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Abstract—In the context of formal methods, symbolic execution stands
out as highly automatic, allowing static code analysis to be adopted by
users without domain specific expertise or training.

Symex is a symbolic execution framework specifically targeting anal-
ysis of embedded software with requirements to safety, security, and
dependability. However, so far, the execution engine of Symex has been
executing the LLVM Intermediate Representation(LLVM-IR). Because no
consistent mapping between LLVM-IR and actual machine code exists,
Symex has been unable to provide guarantees to runtime properties of
the system, such as Worst-Case Execution Time (WCET).

In this paper, we extend Symex by moving the execution engine to
General Assembly (GA), an Intermediate Representation (IR) capable
of capturing the semantics of Instruction Set Architectures (ISAs),
along with their non-functional properties, e.g. per-instruction execution
time, or power consumption. Symex lifts the ELF binary to GA and
explores all reachable paths without approximations, thus it is able
to provide guarantees to runtime characteristics of the system, taking
into account architecture specific behaviour and compiler backend/linker
optimizations.

Furthermore, we introduce the EASY system analysis framework,
which uses Symex as a symbolic execution backend, and therefore grants
the same verification capabilities. EASY can provide analysis for response
time, task memory isolation and application stack memory utilization.

We demonstrate the feasibility of GA-based symbolic execution by
modelling the full ARMv6 and most of the v7 ISA, as well as the RV32I
ISA. Leveraging on the Rust RTIC framework, we demonstrate that
EASY is capable of automatically determining the schedulability, worst-
case stack memory utilization and task memory isolation properties of
the system.

Index Terms—Symbolic Execution, Formal Verification, WCET, Re-
sponse time analysis, RTIC, Memory-Safety, Automatic, Non-intrusive

I. INTRODUCTION

Embedded software plays an increasingly important role to the
functionality and operation of embedded systems, thus dependability
relies to a high degree on the performance, robustness, reliability,
safety and security of the firmware, calling for rigorous firmware
validation. Further adding to the complexity of validation, embedded
software typically operates under non-functional requirements and
constraints (timing, memory footprint and usage, power, low-level
hardware interaction, etc.).

Whereas formal methods may offer stronger confidence and trust,
wide adoption is hindered by high instep cost (requiring skills/train-
ing) and adds complexity and increased effort to the verification
process in comparison to commonplace test based approaches.

In this paper we present progress on Symex [1] and EASY [2].
Symex is an open source framework for symbolic code execution
aiming to lower the instep cost and efforts typically associated
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with the use of formal methods for static analysis of embedded
software. While symbolic execution is a well established technique,
existing tools such as KLEE [3] rely on dynamic execution engines
(approximating constraints)1. Symex, instead adopts a pure approach
(where path constraints are free of approximation) and is thus useful
for automatically obtaining guarantees about the runtime behavior of
the system2. In this paper, we extend the Symex execution engine
to operate on General Assembly, an Intermediate Representation
(IR) capable of capturing the semantics of commonplace Instruction
Set Architectures (ISAs) along with their non-functional properties
(such as per-instruction execution time, power consumption, etc.).
Moreover, the framework is extendable, where target and platform
specific behaviour can be modelled by means of closures (functions
operating on simulation state). Together, this allows non-functional
specifications to be captured, and applications to be verified and
proven against both functional and non-functional requirements.

The EASY framework uses Symex to provide automatic full-
application verification against a user provided specification ex-
pressed as an (extended) Rust RTIC model. In this paper we show
that EASY is capable of verifying: per-task response time, per-task
memory isolation and safe bounds to worst case application stack-
memory utilization. Furthermore, additional verification conditions
can be added via assertions.

Key contributions in summary:

• Extending the Symex symbolic execution framework:

– Section III-A, General Assembly extension, allowing binary
level code analysis.

• The EASY framework, implementing a novel, symbolic
execution-based methodology for system wide safety and se-
curity validation of specifically Rust RTIC applications:

– Section IV-B1, safe (upper bound) WCET for tasks and
inner resource locks (critical sections).

– Section IV-B, Stack Resource Policy (SRP) based schedul-
ing analysis.

– Section IV-C, safe upper bound worst case stack memory
estimation.

– Section IV-D, model based per-task memory access analysis
for static task isolation guarantees.

1Approximation is a deliberate choice taken allowing progression in case
the underlying Satisfiability Modulo Theories(SMT) solver fails within given
time/memory limits to come up with a result.

2We treat models for which the generated path constraints are unsolvable
within given memory and time constraints by the underlying SMT solver as
erroneous.



