LLM-based Functional Coverage Generation and
Auto-Evaluation Framework

Jan Labuda
Masaryk University
Brno, Czech Republic
jan.labuda@mail.muni.cz

Abstract—To ensure that a Design Under Verification (DUV) is thor-
oughly examined during the simulation-based verification process, one of
the metrics verification engineers may rely on is functional coverage.
This metric is manually implemented in the testbench and tracks
which functionalities have been exercised in DUV during testing. Large
language models (LLMs) have recently shown potential in automating
code generation across various domains. This paper investigates their
capabilities to transform verification requirements written in natural
language into syntactically and semantically correct functional coverage
code, as this domain remains underexplored. To accomplish this, an
automated evaluation framework was developed to assess several open-
weight LLMs’ performance on this task for a reference computational
design. The goal was to have a highly controllable evaluation environment
for these initial experiments. The results reveal promising capabilities of
LLM:s in this context, while also identifying challenges and limitations
where their performance fell short. The authors provide insights into the
underlying reasons for these difficulties, contributing to the understand-
ing of LLMs’ potential and limitations in verification tasks.

Index Terms—DUniversal Verification Methodology (UVM), Functional
verification, Coverage, LLM, CoCoTB, Benchmark

I. INTRODUCTION

Functional coverage metric plays an important role in main-
taining the integrity of simulation-based verification testbenches. It
determines if the implemented tests have effectively exercised the
intended functionality. Unlike code coverage metrics, which focus on
whether the tests have exercised various structures in the source code,
functional coverage ensures that the tests cover all functional corner
cases and intriguing combinations of signal values on interfaces [1]—
[3]]. For instance, if the implementation of an arithmetic logic unit is
missing an operation described in the specification, the code coverage
may be fulfilled. However, functional coverage could reveal the
missing functionality, thereby preventing potential issues from going
unnoticed.

In practice, functional coverage is implemented by verification
engineers based on functional implications extracted from the design
specification, which are usually expressed by functional verification
requirements in the verification plan. Verification requirements may
be expressed in natural language, or they can follow a structured,
machine-readable format [4], [5]], be template-based (XML, YAML,
JSON, etc.) [6]l, or even formally expressed [7]]. A single project can
easily contain hundreds of verification requirements. Figure [1| depicts
the standard verification workflow. In the first step, a verification plan
with functional requirements is derived from the design specification.
Following that, a verification team implements verification tests used
for stimulating a behavior in DUV, which reflects the verification
requirements, a testbench (such as a UVM-based testbench in Sys-
temVerilog, or a Python-based Cocotb testbench) which executes the
tests and evaluates their results, and functional coverage to provide
feedback about functionality which was covered by the tests.

Marcela Zachariasova
Brno University of Technology

Brno, Czech Republic

zachariasova@fit.vut.cz

Zdenek Matej
Masaryk University
Brno, Czech Republic
matej.zdenek @mail.muni.cz

Verification plan)
Design specification
functlonal requlremems /

@%v

Testbench
Tests
reference model

Functional
coverage

Fig. 1: The conventional workflow in verification. Highlighted parts
in blue are targeted in this paper.

While functional coverage is a useful metric that provides valuable
feedback to verification engineers, it often does not receive the same
level of importance as the reference model with predictors, various
checkers, or tests. This may explain why some projects skip its
implementation or assign it a low priority. Therefore, incorporating
functional coverage in the testbench would be beneficial, particularly
if it could be generated automatically to alleviate the burden of
manual implementation.

This paper’s primary objective is to explore LLMs’ capabilities in
generating functional coverage code based on design specifications or
functional requirements articulated in natural language, as this would
rapidly simplify the verification processes. We chose to construct the
input dataset for LLMs around verification requirements in a specific
format, rather than directly relying on design specifications, even
though they are an essential source of information. This decision
was influenced by the varying formats, inconsistency of provided
information, and the overall quality of design specifications currently
freely available. More importantly, ongoing research focusing on
extracting valuable information directly from design specifications is
a research topic of its own, for example, the work presented in [8],
which, if successful, could be incorporated into our work. Therefore,
it seemed prudent to narrow the scope of our research to provide
more reliable outputs; hence, we opted to bypass the specification
and to work with verification requirements as an input for LLMs.

