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Abstract—The growing complexity of cyber-physical systems,
particularly in automotive applications, has increased the demand
for efficient modeling and cross-domain co-simulation techniques.
While SystemC Transaction-Level Modeling (TLM) enables ef-
fective hardware/software co-design, its limited interoperability
with models from other engineering domains poses integration
challenges. This paper presents a fully open-source methodology
for integrating SystemC TLM models into Functional Mock-up
Interface (FMI)-based co-simulation workflows. By encapsulating
SystemC TLM components as FMI 3.0 Co-Simulation Functional
Mock-up Units (FMUs), the proposed approach facilitates seam-
less, standardized integration across heterogeneous simulation
environments. We introduce a lightweight open-source toolchain,
address key technical challenges such as time synchronization and
data exchange, and demonstrate the feasibility and effectiveness
of the integration through representative case studies.

Index Terms—Transaction Level-Modeling, SystemC, Func-
tional Mock-up Interface, Software-defined Vehicle

I. INTRODUCTION

The increasing complexity of embedded and cyber-physical
systems in modern vehicles has driven the need for advanced
modeling and co-simulation techniques that enable early de-
sign exploration, performance evaluation and cross-domain
integration [1]. In this context, Transaction-Level Modeling
(TLM) using SystemC has emerged as a powerful methodology
in Electronic-System-Level (ESL) design, enabling efficient
simulation and abstraction for hardware/software co-design and
architectural exploration [2], [3].

However, modern systems are highly heterogeneous, and re-
quire to take into account multiple domains, including control,
thermal, or mechanical [4]. This limitation becomes especially
critical in system-level design workflows, where co-simulation
involving heterogeneous tools and models is increasingly com-
mon. As system integration becomes more multidisciplinary,
the need for interoperable, modular simulation standards has
become evident [5].

To meet the growing demand for seamless integration in
systems engineering, the Functional Mock-up Interface (FMI)
standard has gained widespread adoption [6]–[8]. FMI en-
hances cross-tool interoperability, as it provides a standardized,
tool-independent interface to encapsulate simulation models
as Functional Mock-up Units (FMUs), which can be shared,
reused, and integrated across diverse platforms.

Although FMI is widely used in domains such as control
systems and system dynamics (e.g., in Simulink, Dymola,
or Modelica-based tools), its adoption in the SystemC TLM

ecosystem remains limited. This work investigates and demon-
strates the feasibility of integrating SystemC TLM models into
FMI-based co-simulation workflows, and proposes a method-
ology for encapsulating SystemC TLM components as FMI
3.0 Co-Simulation FMUs. This integration is inherently non-
intrusive, requiring no modifications to existing TLM models,
and achieves full FMI standard compliance with the application
of an open source automated tool. Experimental results from
two industrial case studies, chosen for their diverse complexity
and computation-communication tradeoffs, prove the effective-
ness of our FMU integration approach. A final experiment,
integrating a generated FMU with a Simulink-based FMU,
conclusively proves seamless FMI compatibility.

The rest of the paper is organized as follows: Section
II presents background information on SystemC TLM, FMI
standard and state of the art; Section III describes the proposed
integration method and its automation framework; Section IV
presents test studies and experimental results. Finally, Section
V concludes the paper and outlines future works.

II. BACKGROUND AND RELATED WORKS

A. SystemC TLM
SystemC TLM builds on top of the SystemC simulation

engine [9], by replacing low-level, pin-accurate signal proto-
cols with higher-level transaction-based communication. This
abstraction separates communication from computation, signif-
icantly reducing the complexity and improving the efficiency
of simulations [10], [11].

In SystemC TLM, a transaction represents an operation
between components, e.g., a read or write operation, rather than
modeling the exact signals and timings on pins or wires. Each
transaction is implemented as a payload, an object wrapping
attributes (e.g., address, data) and protocol phases.

Transactions are exchanged between two entities:
the initiator, which triggers the operation and owns a
tlm_initiator_socket, and the target, which receives
and processes the request via a tlm_target_socket. These
sockets define the communication interface and support both
blocking and non-blocking transport. In blocking transport,
the initiator directly calls the target’s b_transport()
method, which processes the request immediately. In non-
blocking transport, the initiator issues a request using the
nb_transport_fw() method; the target acknowledges
receipt, and sends the result back asynchronously via the
initiator’s nb_transport_bw() method.