II. BACKGROUND

A. Rust

The Rust programming language [4] is a system-level program-
ming language providing compile-time guarantees to the memory
safety, and freedom from undefined behavior of the application.

By design, in cases where the problem is inherently unsafe, these
guarantees can be circumvented by marking a code block as explicitly
unsafe. For instance, in an embedded context, access to Memory
Mapped Input/Output (MMIO)-based peripherals requires raw pointer
dereferencing, which is, by definition, unsafe, and the root cause
for a whole class of memory-related vulnerabilities [5]. This is
typically addressed by wrapping direct peripheral register access in
safe abstractions on the Hardware Abstraction Layer (HAL) level
[6]. However, the underlying HAL implementation still builds on
unsafe code, and relies on manual verification to ensure safety.

B. Stack Resource Policy

In [7], an extension to the Priority Ceiling Protocol synchronization
protocol named the Stack Resource Policy (SRP) is introduced. In
the context of this paper, the underlying formal model can be defined
as follows:
τi A task τi is a finite (terminating) sequence of instructions to be

executed on a single processor core.
Pi The (base) priority of τi. If Pa > Pb, the execution of τa is

of higher importance than τb. As such, the execution of τb is
delayed.

πi The preemption level of τi. τa may only preempt τb if πa > πb.
Sk A shared system resource.

L(Sk) The set of tasks that may request Sk.
dSke The priority ceiling of Sk, defined as:

dSke = max({0} ∪ {πi|τi ∈ L(Sk)}) (1)

Zi,k During the execution of critical section Zi,k, τi may access Sk.
Π The current (dynamic) system ceiling.
Under SRP, τi is only dispatched for execution if Pi is the highest

among all outstanding task requests, and πi > Π.
1) Properties: In [7], a set of properties of systems scheduled

using SRP is derived: race- and deadlock freedom, bounded priority
inversion, single context switch per task request, single (shared)
execution stack, and amenability to static response time and schedu-
lability analysis. These provide a sound outset for designing robust
and efficient hard real-time systems.

C. RTIC

Real-Time Interrupt Driven Concurrency (RTIC) [8] is a Rust
framework building on SRP. RTIC provides Rust macros, using which
the programmer can define a compileable SRP task/resource model.
Examples of RTIC task syntax are displayed in Listings 3 and 4.

Traditionally, the preemption level of a task is set dynamically,
allowing e.g. Earliest Deadline First (EDF) [9] scheduling. The
original work on RTIC [10] instead restricts SRP to static preemption
levels, i.e. πi = Pi. This allows RTIC to leverage on commonplace
interrupt controllers for scheduling acceleration, as shown in [10]
[11], and [12]. In [10], SRP is additionally restricted to single-unit
resources, defining the computation of Π as follows:

Π = max({0} ∪ {Pc} ∪ {dSe|S ∈ Sc}) (2)

where Pc is the priority of the currently executing task, and Sc is
the set of currently claimed resources. This allows efficient (constant
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Fig. 1: Symbolic execution search tree according to Listing 1. Generated
path conditions are shown on edges.

time, on most supported architectures single-cycle) management of
Π.

The formal underpinning means any compiling RTIC application
comes with the guarantees provided by SRP. Additionally, the Rust
programming language provides further guarantees to memory safety,
and defined behavior, providing a solid basis for implementing safe
and secure applications. Notice that the limitations mentioned in
Section II-A apply, meaning that in some cases, the Rust language
guarantees regarding memory safety are insufficient to guarantee total
memory safety.

D. Symbolic Execution

Symbolic execution is an automatic formal verification technique
assigning each input (or state) an initially unconstrained (or assumed)
symbolic value, and performing an exhaustive search over all of
the possible code paths. An execution engine keeps track of the
symbolic variables, and strengthens their constraints according to path
conditions. Path feasibility is determined by solving corresponding
Satisfiability Modulo Theories (SMT) [13]3 problems, which allows
unfeasible paths to be excluded from further exploration. Using the
simple function in Listing 1 as an example, the corresponding search
tree is displayed in Figure 1, with symbolic variable values displayed
as edge labels, and unfeasible paths denoted as dashed nodes/edges.

E. Symex

Symex is a symbolic execution engine originally operating on
the LLVM Intermediate Representation(LLVM-IR) [14], which is a
processor architecture agnostic intermediate representation, typically
used as input to the the LLVM compiler infrastructure [15].

However, due to the lack of a defined mapping between LLVM-
IR and machine code it is difficult to draw definitive conclusions
about run-time characteristics (specifically Worst-Case Execution
time (WCET)) of the resulting binary [16]. Additionally, any verifica-
tion made on LLVM-IR level must also assume that the compilation
of LLVM-IR to machine code is correct in all cases.