The main contributions of this paper, including the key research
steps, are as follows.

o Assesses LLMs’ capabilities in capturing the information ar-
ticulated in verification requirements to generate functional
coverage.

o Evaluates the ability of LLMs to produce sufficiently complex
functional coverage code that offers valuable feedback during
the verification runs.

o Outlines a detailed auto-evaluation framework for assessing the
solutions generated by the LLMs.

II. RELATED WORK

Previous studies have suggested generating functional coverage
based on features extracted from the DUV implementation [9], [10].
However, relying on the DUV implementation instead of the speci-
fication poses risks. The generated code is closely tied to the actual
functionality of the DUV, which means it may overlook missing
implementations of functionalities described only in the specification.

Other approaches use deterministic generation algorithms to trans-
form structured verification requirements into functional coverage
code. For instance, the method presented in [5] begins with table-
based, ASCII-encoded state tables that outline the protocol’s legal
and illegal state transitions across different agents. These state table
items are then translated into functional covergroups, coverpoints,
and crosses. The generated coverage is checked using a formal tool
to ensure reachability of all table-specified states and transitions;
unreachable cases are flagged for review. Similar work is detailed
in [11]. Also, in this case, the tables do not represent raw functional
or natural-language requirements. The authors assume that the ver-
ification engineer has already encoded the intent into a structured,
tabular format, effectively creating a semi-formal coverage plan.

Work presented in [4]] uses a high-level executable specification
model, which serves as a structured, programmatic representation of
functional behaviors, states, sequences, and transactions, from which
functional coverage code can be deterministically generated.

In summary, the benefits of the above-mentioned methods are
evident: the coverage is deterministically generated, and if the re-
quirements are accurately written, it is possible to obtain working
functional code. However, each method requires a distinct format of
verification requirements, which are typically highly structured and
developed by engineers from natural language specifications.

In today’s era of LLMs and Al-assisted programming, it is timely to
revisit the topic as LLMs have demonstrated their ability in generating
code from tasks articulated in natural language across different
domains [[12f]. Authors of the paper [13] discuss the ability of LLMs
to generate SystemVerilog UVM testbench and input stimuli based
on the provided DUV interface, DUV description, and testbench
structural organization. They use various coverage metrics to evaluate
the generated solutions. Their evaluation reveals that open-weight
LLMs struggle with complex design understanding, often achieving
only basic metrics like line coverage. In contrast, this paper focuses
on selectively generating testbench components that are simpler and
less prone to misunderstanding. The generation of functional coverage
structures was identified as an ideal starting point. Moreover, to
our knowledge, no existing work specifically uses LLMs to convert
natural language verification requirements into functional coverage
structures; thus, this paper presents a novel approach.

III. BACKGROUND

This section addresses functional coverage implementation, cov-
erage measurement during simulation, and generation of functional
coverage code using LLMs.

A. Functional coverage

Figure [2] illustrates the distinction between measuring functional
coverage and code coverage. Code coverage is automatically tracked
in the RTL simulator, where both the testbench and the DUV operate.
In contrast, functional coverage must be explicitly implemented
within the UVM testbench. This is typically accomplished through a
UVM coverage monitor or UVM collector component that receives
transactions via analysis connections from UVM monitors.

Reference
(model
> lﬁ > | Scoreboarding

DUV

=k

Functiona
coverage Testbench

-

Code

1
1
1
1
1
1
1
1
1
1
1
1
coverage 1

Simulator

Fig. 2: A simplified UVM testbench structure including functional
(blue) and code (red) coverage targets.

The coverage monitor samples the values of specific transactions’
signals or variables at appropriate moments during simulation. The
central element of this implementation is referred to as a covergroup,
which acts as a container for defining coverpoints and cross cover-
points. A coverpoint is linked to a single variable from a transaction
and employs structures known as bins to record the occurrence of
specific values or ranges of values throughout the simulation. Besides
the bins capturing individual values, the coverpoint can also register a
transition between values (e.g., a change from zero to one on a reset
signal in consecutive clock cycles). Cross coverpoints, on the other
hand, capture combinations of values from two or more coverpoints,
enabling the evaluation of interactions between different variables
reflecting corner cases in DUV.

In our work, LLMs aim to generate a suitable representation of
covergroups with reasonable coverpoints and cross coverpoints to ad-
equately represent the verification requirements from the verification
plan, which will be provided as their input.