B. Functional Mock-Up Interface

The Functional Mock-Up Interface (FMI) provides a stan-
dardized application programming interface specification for
the interoperability and co-simulation of dynamic models
across heterogeneous simulation environments [12]. FMI facili-
tates cross-platform model exchange through the encapsulation
of computational models FMUs, distributed as compressed
archives containing: (1) an XML-based model description file
(modelDescription.xml), defining the model’s interface
specification through structured variable declarations (e.g., di-
rection, type, name); (2) platform-specific dynamic link li-
braries implementing the FMI C-API specification; and (3)
optional auxiliary resource files encompassing documentation
and model-specific parametric data.

FMI defines three main interactions between FMUs, i.e.,
Model Exchange (based on numerical integration, handled by a
centralized solver), Co-Simulation (where FMUs include their
solvers and execute independently), and Scheduled Execution
(designed for real-time scenarios). This work focuses on Co-
Simulation, that is the most frequent scenario in the context of
cyber-physical systems.

FMI 3.0 Co-Simulation specification defines a comprehen-
sive C-API comprising mandatory and optional functions:

• functions to instantiate a FMU, e.g.,
fmi3InstantiateCoSimulation;

• function to run simulation, e.g., fmi3DoStep, that allows
temporal advancement to run simulation of each FMU;

• getter and setter functions to update FMI variables before
and after each fmi3DoStep, to allow data exchange
between FMUs: fmi3GetXXX and fmi3SetXXX1.

C. Related Work

The Functional Mock-up Interface (FMI) standard has gained
substantial traction in both academic research and industrial
applications, finding utility across numerous domains [13].
Within the automotive co-simulation sector, several prominent
commercial platforms have been developed to leverage FMI
capabilities, such as Synopsys Silver [14], Altair Twin [15],
Simcenter Amesim [16], and BemNG.tech [17]. While these
commercial solutions have achieved significant industrial pen-
etration, they remain proprietary and generally lack native
integration capabilities for SystemC models, especially those
implementing SystemC TLM.

To address this gap, multiple research efforts have inves-
tigated approaches for incorporating SystemC/SystemC TLM
components into FMI-based co-simulation frameworks. An ini-
tial contribution by [18] presented a methodology for wrapping
SystemC models as Functional Mock-up Units (FMUs) using
the FMI 2.0 specification, though this approach did not address
TLM-specific requirements. Building upon this foundation,
later work [19] addressed the integration of TLM-level simu-
lation, focusing on higher abstraction levels compared to RTL.
Their proposed methodology begins with a VHDL or Verilog
hardware description, which is then transformed into a TLM
model of the IP component and subsequently wrapped into an
FMU. While the process is automated, it introduces several

1XXX stands for the data type, e.g., fmi3Int8, fmi3Boolean.

limitations: the methodology does not directly support SystemC
TLM, and an intermediate translation from RTL to TLM is
required. OMSimulator [20] represents another FMI-based co-
simulation tool, tightly integrated with OpenModelica, an open-
source modeling and simulation environment widely adopted
in both academia and industry [21]. Through this integration,
OMSimulator offers a graphical interface and supports both
FMI modalities: model exchange and co-simulation. Although
it is build around transaction level co-simulations, it lacks native
support for SystemC TLM models.

A few open source efforts are available. [22] introduced VP-
Sim, that enables the automated generation of FMI-compliant
FMUs through the instantiation of dedicated proxy modules
for enabling communication with the system, adding a layer
of complexity. Virtual Components Modeling Library (VCML)
[23] instead offers a collection of FMU-ready SystemC TLM
components for virtual prototyping with FMI support. However,
introducing new components requires modifications to the
original design, and FMI support is not guaranteed.

To close the gap, this work aims at providing a method-
ology and an open source tool that automatically wraps
SystemC TLM descriptions as FMUs with no modifications
of the source code. The open source tool is available at
https://github.com/eml-eda/systemc-fmi

III. METHODOLOGY

This section presents a comprehensive methodology for
encapsulating SystemC TLM designs as FMUs. The approach
follows a structured three-phase workflow (outlined in fig. 1):

A. Design Selection and Analysis, to collect data structures
and identify the communication characteristics;

B. FMI Wrapper Generation, to map the TLM payload to
FMI variables and implement the required FMI functions;

C. Simulation and Validation with an FMI-compliant simula-
tion environment (e.g. FMPy [24]).
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Fig. 1. High-level overview of the proposed workflow

A. Design Analysis and Simulation Setup

The methodology adopts a non-intrusive approach that pre-
serves the integrity of existing SystemC TLM designs and im-
poses minimal constraints, ensuring broad applicability across
different design styles.