3Further explained in Section II-E1



fn simple(t: u32) -> u32 {
if t == 1 {

return 2; // path 1
} else if t == 2 {

return 4; // path 2
} else if t == 3 {

panic!() // path 3
} else {

if t == 1 {
return 13; // unreachable

}
return 42; // path 4

}
return 13; // unreachable

}

Listing 1: The simple Rust function under analysis.

1) SMT Solvers: SMT solvers solve the boolean satisfiability
problem with respect to a set of theories such as the theory of fixed
size bitvectors, a theory central to Symex. SMT solvers typically
support all of or a subset of the SMT-LIB standard [17] which serves
as both a standard for benchmarking and a generic interface language
for solvers. Symex operates using SMT solvers as a backend to
determine if paths are feasible during analysis.

At the time of writing, the Symex framework supports two solvers,
namely Boolector and Bitwuzla.

Boolector [18] is a fast SMT solver with support for all of the SMT-
LIB theories [17] required by Symex. However, it lacks support for
the theory of floating point arithmetic. Supporting this theory is not
a requirement, however, it would allow for tighter analysis results for
code involving floating point values.

To address this issue, recent work on Symex includes supporting
the Bitwuzla solver. Bitwuzla [19] is the successor to Boolector,
introducing improvements and additional features, including support
for floating point arithmetics.

F. Related Work

1) aiT: aiT [20] is a schedulability analysis tool that provides
WCET estimation and can perform response time analysis using RT-
Druid [21].

As outlined in [20], aiT uses control flow graphs to determine
possible paths through the program. While this method allows for
binary analysis in a similar fashion as in Symex, it may limit the
precision in programs that use recursive function calls. aiT solves
this by introducing loop bounds externally, in contrast Symex and
EASY do not need externally defined loop bounds as the executor
emulates the execution of the firmware binary.

2) BinSEC: BINSEC is a collection of security-focused binary-
level analysis and testing tools, which includes a symbolic execu-
tion engine capable of performing static-, dynamic- and relational
symbolic execution [22]. Some of the available tools, plugins and
extensions in the framework are highly relevant to the work done
on Symex, notably its binary-level dynamic symbolic engine, BIN-
SEC/SE [23]. BINSEC/SE relies on execution traces to guide path
exploration, improving scalability at the cost of limiting its ability to
provide formal correctness proofs. Symex, instead uses pure symbolic
execution to explore all feasible execution paths.

Recent work on BINSEC/CODEX [24] introduces binary level
static analysis for automated verification of C-programs (specifically
embedded OS kernels), proving absence of privilege escalation and
runtime errors - essentially verifying memory safety for C code.

III. SYMEX: BINARY LEVEL EXECUTION ENGINE

A. Symex

To address the limitations of Symex described in Section II-E,
we have modified the tool to work directly on the compiled ELF
binary. This is done by lifting the architecture specific machine
code to General Assembly (GA) on which the new execution engine
operates. The GA language captures the ISA semantics along with
non-functional properties (allowing to model cycle accurate execution
time, power characteristics etc.). As the GA backend is not tied to any
specific processor architecture, it is sufficient to provide the mapping
between machine code and GA for the architecture at hand. By
operating at binary level, the tool is input language agnostic and able
to handle both inline assembly and externally linked code. Currently,
Symex fully models the ARMv6-M ISA, while partial modelling of
ARMv7-EM and experimental RISC-V (RV32I) modelling is under
evaluation. More information on GA, omitted from this paper due to
space constraints can be found in the associated master’s thesis [1].

IV. THE EASY METHODOLOGY

To demonstrate our proposed analysis methodology, we introduce
three code examples, presented in Listings 1, 3 and 4. The code in
Listing 1 depicts a minimal example of a function, demonstrating the
principles of symbolic execution. The code in Listings 3, 4 shows a
more complete example of an RTIC application, in this case a naive
UART echo, which is the focus of the rest of this section.

A. RTIC application

At its core, an RTIC application is a declarative SRP model
consisting of task and resource declarations. Example task decla-
rations are displayed in Listings 3 and 4. The #[task(...)]
attribute macro declares task characteristics: the bound interrupt
vector (binds = ...), the set of resources local (exclusive) to
the task (local = [...]), the set of resources shared with other
tasks (shared = [...]), and the priority of the task (priority
= ...). The #[task(...)] attribute presented in this paper
contains fields not found in upstream RTIC applications (period,
deadline, frequency) . We will come back to those in the
following subsection.

