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Abstract—Processor verification faces significant challenges in state-
space explosion and test coverage limitations, particularly in complex
micro-architectures. Formal verification provides precise correctness
guarantees but is constrained by computational overhead and scalability
issues. Conversely, simulation-based approaches, including constrained-
random verification and fuzz testing, provide scalability but often lack
systematic guidance to effectively cover critical design regions and rarely
exercised state transitions. To overcome these challenges, we propose
Formal-Guided Test Sequence Optimization (FGTSO), a framework that
integrates formal verification with simulation to systematically target
coverage holes and enhance verification efficiency. FGTSO mitigates
false alarms by refining formal assumptions and resolving black-box
(BBOX) limitations through abstraction modeling. By continuously align-
ing formal and simulation environments, FGTSO reduces test redundancy
while enabling precise corner-case exploration. This approach enhances
verification completeness, efficiently covering hard-to-reach design be-
haviors that traditional methodologies often overlook. Experimental
results on the CVA6 RISC-V core show that FGTSO achieved 99.91%
branch coverage within 8 days, which is 4.41% higher than HyPFuzz’s
95.5%, effectively covering 98% of the previously uncovered regions.
Furthermore, within 10 days, FGTSO achieved 100% coverage across
all key metrics, including line, toggle, condition, and branch coverage.
These results validate FGTSO’s ability to identify complex corner-case
behaviors that traditional methods fail to reach, significantly enhancing
verification completeness and efficiency.

Index Terms—Processor Verification, Formal Verification, Simulation,
Test Sequence Optimization, Universal Verification Methodology

I. INTRODUCTION

As hardware designs grow increasingly complex, the verification
process faces significant challenges. Existing methods, such as formal
verification and simulation, can detect certain vulnerabilities, but
each has limitations in terms of efficiency and coverage. Formal
verification provides comprehensive design exploration, but encoun-
ters the problem of state-space explosion when applied to large-
scale designs. On the other hand, simulation offers high scalability
and broad applicability, and its coverage can be improved using
constrained-random verification (CRV). However, its effectiveness
heavily depends on well-designed constraints; biased constraints
may miss critical scenarios, while overly strict ones can increase
debugging complexity.

To maximize the strengths of simulation and formal verification
while mitigating their limitations, we propose Formal-Guided Test
Sequence Optimization (FGTSO) to enhance coverage and verifi-
cation efficiency. This methodology leverages simulation’s scalabil-
ity and formal verification’s precision to efficiently target critical
conditions, reducing simulation overhead while improving coverage.
Key challenges include resolving false alarms from formal-simulation
discrepancies and addressing BBOX constraints in high-storage or
high-computation modules. Our framework mitigates these issues,
ensuring a more comprehensive and efficient verification methodol-
ogy. By integrating simulation and formal verification, our proposed
framework improves coverage, reduces redundancy, and enhances
verification accuracy.

Our contribution is as follows:
1) We propose a verification framework that integrates formal

verification with simulation, utilizing the FGTSO technique.
This framework reduces false alarms through environment
alignment and addresses the black-box (BBOX) challenges that
are often overlooked or inadequately handled in related works.
We introduce abstract models to overcome the limitations of
BBOX in formal verification, particularly for components with
high storage requirements (e.g., memory) and complex com-
putational units (e.g., multipliers, floating-point units), thereby
significantly enhancing simulation coverage in areas related to
BBOX modules.

2) Applied to the RISC-V CVA6 processor [9], our framework
achieves 99.38% branch coverage in 3 days (4.6% higher than
HyPFuzz [3]) and 99.91% in 8 days (4.41% higher than HyP-
Fuzz). Ultimately, within 10 days, it reaches 100% coverage
across all key metrics, demonstrating superior efficiency and
completeness.

The remaining organization of this paper is as follows. Section II
discusses related work; Section III introduces our proposed method-
ology, FGTSO; Section IV presents a case study; Section V compares
the experimental results of our proposed methodology with those of
the related work. Finally, Section VI concludes this work.