B. Large Language Models

Widely researched in recent years, LLMs are a type of language
model characterized by hundreds of millions to hundreds of billions
of parameters. Trained on vast amounts of text data, they are capable
of generating text across a wide range of domains, including solving
programming tasks [12].

Even though they are a promising candidate for generating func-
tional coverage code, the two main concerns, namely data security
in the case of using LLM behind a third-party API and noticeable
knowledge bias across various domains, must be taken into account.
Considering the criticality of data security in chip design companies,
they often prohibit access to an LLM of a third party. The latter
concern is related to the uneven spread of training textual data across
various domains. For example, according to the RepositoryStatﬂ
only 0.05% of the captured public GitHub repositories have Sys-
temVerilog as their primary language. Both of these concerns might
be addressed using an open-weight finetuned LLM that can be run
locally on consumer-grade hardware.

An example of finetuned models is RTLCoder, consisting of just 7
billion parameters, which managed to outperform even much larger
GPT-4 model in VerilogEval benchmark [[14]. In case of chip design
verification, there is an automated framework Assert-O designed to
generate security properties from documentation, finetuned on data
from OpenTitan project [[15].

Uhttps://repositorystats.com/language/systemverilog

https://repositorystats.com/language/systemverilog

Considering that the aim of this paper is to evaluate LLMs
with respect to the generation of functional coverage from veri-
fication requirements, and given the tendency of LLMs to more
accurately generate code in widely represented languages on the
internet, such as Python, compared to less prevalent languages like
SystemVerilog, we used Python as the target language for functional
coverage generation instead of the industry-standard SystemVerilog.
This decision was made to minimize the influence of familiarity with
the programming language, which is not relevant to the ability to
extract information from verification requirements and to produce
corresponding functional coverage code. In the future, LLMs may
be fine-tuned to address current limitations in generating functional
coverage in SystemVerilog. For the purpose of this study, however,
Python provides a more suitable alternative.

IV. EXPERIMENTAL SETUP

To ensure multiple LLMs are evaluated in an objective manner,
an automatic evaluation framework was created. For every DUV,
the inputs into the framework are principally the same: verification
requirements written in natural language, coupled with a desired
functional coverage code prepared by a verification expert, which
is used as the reference implementation, and the source code of
the DUV written in SystemVerilog. All necessary steps from the
design of the dataset used for evaluation, the construction of a
universal testbench, to the automatic evaluation metrics are presented
in this section. The framework and dataset, containing the DUV,
design specification, and verification requirements, are available on
the author’s GitHub [16].

A. Dataset

Our current dataset includes a single computational design: an
arithmetic-logic unit (ALU). This design was chosen for initial and
controllable experiments with LLMs because it allows specifying a
variety of verification requirements. Despite being a relatively simple
design, we can already challenge LLMs to generate all possible
functional coverage structures for it: simple coverpoints with various
bins, transition coverpoints, and even cross coverpoints.

The ALU module performs arithmetic and logic operations based
on a 4-bit input operation code (OP), see Table [I| It processes
two 32-bit input operands: REG_A (register) and a second operand
selected using the MOVI selector, which chooses between REG_B
(register), MEM (memory), and IMM (immediate). The result of a
multiplication is provided over two clock cycles: the lower 32 bits
are sent first, followed by the upper 32 bits in the next cycle. Output
signals include the result (DATA), a result validity flag (VLD), and
a ready flag (RDY) indicating when the ALU can accept a new
operation. Except for these inputs and outputs, CLK (clock signal),
RST (reset signal), and ACT (ALU activation signal) are present as
inputs to the ALU.

Based on the ALU specification, an expert in verification defined
16 appropriate verification requirements. Each requirement is a short
statement written in natural language, consisting of a single sentence
or a few sentences. In addition, the expert also included a sample of
code implied by the requirements that was used later in the evaluation
phase. Each requirement is categorized according to its target into one
of these categories: bin (check specific values), sequence (targeting a
transition between values), or cross (checking occurrences of specific
values simultaneously). Representative samples for each category are
shown in Figure