B. Schedulability analysis

RTIC-based applications adhere to static priority SRP-based
scheduling. As such, the worst-case response time Ri of each task
τi can be obtained by the recurrence relation outlined in [25]:{

R0
i = Ci +Bi

Rs
i = Ci +Bi +

∑
h:Ph>Pi

dR
(s−1)
i
Th
eCh).

(3)

where Ci, Pi, Ti, and Bi are the WCET, priority, minimum inter-
arrival time, and blocking time of τi respectively. Obtaining the
blocking time Bi is also described in [25], as first constructing the
set γi of critical sections Zj,k belonging to task τj , over resource Sk

with the priority ceiling dSke, such that

γi = {Zj,k|Pj < Pi ∧ Pi < dSke)} (4)

From here, the blocking time can be calculated by

Bi = max
j,k
{δj,k − 1|Zj,k ∈ γi} (5)

where δj,k is the WCET of the lock over Sk belonging to τj .
Intuitively, if and only if for all tasks τn, the deadline Dn ≥ Rn,

the system can be deemed schedulable [25].



-#[rtic::app(
+#[easy::rtic::app(
+ frequency=64MHz,
)]
mod app {
#[task(

+ deadline = 5us,
+ period = 10us,
// or
+ frequency = 100kHz

}
)]
fn task...

}

Listing 2: The syntax changes to an RTIC application needed to permit
full application schedulability analysis. The added lines are marked with
green, while the removed lines are marked with red.

To allow automatic schedulability analysis of RTIC applications,
we start by extending the RTIC syntax with the model parameters
of the above equations, Dn and Tn (the deadline, period,
task attribute macro fields already mentioned in Section IV-A).
Alternatively, the task period may also be expressed as an arrival
frequency through the frequency field4. If no explicit deadline is
specified, it is assumed to be equal to the minimum inter-arrival time
of the task, i.e. the most relaxed deadline yielding a schedulable
system with one-sized event buffers, a common assumption in the
context of hard real-time systems [25]. Additionally, to allow the
expression of periods and deadlines in terms of wall-clock time
instead of core clock cycles, the overall application declaration now
includes the configured clock frequency in the application wide
frequency attribute. The changes introduced to the RTIC syntax
are displayed in Listing 2

1) Worst-case execution time estimation: Owing to the structure
of an ELF binary, the WCET Cn of any task τn can be obtained by
looking up the corresponding symbol i.e. function entry point, bound-
ing the function through the architecture-specific return instruction,
and performing analysis on the obtained machine code block using
Symex.

Obtaining the WCET of critical sections is a more complicated
matter because there exists no explicit debug symbol marking the
entry/exit of a resource lock. Here, we exploit the fact that RTIC
locks are typically5 implemented through global interrupt mask (e.g.
Cortex-M Nested Vector Interrupt Controller(NVIC) Interrupt Set En-
able Register(ISER)) or priority threshold (e.g. NVIC BASEPRI and
PRIMASK) manipulation. By hooking writes to these configuration
registers, we can detect the entry/exit points of resource locks and
bound the critical code section accordingly. From here, the WCET of
the critical section can be obtained in the same manner as for entire
tasks.

2) Platform specific hardware models: In some cases, hardware
interaction in embedded firmware requires the core to block execution
(busy-wait) until a given event occurs. It is possible to provide
accurate timing analysis for such code. Symex does not hard-code
timing characteristics for instructions, instead, these can be supplied
by arbitrary hardware models. Using this approach, it is possible to
model a wide variety of actual hardware.

4Not to be confused with the application-wide frequency attribute,
denoting the core frequency

5For all currently supported architectures.

Modeling hardware requires knowledge of the specific System-on-
Chip (SoC), making them platform specific. At the time of writing,
partial support for the Microchip SAM-{E, S, V}7 platform [26]
has been implemented. The supported peripherals include temporal
models of the TWI, UART and RTT peripherals, allowing analysis
of blocking interactions. Additionally, simpler models have been
implemented for MCAN, TC, SPI, SSC, HSMCI, PWM, and USART.
These simply return an unconstrained symbolic value whenever read,
thereby always over-approximating the number of paths such an
interaction can yield.

C. Stack memory usage

The worst-case stack memory usage of a task can be determined
in a manner similar to its worst-case execution time, by tracking the
code path yielding the lowest concrete value of the stack pointer (as
stack grows towards lower addresses). This information is directly
useful to determining safety properties of the system, by verifying
that the worst-case stack usage does not exceed the size of the block
of memory allotted to the stack.

D. Task isolation analysis

Under RTIC, the memory the task is expected to access can be
divided into two categories: statically allocated resources (shared and
local), and the local stack. Because of static allocation of resources,
information about the size and location of resources is known at
compile-time.