II. RELATED WORK

In hardware verification, tools like RISC-V Torture [5] and RISCV-
DV [4] have played a crucial role in verifying the basic functional
correctness of RISC-V processors. RISC-V Torture generates random
instruction sequences to achieve faster coverage closure, making it
suitable for general functional validation. However, it lacks structured
verification guidance, limiting its effectiveness in verifying specific
functionalities or extreme corner cases. RISCV-DV, developed by
Google, extends these capabilities by supporting CRV and privileged
ISA features, offering greater flexibility. Nevertheless, its reliance on
randomness makes it difficult to systematically cover boundary condi-
tions, and the test results are often unstable, making it challenging to
reproduce specific errors. Despite their effectiveness, both approaches
lack systematic methodologies to ensure comprehensive coverage of
critical design aspects, particularly in complex control flows where
formal guidance becomes essential.

Fuzzing-based tools like TheHuzz [6] and HyPFuzz [3] have fur-
ther advanced processor verification by leveraging golden-reference
models and hybrid approaches, respectively. TheHuzz adopts fuzzing
techniques to detect processor vulnerabilities and can effectively
generate diverse execution paths. However, it primarily relies on a
large number of random or semi-random inputs to trigger abnormal
behaviors, which cannot guarantee coverage of all possible states
or paths. HyPFuzz combines fuzzing with formal verification to ac-
celerate coverage and uncover previously undetected vulnerabilities,



Fig. 1. Overview of formal-guided simulation workflow

including new Common Vulnerabilities and Exposures (CVEs). While
this hybrid approach significantly improves verification efficiency, it
does not fully address two major challenges in formal verification:
false alarms due to environmental mismatches and BBOX issues
caused by excessive computational complexity or large storage mod-
ules. These issues highlight the need for a more structured framework
that not only accelerates coverage but also ensures formal verification
consistency and completeness.

III. METHODOLOGY

A. Framework Overview

This paper presents a formal-guided simulation-based verification
framework (Fig. 1) that integrates constrained-random test generation,
UVM-based simulation, functional checks, and targeted instruction
sequence optimization to enhance processor verification coverage
and efficiency. The process begins with RISCV-DV generating ran-
domized test cases, ensuring broad verification by covering diverse
instruction combinations. These test cases are then simulated within
a UVM environment and executed on the processor’s Design Under
Verification (DUV). The results are cross-verified with an Instruction
Set Simulator (ISS) to ensure functional correctness. Among them,
only the FGTSO part (highlighted in purple in Fig. 1) corresponds
to formal verification, while the remaining processes belong to the
simulation-based execution environment.

During simulation, the simulator generates coverage reports that
capture the executed instructions, conditions, and data flow states
within the design. These reports are systematically analyzed by our
proposed FGTSO, which selects coverage holes for further refine-
ment. Using formal verification, FGTSO can precisely analyze the
identified coverage hole and generates targeted instruction sequences
to address the coverage hole. The optimized sequences are iteratively
fed back into the verification process, continuously refining the
verification dataset and enhancing verification coverage.

This paper introduces a verification optimization process based
on FGTSO, as illustrated in Fig. 2, designed to effectively generate
instruction sequences that address coverage holes in processor de-
signs. By leveraging formal verification to guide simulation, FGTSO
optimizes the process to produce targeted instruction sequences,
enabling efficient exploration and comprehensive coverage of the
design space.

The FGTSO process consists of four key steps:

1) Coverage Hole Selection: The process begins by identifying
and prioritizing coverage holes that have the most significant
impact on verification efficiency. This ensures that the optimiza-
tion efforts firstly focus on the most efficient hole in coverage.

2) Environment Consistency Check: Since false alarms often
arise due to inconsistencies between formal and simulation
environments, this step aligns formal and simulation by ap-
plying assume properties in SystemVerilog Assertion (SVA) [1]
during formal verification and modifying the existing constraint
in RISCV-DV accordingly. Additionally, this step addresses
BBOX issues by constructing the abstraction model, ensuring
that the generated instruction sequences are more effective in
subsequent steps.