OP Code (Binary) | Description
0000 Addition
0001 Subtraction
0010 Multiplication
0011 Logical right shift of operand_B
0100 Logical left shift of operand_B
0101 Bit right rotation of operand_B
0110 Bit left rotation of operand_B
0111 Bitwise NOT of operand_B
1000 Bitwise AND
1001 Bitwise OR
1010 Bitwise XOR
1011 Bitwise NAND
1100 Bitwise NOR
1101 Bitwise XNOR
1110 Increment operand_B by 1
1111 Decrement operand_B by 1

TABLE I: Opcode table for ALU operations

Verification requirement (bin)

Cover different ranges of values for the first operand represented
by the signal REG_A. Specifically, create a separate bin for: value 0,
for a single value from range [1:5], MAX_VALUE, and a single value
L from range [MAX_VALUE - 5:MAX_VALUE].

' P . N
Verification requirements (sequence)

Cover transitions 0 -> 1 and 1 -> 0 on the RST signal,
each transition should occure at least 5 times.

L Cover transitions 0 -> 1 ->0and 0 -> 1 -> 1 -> 0 on the VLD signal.

e 0
Verification requirements (cross)

Cross cover all possible ACT signal values
with all possible RST signal values.

Cross cover a small value from the range [0:1000]
of registers REG_A and REG_B.

&

Fig. 3: Examples of the verification requirements.

B. Functional coverage generation

The pipeline used for the generation of functional coverage code
from the dataset, featuring the prompt template with an example
of verification requirement, is shown in Figure {] In an attempt to
maximize the performance of LLMs, multiple prompt engineering
techniques were used in the process of code generation, including a
verification role assignment and the few-shot prompting method [17],
where LLMs were provided with two examples expalining the gener-
ation of code for bins with cross coverpoint and bins for transitions
between specific signal values.

To provide an LLM with a chance to fix its code when the
generated code contains syntax or typing errors, the code is run
through static linters and type analyzers, and the error message is
sent back to the LLM. The process of checking the generated code
and possibly providing feedback to the LLM is repeated at most three
times, taking the first syntactically valid code as the outcome.

After the syntactically valid code was generated, additional checks
were performed concerning the computational feasibility and correct-
ness of the generated code. The former check simply ensures that the
number of bins contained in the final coverage code is reasonable.
In our case, the number of bins is bounded to be at most 1000. The
latter check related to the correctness validates that the port names
in the generated code match exactly the names of the DUV ports. In
addition, all values are checked to be within the range of possible
values based on the port bit-width to which they are assigned.

-
Chat) < :
System

You are a verification engineer
whose goal is ...

Dataset

The API of the functional coverage
is as follows: ...

Please ensure ...

Example of the conversation: ...

=> (.

User LLM

Cover transitions 0-> 1 and 1 -> 0
on the ACT signal.

LT Code

from coverage import *

act = coverpoint('ACT")
seq_01 = sequence(act, [0, 1])
Analysis seq_10 = sequence(act, [1, 0])

1
\/\.jimd code

ooooo

pgoooo
Simulation

Fig. 4: Generation of the functional coverage code from the dataset.

C. Cocotb testbench

The core component of the auto-evaluation framework utilized
in our experiments is represented by a universal Cocotb testbench
depicted in Figure [B] Its universality is represented by the ability to
evaluate any design without making any changes to its code. The
testbench workflow can be divided into three phases: initialization,
simulation, and coverage capture.

The initialization phase includes the following steps:

1) Automatically identify all ports of the DUV.

2) Generate a clock signal on an autodetected clock port.
3) Generate an active pulse on an auto-detected reset port.
4) Load the functional coverage code generated by LLMs.

Following initialization, the simulation phase generates uniformly
distributed random stimuli to the input ports, ignoring the reset
and clock ports. An impulse on the reset port is generated with a
probability of 1% at each clock cycle. After the stimuli are assigned,
a DUV simulation is run for one clock cycle, and the whole process
is repeated for a predetermined time. To make the auto-evaluation
framework, including the testbench, more accessible and executable,
an open-source simulator Verilator was utilized. However, the
simulator can be easily changed to a different one supported by
cocottfl

The final phase focuses on capturing both functional and code
coverage results during simulation. Currently, functional coverage is
sampled at each clock cycle, provided that the reset signal is not
active. More sophisticated sampling is planned for future research,
with the objective of identifying optimal sampling conditions based
on an analysis of input verification requirements.