Since the task-resource mapping is a direct model parameter, the
specific resources to which a task is intended to have access can be
used to derive the layout of the memory regions to which a task is
allowed access. Additionally, as the expected stack memory usage for
a given code path is known, this information can be used to verify
each memory access made. By treating any accesses outside of the
declared allowed regions (i.e. resources + local stack) as a violation,
we can additionally ensure complete isolation between tasks, even in
presence of explicitly unsafe code blocks.

E. Requirement adherence analysis

For all code besides explicitly marked unsafe blocks, the Rust
compiler automatically generates assertions that call panic if vio-
lated. Thus, as proposed in [27], by proving all paths to panic to
be unreachable, defined behavior can be ensured at compile time.
We use a similar approach, by treating the correctness of the system
as absence of panic. Through Rust assertions, the end-user
can, programatically, and according to system-level requirements,
introduce additional bounds on the behavior definition under analysis
(e.g. constraints on the value of some interface).

Assertions can potentially incur performance overhead, discussed
further in Section VI-A7.

V. RESULTS

In this section, we apply the methods described in Section IV to
the code examples displayed in Listings 1, 3 and 4

A. Execution time estimation

We start by looking at the simple example displayed in Listing 1.
The results of compiling the function for the three targets supported
by Symex (ARM v6m, v7em and RV32I) are displayed in Figure 5.
To the reader familiar with RISC-V and ARM assembly, the execution
time of the function may be obvious already at this point. Regardless,
we perform execution analysis of the function using Symex, and
compare the results to actual measurements made on the nRF52840
Cortex-M4 (v7em), and Hippomenes (single-stage RV32I synthesized



to FPGA). As shown in Tables I and II, the Symex-generated worst-
case paths, and their calculated execution times are safe estimates in
comparison to the measurements.

00000 f a 8 <s imple >:
cmp r0 , #0 x1
i t t eq
moveq r0 , #0 x2
bxeq l r
cmp r0 , #0 x2
i t t eq
moveq r0 , #0 x4
bxeq l r
cmp r0 , #0 x3
i t t ne
movne r0 , #0 x2a
bxne l r
push {r7 , l r }
mov r7 , sp
b l
0 x fc8 <pan ic>

Fig. 2: v7em

00001066 <s imple >:
push {r7 , l r }
add r7 , sp , #0 x0
cmp r0 , #0 x1
beq
0 x1076 <+0x10>
cmp r0 , #0 x2
bne
0 x107a <+0x14>
movs r0 , # 0 x4
pop {r7 , pc}
movs r0 , #0 x2
pop {r7 , pc}
cmp r0 , #0 x3
beq
0 x1082 <+0x1c>
movs r0 , #0 x2a
pop {r7 , pc}
b l 0 x1086 <pan ic>

Fig. 3: v6m

00000000 <s imple >:
l i a1 , 0x1
beq a0 , a1 , 0x18
l i a1 , 0x2
bne a0 , a1 , 0x20
l i a0 , 0x4
r e t
l i a0 , 0x2
r e t
l i a1 , 0x3
beq a0 , a1 , 0x30
l i a0 , 0 x2a
r e t
a u i p c ra , 0x0
j a l r 8 ( r a )<pan ic>

Fig. 4: RV32I

Fig. 5: The results of compiling Listing 1 for the three target architectures
supported by Symex.

Path ID Return Value Symex path estimation (cycles)
v7em v6m rv32i

1 2 6 13 4
2 4 11 14 6
3 panic 23 15 8
4 42 16 17 8

TABLE I: Lists Symex execution time estimates for the example
code in Listing 1. Estimation bounds are deduced from the publicly
available documentation [28], tighter results for the ARM architectures
require hardware specification (not publically available). Notice, Symex
successfully proves the unreachability of paths leading to return 13;.

Path ID Return Value Measured execution (cycles)
v7em rv32i

1 2 13-9 4
2 4 19-9 6
3 panic (A) - (B) 8
4 42 24-9 8

TABLE II: Hardware measurements for the example code in Listing
1. For the v7em, measurements include the overhead of a function call
from (and return to) instrumentation code (measured to 9 clock cycles).
Adjusted measurements show that Symex provides safe clock cycle
estimates. For (A) the panic handler does not return to the instrumentation
code, thus no measurement is obtained. (B) reports cycle time until the
panic handler is reached.