1) Design Prerequisites: The methodology requires ac-
cess to the SystemC TLM source code and assumes that
the SystemC TLM code is a target module, implementing
b_transport and nb_transport_fw functions. This as-
sumption is reasonable, as TLM modules are typically used
to simulate peripherals (e.g., bus interfaces), to be controlled
via co-simulation by external modules (e.g., Instruction Set
Simulators). Extending the methodology to support an initiator
SystemC TLM module would be however straightforward, and
will be part of future extensions.

2) Design Analysis: The code is parsed to extrapolate the
necessary information. The most important element is the
data format loaded in the payload as data field. This data is
typically organized in a struct, that allows to wrap more
than one variable. This struct is moved to an header file,
payload.h, so that it can be accessed and imported from
multiple files.

1 struct payload {
2 sc_dt::sc_int<32> data_in;
3 sc_dt::sc_int<32> data_out; };

Listing 1. Structure loaded to payload data and saved in payload.h.

Additionally, the SystemC TLM functions implemented in
the module are scanned to determine which of the struct
fields are accessed through read operations (and can thus be
considered as inputs received from an initiator) and which are
rather set and updated in the function (and are thus outputs
generated from the target). In the example shown in listing 1,
the data_in field receives the input data provided by the
target for processing, while the processed result is written to
the data_out field of the struct. This mapping is essential
for generating the ModelDescription.xml file [12], that
contains all necessary metadata for the FMU.

3) Top-Level and Initiator Module Implementation: Sys-
temC TLM target modules can not be simulated in isolation,
but rather require that their sockets are bound to TLM initiator
sockets. For this reason, the methodology implements an initia-
tor module, in charge of handling direct communication with
the target module, and a top level, that declares, instantiates
and connects the initiator and the target.

1 void Initiator::send_data()
2 {
3 start_sending.notify(sc_core::SC_ZERO_TIME);
4 }
5 void Initiator::sending_thread()
6 {
7 while(true){
8 wait(start_sending);
9 iostruct data_packet;

10 root_packet.data_in = data_to_send;
11 tlm::tlm_generic_payload payload ;
12 payload.set_command(tlm::TLM_WRITE_COMMAND);
13 payload.set_data_ptr((unsigned char*) &data_packet);
14 ...
15 initiator_socket->b_transport(payload, delay);
16 ...
17 }
18 }

Listing 2. Extract of initiator module code.

4) Initiator module: The initiator module declares a
tlm_initiator_socket socket, used to carry as data a
struct, as defined in the payload.h file.

The initiator is in charge of starting communication with the
target, via invocation of the SystemC TLM primitives. This is
handled with a process sending_thread (lines 5-18), that
repeatedly sets the payload fields and invokes the blocking or
non blocking primitive of the target (an example for blocking
communication is reported in listing 2). The process waits
on an event start_sending, that is fired by a function
send_data, invoked from outside (as will be explained later,
lines 1-4).

5) Top-level module: The top-level module is necessary to
allow successful SystemC TLM simulation, and listing 3 out-
lines its implementation. The constructor instantiates initiator
and target and performs socket binding (lines 1-6). The top level
then includes two main methods. The set_and_send() one
prepares data to be transferred to the target, copies it to the ini-
tiator, and invokes the send_data function of the initiator to
start communication (lines 7-10). The retrieve_result()
is vice versa responsible for collecting the output once the
transaction has completed (lines 11-13). This solution allows
controlling communication with the target and collecting data
correctly through methods of the top level, without intruding
in the target implementation.
1 Top::Top(sc_core::sc_module_name name)
2 : sc_core::sc_module(name) {
3 init = new Initiator("init");
4 root_ = new root("root_");
5 init->initiator_socket.bind(root_->target_socket);
6 }
7 void Top::set_and_send(sc_dt::sc_int<32> data_in_to_send) {
8 init->data_to_send = data_in_to_send;
9 init->send_data();

10 }
11 void Top::retrieve_result(sc_dt::sc_int<32> &result_out) {
12 result_out = init->data_received;
13 }

Listing 3. Extract of the top-level module code.