Zhttps://docs.cocotb.org/en/stable/simulator_support.html

Testbench

> [
(Y —

Clock port — 1

2. Generate clock signal |

Tt 3. Generate reset signal : Reset port .- 7

{} 4. Load functional coverage code

5. Generate random stimuli

DUV

RNG
N

6. Simulate one clock cycle
‘ [Input ports '—

L

Fig. 5: Cocotb testbench capturing both functional and code coverage.
Blue color represents the initialization part, green color the simulation
part, and the color the coverage capturing part.

D. Automated evaluation

To ensure LLMs generate code that is not only syntactically correct
but also covers a reasonable functionality of the DUV, several aspects
of the generated output were evaluated:

o Syntax correctness: Verifying that the code is free of any
syntactic errors and can be executed.

« Computationally feasible: Ensuring that the generated coverage
code does not try to exhaustively cover the whole state space
defined by input variables but rather selects reasonable repre-
sentative values or ranges.

o Accuracy: Assess the extent to which the generated code
aligns with the intended functional coverage as defined by the
verification requirements.

o Complexity: Evaluating how comprehensively the code exer-
cises the DUV, favoring solutions that achieve broader function-
ality coverage while being computationally feasible.

The first two aspects must be evaluated before a test run. The
syntax correctness of generated code is checked right after the
code is generated, with a possibility of letting LLM fix the issues
contained in the code caught by static analyzers. The resulting metric
for the syntax correctness is the number of attempts used to generate
syntactically valid code, where the maximum number of attempts was
set to 3, excluding the initial generation without feedback from static
analyzers. Computational feasibility is ensured by verifying that the
number of specific values, ranges, sequences, or cross products does
not exceed a threshold (set to 1000).

The accuracy is captured by a Boolean flag related to the similarity
of the generated code to the reference. This flag is set to true only if
all the required functional coverage provided by the expert contained
in the dataset was also present in the generated code.

The last important aspect of evaluation is the complexity. The
generated coverage should be complex enough and should not miss
any functionality. Our solution is based on observations presented in
many verification books such as [T}-[3]l. It is always suspicious when
functional coverage is fully achieved sooner than code coverage,

https://docs.cocotb.org/en/stable/simulator_support.html

or if it has higher values in the area of their convergence, see
Figure [§] This implies by principle that the functionality expressed
in the functional coverage code is not exhaustive and is missing
some features. Therefore, our auto-evaluation framework compares
achieved functional and code coverage whenever statement coverage
is sampled during simulation, targeting a convergence region set to
90% statement coverage.

Code Functional
A coverage rage
100% b o v s v e s mem e mme s ann s

S
o
o)
o
1]
>
/5]
(&)

00/0 ;

Simulation duration (ns)

Fig. 6: Illustration of the acquired code (red) and functional (blue)
coverage during the simulation. The convergence region is marked
with the crossed area.

V. RESULTS

The three most popular open-weight LLM families available at
OIlamaE] were chosen for evaluation: Deepseek-rl, Qwen3, and
Gemma3. Multiple LLMs that differ in the number of parameters
were chosen from each family. The naming notation for each model
consists of the family name and the number of parameters separated
by a colon. For example, Deepseek-ri:14b refers to the LLM from
Deepseek-rl family containing 14 billion parameters. To ensure that
the models are viable to run locally on consumer-grade hardware, the
size of every used model was kept below 10GB of VRAM. In total,
80 independent pipeline runs were evaluated, comprising 5 attempts
for each of the 16 verification requirements.

The total time required to generate 80 functional coverage code
snippets is reported in Table [[I} All models were executed locally on
an NVIDIA A100 80GB PCle GPU. The noticeably longer generation
times observed for the Deepseek-rl and Qwen3 model families,
compared to Gemma3, can be attributed to their thinking behaviour,
where such models produce substantially more intermediate text
before making the final answer. During our experiments, there were
problems with thinking models, where they had a tendency to get
stuck in the thinking phase, not being able to generate the results in
a reasonable time. Therefore, the following models had to be omitted:
Deepseek-r1:1.5b, Deepseek-r1:8b, and Qwen3:1.7b.

The first two evaluated aspects were the syntactic correctness
and viability of the generated functional coverage, where viability
refers to computational feasibility and the use of valid ports. The
results corresponding to these criteria are summarized in Table
where values were aggregated to 5 instances each representing an
individual generation run using our dataset. Among the evaluated
models, both Gemma3:12b and Qwen3:14b achieved the highest
success rate. Notably, Gemma3:12b reached comparable performance
approximately five times faster.