B. Buffer overflow

Listing 3 shows a simple UART driver. The driver receives bytes
and writes them to a shared buffer data. data is intended to contain
the last 4 bytes read, however, in the example, we’ve included an
incorrect bound on the array index. Because of this, the task could
potentially write outside of the allocated array. Performing analysis
according to Section IV on this task correctly identifies that the buffer
can be exceeded, i.e. that a write may occur outside of the memory
regions allotted to the task, resulting in an assertion violation (error).
If the bound to reset idx is changed to when it exceeds the size

#[task(
binds = UART0,
local = [rx,idx:usize = 0],
shared = [data],
spawns = [tx],
priority = 3,
frequency = 14400hz, // 115200 / 8

)]
#[inline(never)]
fn rx(mut cx: rx::Context) {
let rx = cx.local.rx;
rx.clear_interrupt();
if let Ok(message) = rx.read() {

if *cx.local.idx > 4 {

*cx.local.idx = 0;
tx::spawn().unwrap();

}
cx.shared.data.lock(|data| unsafe {

*data.get_unchecked_mut(*cx.local.idx) =
message

});

*cx.local.idx += 1;
}

}

Listing 3: A simple UART receiver implementation with a buffer overflow
vulnerability.

#[task(
priority = 1,
local = [tx],
shared = [data],
frequency = 3600hz, // 14400/4

)]
#[inline(never)]
fn tx(mut cx: tx::Context) {
let bytes = cx.shared.data.lock(

|data| data.clone()
);
for byte in bytes {

while let Err(nb::Error::WouldBlock) =
cx.local.tx.write(byte) {}

}
}

Listing 4: A simple UART transmit implementation that transmits four
bytes of data at a time in a blocking manner.

of the array, the code in Listing 3 has no paths that violate the task
isolation property, and the analysis passes.

C. Schedulability analysis

By combining the rx task in Listing 3 with a transmit task that
iteratively transmits the bytes in the buffer back to the host as shown
in Listing 4, we form a complete RTIC application. We perform
analysis of the resulting application, and present the results in Tables
III and IV.

VI. DISCUSSION

The implementation of the methodology presented in this paper
is collected under a tool named Execution Analysis using SYmbolic
execution (EASY), described further in a master’s thesis [2], which
includes results of applying the method to more realistic examples,
omitted from this paper due to space constraints. Although the



Task rx tx
WCET[µs] 8.1 216.4

Time blocked[ns] 708.3 by tx N/A
Time preempted[µs] 0 32.5
Response time[µs] 8.8 248.9

TABLE III: EASY generated SRP analysis for a simple RTIC application
composed of the tasks in Listings 3, and 4 assuming a core-frequency of
240MHz, the UART running at 115200Baud and that the core is running
from wait state free memory.

Task rx tx App
Deadline[µs] 69.4 277.8 N/A

Core utilization 11.7% 77.9% 89.6%
Schedulable Yes Yes Yes

Stack usage[bytes] 104 72 176

TABLE IV: EASY generated SRP analysis results based on the results in
Table III. The row with Task name App refers to the entire applications
utilization to show that the entire application is schedulable.

presented results confirm the claims presented in Section IV, a
number of limitations apply.

A. Limitations

1) ARM-based targets: The performance of an ARM core is
affected by the underlying implementation of the branch predictor
and pipeline stages, the models of which are unavailable to the
public. Without this information, deriving accurate figures regarding
the schedulability of the system is impossible. We circumvent this
issue by assuming worst-case behavior at all times, which at the very
least yields no false-positives (cases where schedulability is falsely
asserted by the framework).

Additionally, the instruction cycle counts for the ARM Cortex-M7
are, to our knowledge, not public information. This means that for
this architecture, the Symex model is based on Cortex-M4 and the
results may not be safe to use.

Contrasting this is the RISC-V [29] ISA. The currently modelled
RISC-V core is single-stage, with a trivial timing model. We expect
that more complex RISC-V implementations run into modelling
issues similar to ARM. However, for these, the specification is often
more public, often as far as even the HDL implementation being
open source [30]. This allows for more precise GA modelling of the
architecture, and by extension, tighter WCET bounds.

2) Path explosion: An issue inherent to symbolic execution is that
of path explosion. The problem stems from every branch decision
yielding (at least) two paths, which leads to exponential growth in the
amount of paths to explore. Symex makes no attempt at solving this,
arguing instead that in the case of embedded systems, the control flow
is simple enough to avoid the issue. It may even be argued that path
explosion in an embedded context points to deeper underlying issues
in the system design, i.e. runaway cyclomatic complexity, widely
cited as an embedded systems design anti-pattern [31], [32].

