RTL resource constraints are dependent on the micro-

architecture specifications. For instance, stressing preferential arbiters in the design require varying patterns of 

traffic from the sequences. On the other hand, stressing buffers or FIFOs can be achieved with binary switching 

of weights, where, mutually independent traffic-types are issued in the pre-target and post-target stages.                                      

D. Performance benchmarking Sequences 

This testbench was also used to enable early performance benchmarking of memory subsystem. Traditionally, 

industry standard benchmarks that focus on memory bandwidth and load-to-use latency (e.g. lmbench) are run as 

programmatic stimulus on the full design including cores even though the focus is on memory subsystem. In this 

approach we were able to map these into transactional sequences. We were successfully able to run those 

simulations faster and with a smaller memory footprint than system simulations and identified performance issues 

early in design cycle. 

III. TESTBENCH HIERARCHY 

This memory subsystem test bench implementation follows a standard OVM test bench hierarchy that 

facilitates reuse of unit level test bench components and sequences.  In order to meet needs of all the different 

stimulus generation approaches as explained in previous section, the sequences were layered as lower layer 

sequences which executes on a specific interface and a set of higher layer virtual sequences that co-ordinates 

execution of lower layered sequences.  Figure 3 illustrates this layered sequence implementation along with the 

sequencer/driver connections on each of the interface.     

 

 

                               
 

                                                           Figure3. Test bench hierarchy and Layered Sequences  
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A. Sequence Implementation details 

In this verification methodology, higher layer scenarios like multiprocessor algorithms or complex system 

scenarios are implemented as virtual sequences. The virtual sequence has information about active agents in the 

configuration and can decide on which of the L2 cache agents, it can start a lower layer sequence. A custom API 

is implemented between the higher layered virtual sequence and the lower layered sequences for all the interfaces 

in the subsystem. Based on the higher layer scenario, the virtual sequence would create one or more of lower 

layered sequences, configure them by passing correct parameters and also start them on correct sequencer. The 

responses from the RTL can also flow back from the lower layer sequence to the virtual sequence to decide on 

further generation as the simulation progress.  

                                     

                                                            

B. Reuse from unit level verification 

The test bench was designed to reuse most of the unit level verification components while also focusing on 

not over-constraining stimulus for a subsystem level verification.  Referring to Figure 3 which illustrates the test 

bench components and sequences, all of the lower level sequencers and drivers for the different processor 

interface (Data cache, Instruction Cache and Memory Management Unit) and SOC interface (IO Bridge 

Request) were reused from unit level verification as enabled by the OVM methodology.   The base class 

sequences for each of the unit verification environment were also reused and specific APIs were added to these 

sequence classes so as to communicate with higher layer virtual sequences.  The virtual sequences  and the test 

class were the only one that had to be implemented  with a  subsystem level focus to control  the stimulus 

generation across each of the lower level interfaces. 

All other components like interface monitors, unit level checkers, assertions and configuration objects were 

also reused as enabled by the OVM methodology. 

C. Configuration of  testbench and  DUT 

The memory sub system design is highly configurable in terms of active design units for any given test. One 

or more of the design units can be replaced with a simulation model at run time and this helps in picking up the 

most efficient configuration for a category of tests. The minimum configuration supported includes the central 

switch fabric along with a single instance of L2 cache which can be simulated with dual core stimulus. This 

approach also helped in early integration testing and stimulus generation.  We could start with the minimal 

configuration and enable other units to be part of subsystem with almost no effort as soon as the corresponding 

unit level verification stabilizes.  

Figure 4. Sequence Layering  
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Another aspect of configuration was the large number of configuration options supported in the design spread 

across multiple design units. Some examples of these include the various addressing modes, interleave options, 

cache size configurations etc.  We followed a uniform configuration mechanism across all of the  units which are 

part of the sub-system in such a way that  configuring  these units at sub-system level was just as easy as re-using 

certain knob settings used for unit level verification.    

D. Test and User Controls  

Figure 5 shows how a test can specify one or more virtual sequences in a test and the levels of control in terms 

of test bench and design configuration that can be done. In the example, test starts a producer-consumer pattern 

on a set of cores while running atomic increment patterns on a same or a different set of core/s. A random irritator 

sequence is also enabled which again can run on any number of cores concurrent with other defined patterns. 

 

                                                    

                                                                 Figure 5. Test interface and configuration controls 

 

IV. RESULTS 

 

The test bench was developed to focus on rapid and continuous integration testing for memory subsystem and 

to find harder multi-processor coherency and consistency bugs.  A secondary but equally important design point 

was to improve the simulation efficiency compared to more traditional approaches which involve running 

programmatic stimulus on CPUs. We could achieve both of these to a satisfactory level.  The integration testing 

could start as soon as a minimum of two of the unit designs were stable and other units being integrated in 

parallel.  Most of the multi-processor scenarios were verified at subsystem level efficiently thus saving in terms 

of simulation bandwidth, debug times and effort compared to programmatic stimulus.  

 

This effort helped in thorough testing of memory subsystem across multiple generations of designs. The 

feedback from subsystem level verification helped to identify deficiencies in our unit level environments and 

enhance them. This helped in improving our confidence in the overall verification of our platform.  

 

We were further able to expand usage of this approach on our next generation design for early performance 

benchmarking and finding performance bottlenecks coincidental with unit level design and verification. This 

alleviated the functional DV bottle neck, where performance validation starts behind functional verification. 

  

We were also able to reduce time, effort and resources instead of over-constraining existing unit level 

environments to cover system level scenarios, by leveraging the base OVM layers and building a new mechanism 

for system level co-ordination. 
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