Figure /| presents the number of attempts required to generate syn-
tactically correct and viable functional coverage. The top-performing

3https://ollama.com

TABLE II: Total time required to generate functional coverage code

LLM Total Time (MM:SS) Speed (req./s)
Deepseek-r1:7b 39:32.9 0.03
Deepseek-rl:14b 27:04.4 0.05
Gemma3:1b 5:41.9 0.23
Gemma3:4b 2:239 0.55
Gemma3:12b 3:45.7 0.35
Qwen3:1.7b 27:41.2 0.05
Qwen3:4b 11:25.6 0.12
Qwen3:8b 15:16.5 0.09
Qwen3:14b 19:50.5 0.07

TABLE III: Number of syntactically correct and viable code per
generation instance (higher is better)

LLM | Syntactically correct | Viable

| Best Worst Mean | Best Worst Mean
Deepseek-r1:7b 12 6 10.6 11 5 8.4
Deepseek-rl:14b 16 14 15.4 14 13 13.6
Gemma3:1b 11 7 9.2 9 6 7.6
Gemma3:4b 16 15 15.4 11 10 10.4
Gemma3:12b 15 15 15.0 15 14 14.4
Qwen3:1.7b 12 10 11.4 10 7 8.6
Qwen3:4b 16 16 16.0 14 13 13.6
Qwen3:8b 16 16 16.0 14 14 14.0
Qwen3:14b 16 16 16.0 15 14 144

models in this regard are Qwen3:14b and Gemma3:12b, successfully
producing 71 and 70 valid snippets, respectively, on the first attempt.
A general trend is also observed: models with a larger number of
parameters tend to generate valid outputs with fewer attempts.

Models
deepseek-r1:7b
deepseek-rl:14b
gemma3:1lb
gemma3:4b
gemma3:12b
qwen3:1.7b
qwen3:4b
qwen3:8b
gwen3:14b

N w N v o ~
o o o o o o
L L L L L L

=
o
L

Number of syntactically correct code instances

0 T T T T
0 1 2 3
Number of retries with provided logs

Fig. 7: Plot showing the number of required tries to produce syntac-
tically correct code.

In terms of complexity, all generated functional coverage instances
exhibited greater granularity compared to the statement coverage.
This can be attributed to the low probability of triggering specific
values within wide registers when using randomly generated stim-
uli from a uniform distribution. Achieving such coverage typically
requires targeted or constrained stimulus generation.

The last aspect was accuracy, computed by comparing the gener-
ated code to the code provided by the verification expert. Figure [§]
summarizes the accuracy of each model based on the generated
instances. The most accurate model was Qwen3:14b, which in the

https://ollama.com

best case managed to obtain 93.75% accuracy while its average
accuracy was 86.25%. In addition, even a smaller model from the
same family, Qwen3:4b, managed to outperform the larger model
Deepseek-rl:14b in accuracy.

Accuracy of LLMs per generated instances

deepseek-rl:7b -

00

55.00

deepseek-rl:14b - 68.75 37.50

gemmasiib ““
gemma3:4b - Bi%25] m

-60 3
s >
5 gemma3:12b 62.50 73.75 ®
gqwen3:1.7b- 43.75 ﬂ 27.50 -40 <
gqwen3:4b- 68.75 62.50 65.00
20
gwen3:8b 68.75
qwen3:14b m 7500 m
0

i
worst
Considered instances

best mean

Fig. 8: Accuracy of the LLMs generating functional coverage code
among all instances.

Considering the verification target of each verification requirement,
the most problematic ones were targeting the cross coverage code
constructs, as shown in Figure[9] Even though the Qwen3:/4b model
was shown to be the most accurate one in general, Gemma3:12b was
more accurate in the generation of code targeting the cross coverage
constructs, where its accuracy was better by 3.33%.