B. FMI Wrapper Generation
The construction of the FMI wrapper around such system

requires generating the FMU interface definition, and imple-
menting the necessary data transfer and primitive mapping to
transform FMI APIs into an evolution of the SystemC TLM
system.

1) Model Description Generation: The first step is the
generation of the modelDescription.xml file, which de-
fines the FMU’s interface. Information collected about the
TLM data format is used to populate the file, reporting the
name of each struct field, annotated with the corresponding
direction and type, as depicted in listing 4 for the data structure
defined in listing 1. To ensure semantic accuracy, a dedicated
mapping (see Table I) aligns each SystemC data type with its
corresponding FMI equivalent.

1 <fmiModelDescription fmiVersion="3.0" modelName="tlm"/>
2 ...
3 <ModelVariables>
4 <Int32 name="fmi_data_in" valueReference="1"
5 causality="input" start="0"/>
6 <Int32 name="fmi_result" valueReference="2"
7 causality="output"/>
8 </ModelVariables>
9 ...

10 </fmiModelDescription>

Listing 4. Extract of the modelDescription.xml file
generated from the struct defined in listing 1



From listing 4, it is possible to appreciate that the data_in
field is mapped onto a variable fmi_data_in (with the
fmi_ prefix) of type Int32 (corresponding to the initial type
sc_int<32>). Its direction is considered as input, as it is read
as input by the target. Vice versa, the result field is tagged
as output, as its value is calculated from the target SystemC
TLM module, and sent back to the initiator.

TABLE I
DATA TYPE MAPPING BETWEEN SYSTEMC AND FMI

SystemC Data Type FMI Data Type

sc_logic fmi3Int8 (0,1,’X’=2,’Z’=3)
sc_lv<N> fmi3Binary or fmi3Int8[]
sc_bit fmi3Bool
sc_bv<N> fmi3Binary
sc_int<1..8> / sc_uint<1..8> fmi3Int8 / fmi3UInt8
sc_int<9..16> / sc_uint<9..16> fmi3Int16 / fmi3UInt16
sc_int<17..32> / sc_uint<17..32> fmi3Int32 / fmi3UInt32
sc_int<33..64> / sc_uint<33..64> fmi3Int64 / fmi3UInt64
sc_fixed/sc_ufixed<W,I,Q,O,N> fmi3Float32/64

Built-in C++ Floating Point Types:
float fmi3Float32
double fmi3Float64

2) FMI Wrapper Implementation: The next phase encap-
sulates the SystemC TLM model using the FMI 3.0 API.
The wrapper architecture acts as a bridge between the two
domains, coordinating simulation execution and managing data
exchange between FMI variables and SystemC sockets. It also
ensures correct propagation of inputs and collection of outputs
during simulation, while enabling integration into a wider co-
simulation context. Central to this mechanism is a structured
wrapper (listing 5) that stores:

• a pointer *top to the top-level SystemC TLM module
(listing 3), that allows to access its data structures and
to invocate its set_and_send() function;

• a variable of type sc_time to keep track of simulation
time (for the timed versions of TLM);

• the FMI interface variables defined in the XML model
description (listing 4, lines 4-5).

1 struct WRAPPER_STRUCT {
2 Top *top; // Pointer top-level module
3 sc_time current_time; // Current simulation time
4 fmi3Int32 fmi_data_in; // Input data from FMI domain
5 fmi3Int32 fmi_result; // Output data to FMI domain
6 };

Listing 5. SystemC-FMI wrapper struct.

3) FMI API Implementation: Conformance with the FMI
standard requires implementing the API functions that mediate
interactions between the FMI environment and SystemC.

The instantiation and initialization functions
(i.e., fmi3InstantiateCoSimulation and
(fmi3EnterInitializationMode) are used to
declare and instantiate the top level entity, and to issue
a sc_start(SC_ZERO_TIME) primitive, that allows
construction of the SystemC TLM objects, performs the binding
between sockets and initializes the event queue necessary to
run the simulation. Vice versa, the fmi3FreeInstance
function frees memory at the end.