3) Non-precise floating-point analysis: Many SMT solvers do
not support retrieval of the particular encoding of a floating point
value once it has been converted in to a floating point operand.
This as the IEEE-754 [33] standard does not rigorously define all
encodings for all edge-cases. Due to this limitation Symex currently
supports three different floating point models, unconstrained, precise
but unconstrained once encoding is needed (relaxed) and precise. The
precise model is very limited and only suitable for testing where one
can be certain that no edge-cases are present, while the unconstrained
and relaxed model are generally applicable.

4) Spawn at / after: RTIC provides software tasks as a means
to schedule tasks that may not have a fixed period time or event
on which they are triggered. EASY supports analysis for software
tasks, however, if the task is to be dispatched at some point in the
future RTIC uses sorted timer queues [34] to manage the queue of
tasks. To properly compute the WCET for a task that enqueues a
message in to a sorted timer queue one must explore all possible
paths in the queue management, meaning that the problem becomes
a complexity analysis of the sorting algorithm, which is not well
suited for verification using symbolic execution.

5) Hardware models: The current version of the EASY tool only
has partial support for the SAM-{E, S, V}7 family of MCUs. The
current implementation of the models does not take into account
that the peripheral time delays are not extended when the currently
executing task is preempted by some other task. This is not ideal
as it will, likely, introduce more overhead than needed. However,
such over-approximations make for safe-to-use analysis results for
blocking peripheral interactions in hard-real-time systems.

6) Task isolation analysis: Although the memory layout of the
resources allotted to a task is technically known at compile time
because of their static allocation, the Rust language as it stands is not
powerful enough to actually produce these numbers at compile time.
Because of this, EASY task isolation analysis incurs some (albeit
small, a few instructions per resource) memory overhead, guarded
by a branch that is never taken (i.e. disabled) at actual run-time.
In case this overhead is unacceptable, the system designer may also
decide to omit the analysis specific snippet(s) from production code.
This comes with the obvious drawback that the analysis is no longer
performed on exactly the production binary.

7) Adherence to requirements: Bounding the behavior definition
using assertions as described in IV-E, requires run-time checks to
be inserted. Although the analysis guarantees absence of panic, i.e.
that these assertions never fail, omitting them from the production
binary runs into a problem similar to the task isolation analysis, i.e.
the binary under analysis no longer being identical to the production
binary.

8) Memory access latency: Symex based WCET estimation cur-
rently makes no attempt at modelling memory access latency. This
means that the derived WCET results are not valid unless the code
is always executing from RAM or if the cache always performs
optimally.

B. Future work

In addition to addressing the above limitations, future work in-
cludes further verification of the GA ISA models. Current testing
builds on hardware-in-the-loop, where code snippets are ran on
physical hardware alongside symbolic execution, and comparing the
results. This, however can not realistically be made exhaustive, and
can only ever suggest the correctness of the GA model. An interesting
venue is applying model checking to prove the equivalence of the GA
models against a golden reference (e.g. the Spike [35], or Sail [36]
RISC-V and ARMv8 models).

VII. CONCLUSION

This paper has introduced both recent work on the Symex tool
alongside the EASY verification framework. We have shown that
EASY can correctly verify that tasks only interact with their provided
resources thus strengthening the Rust memory safety guarantees in
the presence of unsafe code. Further, the paper has shown that
Symex can produce safe WCET estimates for Rust code for multiple
targets. Building on this, we’ve shown that EASY can automatically
determine the overall schedulability of the system under analysis.
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thesis, LuleåUniversity of Technology, 2022.

[17] C. Barrett, A. Stump, and C. Tinelli, “The SMT-LIB Standard: Version
2.0,” in Proceedings of the 8th International Workshop on Satisfiability
Modulo Theories (Edinburgh, UK) (A. Gupta and D. Kroening, eds.),
2010.

[18] A. Niemetz, M. Preiner, and A. Biere, “Boolector 2.0,” J. Satisf. Boolean
Model. Comput., vol. 9, no. 1, pp. 53–58, 2014.

[19] A. Niemetz and M. Preiner, “Bitwuzla,” in Computer Aided Verification
- 35th International Conference, CAV 2023, Paris, France, July 17-22,
2023, Proceedings, Part II (C. Enea and A. Lal, eds.), vol. 13965 of
Lecture Notes in Computer Science, pp. 3–17, Springer, 2023.

[20] C. Ferdinand, “Worst case execution time prediction by static program
analysis,” in 18th International Parallel and Distributed Processing
Symposium, 2004. Proceedings., (Santa Fe, NM, USA), pp. 125–127,
IEEE, 2004.

[21] P. Gai, G. Lipari, M. Di Natale, N. Serreli, L. Palopoli, and A. Ferrari,
“Adding timing analysis to functional design to predict implementation
errors,” tech. rep., SAE Technical Paper, 2007.