Accuracy of LLMs per requirement target

100
deepseelcri:7h mm

deepseek-r1:14b - 43.33 65.00 60.00
80

gemmasiib m““
— 7 w0 g
s >
= gemma3:12b 90.00 50.00 73.33 E
g
<

auen3L7o- 40.00 mm 0
qwen3:4b - 40.00 100.00 66.67

20
qwen3:8b - 73.33 100.00 66.67
qwens;ubm 10000 [IEZED)
' 0
bin sequence cross

Targeted functional coverage constructs

Fig. 9: Accuracy of the LLMs generating functional coverage code
based on a requirement target.

The number of generated code snippets that contained the function-
ality specified by the verification expert out of a total of 5 attempts is
depicted in Figure [0} Based on the Figure the most problematic
requirements, with IDs 14 and 16, were:

o Cross cover a small value from the range [0:1000] of registers

REG_A and REG_B.

o Cross cover that the register DATA contained a value from the
range [0:1000] for the first four operations from signal OP.
A common problem that occurred during the code generation for
these requirements was that the final code used all values within the
range [0:1000] individually, instead of using a single value from that
range.

Accuracy of LLMs per requirement

deepseek-rl:14b

qwen3:1.7b - 2

qwen3: 8b

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16
Requirement id

LLM

Fig. 10: Number of generated code snippets matching the code
provided by the verification expert.

Considering the overall accuracy of each model, Qwen3:14b
emerges as the most suitable choice for functional coverage genera-
tion. Although this model is significantly slower compared to models
within the Qwen3 family, which exhibit only slightly lower accuracy,
the generation of functional coverage is typically a one-time process
that can be performed overnight. As such, execution speed becomes
a secondary concern compared to output quality, making Qwen3:14b
the better choice.

VI. CONCLUSION

This paper builds a foundation for the auto-evaluation of functional
coverage code generated by available open-weight LLMs from re-
quirements defined in natural language. The main contribution is the
framework, which is freely provided for the verification community.
The initial results show that some selected open-weight LLMs are
capable of extracting most of the information from the verification
requirements and generating syntactically correct code in most cases.
The 14 billion parameter LLM from the Qwen3 family managed to
generate at least 12 out of 16 verification requirements that matched
the code provided by the verification expert in each of its attempts,
where in its best attempt, it differed only in a single requirement.

The future work will focus on building a much larger dataset
containing multiple designs, their specification, and verification re-
quirements. Besides that, the dataset could also be used for fine-
tuning LLMs to generate functional coverage more accurately. Lastly,
advanced prompt engineering techniques or fine-tuned models could
allow the auto-evaluation framework to work on UVM based test-
benches and generate functional coverage in SystemVerilog, making
the work viable for all practical application.

ACKNOWLEDGMENT

This work was supported by Brno University of Technology under
project number FIT-S-23-8141.

[1]

[2

—

[3

=

[4

=

[5]

[6

i}

[7

—

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

REFERENCES

Wile, Bruce and Goss, John and Roesner, Wolfgang, Comprehensive
Functional Verification: The Complete Industry Cycle. San Francisco,
CA: Morgan Kaufmann, 2005.

Bergeron, Janick, Writing Testbenches Using SystemVerilog: Descrip-
tion, Tips, and Techniques. Boston, MA: Springer, 2006.

Spear, Chris and Tumbush, Greg, SystemVerilog for Verification: A
Guide to Learning the Testbench Language Features, 3rd ed. Springer
Publishing Company, Incorporated, 2012.

Shirahatti, Anand, “High-level Specification Model based Functional
Coverage Generation.” [Online]. Available: https://www.verifsudha.com/|
2018/02/11/write-functional-coverage-plan/

Ikram, Shahid and Perveiler, Jack and Akkawi, Isam and
Ellis, Jim and Asher, David, “Table-based Functional Coverage
Management for SoC Protocols,” in Proceedings of the
Design and Verification Conference (DVCon) North America,
2015. [Online]. Available: https://dvcon-proceedings.org/document/!
table-based-functional-coverage- management-for-soc- protocols/
Tambekar, Nikhil, “A Practical Approach to Generating SystemVerilog
Covergroups from YAML using Jinja2 Templates,” in Proceedings
of the Design and Verification Conference (DVCon) Industry Track,
2023, pp. 123-130. [Online]. Available: https://dvcon-proceedings.org/!
wp-content/uploads/99445.pdf

Shimizu, Kanna and Dill, David L., “Deriving a Simulation Input
Generator and a Coverage Metric from a Formal Specification,” in
Proceedings of the International Conference on Design Automation
(DAC). ACM/IEEE, 2002, pp. 801-806.