The setter and getter functions (fmi3SetXXX and
fmi3GetXXX, XXX being a FMI data type) copy or retrieve

the values of the FMI variables, contained in the wrapper, to
local variables. The mapping onto SystemC TLM payload data
will be explained later on.

The core of the cosimulation is the fmi3doStep func-
tion, that must advance the simulation of the SystemC TLM
subsystem by a certain amount of time (defined by the
CommunicationStepSize parameter). This requires thus
precise synchronization between the SystemC kernel and the
FMI runtime, without altering core simulation behavior. An
example of implementation is shown in Listing 6. The function
accesses the wrapper (defined in listing 5) in line 7 and
calculates the requested step size in seconds (line 8). The
function then calls the set_and_send method of the top-
level module to transfer the FMI variables into the TLM
payload and to trigger the initiator. It subsequently starts the
SystemC TLM simulation for the specified duration using the
sc_start primitive (lines 11-12). The result calculated by the
TLM target is retrieved with the retrieve_result function
of the top level, and updated to a local variable (lines 13-15).
Finally, current FMU time stored in the wrapper is increased
to take into account the step size just executed, considering the
possibility of anticipated returns due to interrupt-like behaviors
or of any error condition detected by the simulation (lines 17-
21). This mechanism allows to temporally align the SystemC
TLM simulation with any other FMU, and to correctly execute
its functionality.

1 fmi3DoStep(fmi3Instance instance,
2 fmi3Float64 currentCommunicationPoint,
3 fmi3Float64 communicationStepSize, ...
4 fmi3Boolean* earlyReturn,
5 fmi3Float64* lastSuccessfulTime) {
6
7 WRAPPER_STRUCT* fmu = static_cast<WRAPPER_STRUCT*>(

↪→ instance);
8 sc_time step_size(communicationStepSize, SC_SEC);
9

10 fmu->top->set_and_send(static_cast<int32_t>(fmu->
↪→ fmi_data_in));

11 sc_start(step_size);
12
13 int32_t result;
14 fmu->top->retrieve_result(result);
15 fmu->fmi_result = result;
16
17 sc_time next_time;
18 if (!(*earlyReturn))
19 next_time = fmu->current_time + step_size;
20 else next_time = fmu->current_time + (*

↪→ lastSuccessfulTime);
21 fmu->current_time = next_time;
22
23 return fmi3OK;
24 }

Listing 6. fmi3DoStep function implementation

C. FMI-based Simulation

The compilation stage generates a platform-specific exe-
cutable library (as by the FMI standard): a Dynamic Link
Library .dll for Windows, a Shared Object Library .so
for Linux, or a Dynamic Library .dylib for macOS. The
compilation must ensure that all necessary dependencies are
correctly linked and that the final output properly exposes the
FMI interface functions required for simulation.

The final phase of the proposed workflow is simulating
the generated FMU using suitable simulation tools. A typical
simulation flow begins by loading the generated FMU, followed



by the configuration of key parameters such as simulation
duration and time step. Initial conditions and input values
are then defined before executing the simulation. Once the
run is complete, the results can be retrieved and analyzed as
needed. For this step, the choice fell on the Python-based FMPy
library [24] for its rich feature set, intuitive interface, and ease
of integration into automated environments. Although FMPy
is used as the default simulation backend in this workflow,
the resulting FMUs remain fully compliant with the FMI
standard. As such, they can be executed in any FMI-compatible
simulation environment, making the solution broadly applicable
in both academic and industrial settings.

D. Automation framework
The whole flow presented in this section has been auto-

mated to maximize accessibility and ease of use. To oper-
ate, the framework takes as input a SystemC TLM model
along with a configuration file (YAML or JSON), that de-
fines the paths to source files, various FMU parameters (e.g.,
CommunicationStepSize), and other necessary metadata
for the generation of the ModelDescription.xml file.

The automation process is launched via a Python script that
handles all subsequent stages, by following the steps detailed in
the former subsections. To parse the input files (SystemC TLM
design, plus YAML or JSON file) we used regular expressions,
and the produced code is written to files. Both Bash scripts and
CMake are generated and supported, depending on the user’s
setup. After successful compilation, the resulting binaries are
packaged into a platform-specific FMU (.dll for Windows, a
.so for Linux or a .dylib for macOS).