3) Formal Cover Property Generation: Once the environments
are aligned, formal cover properties in SVA are defined to
precisely characterize the behavior of the selected coverage
hole, enabling the generation of targeted instruction sequences
for that specific coverage hole.

4) Targeted Instruction Sequence Extraction: Using the defined
formal cover property, FGTSO generates a cover trace (i.e.,
evidence waveform), which is then translated into target instruc-
tion sequences. These sequences are iteratively fed back into
the simulation environment, continuously improving coverage
and strengthening the overall verification process.



Fig. 2. Workflow of FGTSO

B. Formal-Guided Test Sequence Optimization

1) Step 1 of FGTSO (Blue Part)

To ensure efficient allocation of verification resources and maxi-
mize coverage improvement, we need a strategy that prioritizes ad-
dressing the most impactful coverage holes. By focusing on coverage
holes that significantly affect verification efficiency, this approach
optimizes resource utilization and accelerates the verification process.

Specifically, we employ the MaxUncovd strategy, a heuristic
method derived from the work of Chen et al. [3]. This strategy
prioritizes selecting modules with the lowest coverage, under the
assumption that addressing the most uncovered areas yields the great-
est verification impact. By systematically targeting critical coverage
deficiencies, MaxUncovd enhances the overall verification efficiency
and ensures comprehensive design verification. Moreover, this step
does not introduce additional analysis overhead, as the tool can
directly rank coverage data.

2) Step 2 of FGTSO (Red Part)

Aligning the formal verification environment with the simulation
environment is a critical step. In our proposed methodology, misalign-
ment detection is performed to determine whether the two environ-
ments are consistent. First, formal verification generates instruction
sequences targeting specific coverage holes, which are then executed
in the simulation environment. If the results from formal verification
and simulation are inconsistent—that is, the instruction sequences
generated by formal verification fail to effectively cover the intended

coverage holes during simulation—it indicates a misalignment be-
tween the two environments. There are three main causes of inconsis-
tency between the formal verification and simulation environments:
primary inputs (PIs), BBOX, and insufficient constraint definitions
in RISCV-DV. The following sections will describe the handling
methods for each of these causes of environment inconsistency.

a. Primary Input:
In formal verification, PIs are treated as free nets, allowing them to
assume arbitrary values without constraints. This can lead to incorrect
coverage analysis, as generated cover traces may fail to address
coverage holes in simulation, preventing effective coverage closure
and compromising verification accuracy.

Furthermore, unconstrained PIs can result in misleading coverage
estimation, especially when certain test scenarios correspond to
unreachable states by design. For instance, if AXI [7] protocol
behavior is not properly described, the rvalid signal may be asserted
before arvalid and arready, violating realistic AXI protocol and
memory access sequences. Consequently, formal verification may fail
to generate meaningful instruction patterns, leaving specific coverage
holes unresolved.

Fig. 3. Formal assumption for AXI response

To address this, formal assumptions must be introduced to align
formal verification with realistic system behavior, as shown in Fig.
3. This reduces false alarms, enhances verification efficiency, and
ensures resources are allocated to valid coverage goals, ultimately
improving overall verification quality.

b. BBOX:
In most commercial Electronic Design Automation (EDA) tools, to
ensure the feasibility of formal verification, modules with high stor-
age requirements or complex computational logic are often treated as
BBOX. Since BBOX modules cannot correctly drive the outputs, they
may become free nets, which can lead to false alarms. Additionally,
this limitation prevents the internal logic of the module from driving
its outputs, resulting in verification gaps and reduced simulation cov-
erage. To address this challenge, we introduce abstraction models that
preserve the critical behavior of BBOX modules while ensuring their
interaction with the rest of the system remains correctly verifiable.
This paper introduces how we handle modules with high storage
requirements or complex computational logic when they are treated
as black boxes.