Li, Hui and Dong, Zhen and Wang, Siao and Zhang, Hui and Shen,
Liwei and Peng, Xin and She, Dongdong, “Extracting Formal Specifi-
cations From Documents Using LLMS for Test Automation,” in 2025
IEEE/ACM 33rd International Conference on Program Comprehension
(ICPC), 2025, pp. 1-12.

El Mandouh, Eman and Wassal, Amr G., “Automatic generation of
functional coverage models,” in 2016 IEEE International Symposium
on Circuits and Systems (ISCAS), 2016, pp. 754-757.

Verma, Shireesh and Harris, Ian G. and Ramineni, Kiran, “Automatic
Generation of Functional Coverage Models from Behavioral Verilog
Descriptions,” in 2007 Design, Automation & Test in Europe Conference
& Exhibition, 2007, pp. 1-6.

Chandankhede, Ankit, “A Comprehensive Automated Generation of
Functional Coverage and Structured High Verification Plan for Com-
plex Architecture of GPUs and Al Accelerator,” Journal of Artificial
Intelligence & Cloud Computing, vol. 2, no. 4, pp. 1-4, Dec. 2023.
Kumar, Pranjal, “Large language models (LLMs): survey, technical
frameworks, and future challenges,” Artificial Intelligence Review,
vol. 57, no. 10, p. 260, Aug 2024. [Online]. Available: https:
//doi.org/10.1007/s10462-024- 10888-y

Murthy, Nishanth Somashekara and Nelson, Eldon and Sapatnekar,
Sachin S and Sartori, John, “VerifLLMBench: An Open-Source Bench-
mark for Testbenches Generated with Large Language Models,” in
Proceedings of the Design & Verification Conference and Exhibition
(DVCon U.S.), 2025.

Liu, Shang and Fang, Wenji and Lu, Yao and Wang, Jing and Zhang,
Qijun and Zhang, Hongce and Xie, Zhiyao, “RTLCoder: Fully Open-
Source and Efficient LLM-Assisted RTL Code Generation Technique,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 44, no. 4, pp. 1448-1461, 2025.

Miftah, Samit Shahnawaz and Srivastava, Amisha and Kim, Hyunmin
and Basu, Kanad, “Assert-O: Context-based Assertion Optimization
using LLMs,” in Proceedings of the Great Lakes Symposium on
VLSI 2024, ser. GLSVLSI ’24. New York, NY, USA: Association
for Computing Machinery, 2024, p. 233-239. [Online]. Available:
https://doi.org/10.1145/3649476.3660378

J. Labuda, “LLM-based Functional Coverage Generation and
Auto-Evaluation Framework.” [Online]. Available: https://github.com/|
Northeus/coge/tree/DVCON2025

Jyoti, Shivya and Tejpal, Moulik and R, Jothi K, “Optimizing Generative
Al Applications: A Comparative Study of Effective Prompting Tech-
niques,” in 2025 5th International Conference on Pervasive Computing
and Social Networking (ICPCSN), 2025, pp. 389-396.

Snyder, Wilson and Wasson, Paul and Galbi, Duane and et al,
“Verilator.” [Online]. Available: https://github.com/verilator/verilator

https://www.verifsudha.com/2018/02/11/write-functional-coverage-plan/
https://www.verifsudha.com/2018/02/11/write-functional-coverage-plan/
https://dvcon-proceedings.org/document/table-based-functional-coverage-management-for-soc-protocols/
https://dvcon-proceedings.org/document/table-based-functional-coverage-management-for-soc-protocols/
https://dvcon-proceedings.org/wp-content/uploads/99445.pdf
https://dvcon-proceedings.org/wp-content/uploads/99445.pdf
https://doi.org/10.1007/s10462-024-10888-y
https://doi.org/10.1007/s10462-024-10888-y
https://doi.org/10.1145/3649476.3660378
https://github.com/Northeus/coge/tree/DVCON2025
https://github.com/Northeus/coge/tree/DVCON2025
https://github.com/verilator/verilator

	Introduction
	Related Work
	Background
	Functional coverage
	Large Language Models

	Experimental setup
	Dataset
	Functional coverage generation
	Cocotb testbench
	Automated evaluation

	Results
	Conclusion
	References