By encapsulating all steps into a single automated pipeline,
the framework significantly lowers the barrier for converting
SystemC TLM models into FMUs suitable for co-simulation.

IV. EXPERIMENTAL RESULTS

To assess the effectiveness of our integration methodology,
we applied the proposed flow to three case studies. The former
two are provided by an industry partner, and are used to
evaluate the complexity of the wrapped model, simulation
performance of native SystemC TLM simulations (including
the target, the initiator, and the top level) against their FMU-
based equivalents (executed via FMPy) and the peak memory
consumption2. The two designs differ in complexity, with one
focusing more on communication and the other emphasizing
computation. Finally, seamless FMI compatibility is demon-
strated through the successful integration of a generated FMU
with a Simulink-based FMU.

A. I2C (Inter Integrated Circuit)
The first case study includes an I2C bus, receiving requests

from the FMI interface and handling communication with two
slaves: an Arithmetic Logic Unit (ALU) and a Register File.
The I2C description comprises a master controller, orchestrat-
ing protocol-level operations, e.g., address transmission and
acknowledgments, and a slave interface, managing the I2C

2The SystemC TLM runs were measured using a dedicated C++ profil-
ing framework, while FMU co-simulation was monitored in Python using
psutil [25]. All measurements were averaged over five runs, with simulation
lengths varying between 250 and 10,000 DoStep invocations.

protocol state machine. The resulting SystemC TLM includes
thus 4 modules for a total of 5 processes and 1,072 lines
of code. Total payload data includes 7 fields (3 booleans, 2
uint8, and 2 enumerative types).

TABLE II
I2C PERFORMANCE AS EXECUTION TIME AND MEMORY FOOTPRINT WHEN

INCREASING THE NUMBER OF FMI3DOSTEP INVOCATIONS

doStep (#) 250 1,000 10,000
Version TLM FMU TLM FMU TLM FMU

Time (ms) 45.44 46.50 64.93 413.00 370.94 3,750.00
Memory (MB) 5.40 78.40 5.28 79.27 6.30 80.85

Table II reports the evolution of simulation time and mem-
ory footprint when increasing the number of fmi3doStep
invocations. The overhead ranges from approximately 1.02×
with 250 invocations of the fmi3doStep function to around
10× with 10,000 invocations. This performance degradation
can be attributed to the introduction of additional interfacing
layers, resulting in computational and communication overhead,
plus to the overhead of time synchronization, data serialization,
and inter-process communication. On the contrary, the native
SystemC TLM implementation benefits from direct access to
efficient time management and transaction-level abstractions,
which are partially lost when the module is encapsulated as an
FMU.

However, such overhead is reasonable when considering that
this allows to cosimulate the wrapped TLM with external tools.
As an example, fig. 1.C shows a wrapper SystemC TLM
FMU executed and controlled by a Software-in-the-Loop (SIL)
environment, used to execute control software interacting with
emulated hardware and peripherals, for automotive early virtual
prototyping [26].

Memory consumption increases in the FMU-based imple-
mentation. For instance, at 250 invocations, the FMU uses 78.4
MB, compared to just 5.4 MB in the SystemC TLM case.
This pattern is similar at higher invocation counts, with FMU
memory usage being around 80.85 MB at 10,000 invocations,
while the native version uses 6.3 MB. The increased memory
usage in the FMU version is primarily due to the additional
runtime environment and infrastructure required to support the
co-simulation interface, and is quite stable when increasing
simulation length (with only a 3% increase from 250 to 10,000
fmi3doStep invocations).

B. ECC (Error Correction Code)
The Error Correction Code (ECC) is an crucial component

for automotive systems to ensure robust error detection and
correction in harsh and electromagnetically noisy environments
[27]. The ECC includes XOR-based parity check, dynamic
adjustment based on system configuration, and support for both
byte mode (8-bit) or word mode (16-bit). The SystemC TLM
target includes only 1 module with 3 processes, for overall
1,311 lines of code. Total payload data includes 7 fields (7
logic values and 3 logic vectors).