[22] A. Djoudi and S. Bardin, “BINSEC: binary code analysis with low-level
regions,” in Tools and Algorithms for the Construction and Analysis of
Systems - 21st International Conference, TACAS 2015, Held as Part of
the European Joint Conferences on Theory and Practice of Software,
ETAPS 2015, London, UK, April 11-18, 2015. Proceedings (C. Baier
and C. Tinelli, eds.), vol. 9035 of Lecture Notes in Computer Science,
pp. 212–217, Springer, 2015.

[23] R. David, S. Bardin, T. D. Ta, L. Mounier, J. Feist, M. Potet, and J. Mar-
ion, “BINSEC/SE: A dynamic symbolic execution toolkit for binary-
level analysis,” in IEEE 23rd International Conference on Software

Analysis, Evolution, and Reengineering, SANER 2016, Suita, Osaka,
Japan, March 14-18, 2016 - Volume 1, pp. 653–656, IEEE Computer
Society, 2016.

[24] O. Nicole, M. Lemerre, S. Bardin, and X. Rival, “No crash, no exploit:
Automated verification of embedded kernels,” in 27th IEEE Real-Time
and Embedded Technology and Applications Symposium, RTAS 2021,
Nashville, TN, USA, May 18-21, 2021, pp. 27–39, IEEE, 2021.

[25] G. C. Buttazzo, Hard real-time computing systems : predictable schedul-
ing algorithms and applications. Real-time systems series, New York:
Springer, 3rd ed. ed., 2011.

[26] Microchip Technology Inc., “32-bit Arm Cortex-M7 MCUs with FPU,
Audio and Graphics Interfaces, High-Speed USB, Ethernet, and Ad-
vanced Analog.”

[27] M. Lindner, J. Aparicio, and P. Lindgren, “No panic! verification of
rust programs by symbolic execution,” in 2018 IEEE 16th International
Conference on Industrial Informatics (INDIN), pp. 108–114, 2018.

[28] ARM Limited, “Cortex-M4 Technical Reference Manual r0p0.”
[29] A. Waterman, K. Asanovic, J. Hauser, and RISC-V International, “The

RISC-V Instruction Set Manual, Volume I: Unprivileged Architecture,”
2019.

[30] R. Hller, D. Haselberger, D. Ballek, P. Rssler, M. Krapfenbauer, and
M. Linauer, “Open-source risc-v processor ip cores for fpgas overview
and evaluation,” in 2019 8th Mediterranean Conference on Embedded
Computing (MECO), pp. 1–6, 2019.

[31] G. Holzmann, “The power of 10: rules for developing safety-critical
code,” Computer, vol. 39, no. 6, pp. 95–99, 2006.

[32] D. Wallace, A. Watson, and T. Mccabe, “Structured testing: A testing
methodology using the cyclomatic complexity metric,” 1996-08-01 1996.

[33] “IEEE Standard for Floating-Point Arithmetic,” IEEE Std 754-2019
(Revision of IEEE 754-2008), pp. 1–84, July 2019.

[34] P. Lindgren, E. Fresk, M. Lindner, A. Lindner, D. Pereira, and L. M.
Pinho, “Abstract timers and their implementation onto the ARM Cortex-
M family of MCUs,” SIGBED Rev., vol. 13, pp. 48–53, Mar. 2016.

[35] “Spike RISC-V ISA Simulator,” 2017.
[36] A. Armstrong, T. Bauereiss, B. Campbell, A. Reid, K. E. Gray, R. M.

Norton, P. Mundkur, M. Wassell, J. French, C. Pulte, S. Flur, I. Stark,
N. Krishnaswami, and P. Sewell, “Isa semantics for armv8-a, risc-v, and
cheri-mips,” Proc. ACM Program. Lang., vol. 3, Jan. 2019.

https://www.rust-lang.org/

	Introduction
	Background
	Rust
	Stack Resource Policy
	Properties

	RTIC
	Symbolic Execution
	Symex
	SMT Solvers

	Related Work
	aiT
	BinSEC


	Symex: Binary Level Execution Engine
	Symex

	The EASY Methodology
	RTIC application
	Schedulability analysis
	Worst-case execution time estimation
	Platform specific hardware models

	Stack memory usage
	Task isolation analysis
	Requirement adherence analysis

	Results
	Execution time estimation
	Buffer overflow
	Schedulability analysis

	Discussion
	Limitations
	ARM-based targets
	Path explosion
	Non-precise floating-point analysis
	Spawn at / after
	Hardware models
	Task isolation analysis
	Adherence to requirements
	Memory access latency

	Future work

	Conclusion
	References