The ECC module exhibits a similar performance overhead
pattern to the I2C module when encapsulated as an FMU (see
table III). Execution time degradation ranges from approxi-
mately 1.36× for a simulation with 250 invocations of the



TABLE III
ECC PERFORMANCE AS EXECUTION TIME AND MEMORY FOOTPRINT WHEN

INCREASING THE NUMBER OF FMI3DOSTEP INVOCATIONS

doStep (#) 250 1,000 10,000
Version TLM FMU TLM FMU TLM FMU

Time (ms) 77.72 88.30 170.11 373.90 1,185 4,945
Memory (MB) 4.56 104.06 4.72 105.55 5.82 124.85

fmi3doStep function to 3.17× for 10,000 invocations. The
higher overhead observed at 250 can be attributed to the fixed
costs of FMU encapsulation being less effectively amortized
over a shorter simulation. In contrast, this overhead becomes
proportionally smaller in longer simulations.

Memory usage patterns follow a trend similar to the I2C
implementation, with an almost constant overhead of 22×. The
higher overhead w.r.t. the I2C design (in avg. 14×) is due to
the computation-oriented nature of the ECC design, that thus
requires more data transfers and a higher memory occupancy.

C. Model-Based Development: SystemC-TLM and Multi-
Domain FMU Co-simulation

The last case study focuses on the interoperability of the
generated FMUs with FMUs developed in other modeling
environments. As case study, we selected a single-pedal electric
vehicle implemented in Simulink (represented in fig. 2). The
modeled vehicle features a 1,600 kg mass, 90 horsepower
drivetrain, and a unified pedal interface that provides both ac-
celeration and regenerative braking functionality. The exported
Simulink FMU encapsulates the complete vehicle dynamics
through 19 variables: time, input torque request (Nm), output
vehicle speed (km/h), and 16 configurable parameters defining
the vehicle characteristics. The Simulink design was exported
as an FMU using the CATIA FMI-Kit [28]. To complement this
plant model, a SystemC TLM Electronic Control Unit (ECU)
was developed to generate representative driving scenarios. The
ECU outputs the commanded torque values to be fed to the
vehicle plant.

The SystemC TLM design was packaged as an FMU with
the approach proposed in this work. The co-simulation was
executed using the FMPy library to orchestrate the interaction
between both FMUs.

Simulation results (reported in fig. 3) demonstrate suc-
cessful coupling between the SystemC TLM ECU (top) and
the Simulink vehicle model (bottom) over a 35-second test
scenario. The torque request profile generated by the ECU
exhibits a characteristic driving cycle, beginning with gradual
acceleration (0-120 Nm), maintaining steady-state operation,
followed by regenerative braking with negative torque values
(down to -80 Nm), and concluding with a return to cruise
conditions. Vehicle speed response shows appropriate dynamic
behavior, accelerating from rest to approximately 120 km/h
during positive torque phases and decelerating during regen-
erative braking periods. The response exhibits realistic vehicle
inertia characteristics, with smooth speed transitions that follow
the torque command profile with expected delays inherent to
vehicle dynamics.

The piecewise constant curve of the Simulink output (bot-
tom) is due to the different time steps used by the two
cosimulations (0.1s for SystemC TLM, 1s for Simulink). This
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Fig. 2. Simulink model of a single-pedal electric vehicle

confirms that the time synchronization mechanism is robust,
as it allows correct cosimulation with FMUs running with a
different CommunicationStepSize setting.

This successful co-simulation confirms that the FMUs gen-
erated by our framework are fully compliant with the FMI
standard and are designed to be modular and interoperable. As
such, they can be seamlessly integrated with FMUs developed
using other tools and modeling environments, enabling flexible
and multi-domain simulation workflows.
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Fig. 3. Cosimulation of the SystemC TLM ECU with the Simulink model in
fig. 2: torque request (top) and vehicle speed (bottom).

V. CONCLUSIONS

In this paper, we presented an open-source automated frame-
work for integrating SystemC TLM models with the FMI
standard, facilitating co-simulation and cross-domain interop-
erability. The framework and the accompanying open source
tool automatically generate FMUs from unmodified SystemC
TLM models, ensuring tool-independent and non-intrusive inte-
gration. Experimental results demonstrate its ability to handle
a wide range of designs efficiently, with consistent memory
usage and moderate performance overhead. Additionally, the
experimental results prove the straightforward integration with
other FMUs. Future work will focus on extending support
for additional SystemC TLM features and integrating with
Instruction Set Simulator (ISS) based environments.
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