• For high storage requirements module:
When handling large storage components like caches, tracking
all possible tags incurs excessive storage overhead, often leading
to the module being treated as a BBOX. However, cache tags
are crucial for determining hit/miss behavior. To address this,
we introduce a functional abstraction model that simplifies
verification complexity while preserving key behaviors.
For example, as shown in Fig. 4, a predefined tag replaces full
tag tracking, significantly reducing storage requirements.
The abstract model is constructed by using an SVA array
tracks cache index accesses, marking indices as valid upon first
access to ensure efficient logging. A single predefined tag is
enforced for all accesses, reducing overhead while preserving
cache functionality. By adhering to this abstraction, verification
complexity is reduced without compromising coverage accuracy.



Fig. 4. Cache abstraction model concept

• For complex computational logic module:
Computationally intensive components, such as multipliers, are
also often treated as BBOX in most commercial formal verifica-
tion tools due to overloading the verification complexity, result-
ing in arbitrary outputs and unverifiable conditions. To conquer
this issue, we introduce a symbolic computation approach using
SVA to approximate expected outputs and enhance verification
accuracy.
For instance, as shown in Fig. 5, in a multiplier, SVA captures
input signals to trace the source of computation, performs
a simplified symbolic multiplication, and uses the result as
the output to ensure consistency between symbolic and actual
computations.

Fig. 5. Multiplier abstraction model concept

c. Insufficient RISCV-DV Constraint:
Although formal verification can generate valid coverage evidence,
inconsistencies may still occur during simulation. This is because
formal verification may produce specialized memory data sequences
that the existing constraint definitions in RISCV-DV cannot properly
handle. For example, in the case of specific page table data sequences,
the SV39 multi-level page table mechanism includes 1 GB, 2 MB,
and 4 KB page tables. However, due to the original constraint
definitions in RISCV-DV, we are only able to access the 1GB page
table. To resolve this issue, we modify the constraints in RISCV-DV
related to page table entries. As shown in Fig.6, when accessing a 4
KB page table, we apply constraints to the addresses pointed to by
the 1 GB and 2 MB page table entries and set the X, W, and R bits
to 0, indicating that these entries should point to the next level of
the page table. With these adjustments, the original coverage hole is
able to be successfully filled.

Fig. 6. Our proposed RISCV-DV’s page constraint

3) Step 3 & 4 of FGTSO (Green Part)

After aligning the verification environments, generating instruction
sequences that effectively address target coverage holes is crucial. Our
solution uses formal cover properties to obtain cover traces, guiding
instruction sequence generation for improved verification coverage.

First, we use formal cover properties to define the behavior of the
selected coverage hole. This step automatically extracts the coverage
hole expression and applies it to predefined cover templates. Next,
the formal tool executes the cover property, derives the input patterns
required to satisfy the condition, and generates the corresponding
cover trace. Finally, based on the generated cover trace, we extract
the instruction sequence to effectively cover the coverage hole, while
improving test efficiency and verification completeness. However,
during the instruction sequence generation process, the formal tool
may encounter two key challenges as follows.

a. Unreachable Coverage Holes:
If the formal verification tool reports a coverage hole as unreachable,
we first review whether the constraints in both the formal and
simulation environments are overly restrictive. If the constraints are
appropriate and the coverage hole is indeed unreachable, it is waived;
however, the information is still provided to designers as a reference
for debugging. Waiving is simply to avoid unnecessary resource waste
in covering such holes.

b. Resource Exhaustion:
One of the primary limitations of formal tools is state space ex-
plosion, which is particularly problematic for large-scale designs.
If the verification process exhausts computational resources, we
decompose complex properties into smaller sub-properties, collect
cover traces for each sub-property, and ultimately integrate them
into a comprehensive instruction sequence. This approach ensures
manageable complexity while maintaining verification workability.

By systematically addressing these challenges, our methodology
enhances the effectiveness of coverage-driven test generation, ensur-
ing that targeted instruction sequences can efficiently bridge coverage
holes without unnecessary resource consumption.

Fig. 7. FGTSO step 1: MaxUncovd automatically selects coverage holes



Fig. 8. FGTSO step 2: constructing cache abstraction model

Fig. 9. FGTSO step 3: formal cover property for simulation instruction sequence generation

Fig. 10. FGTSO step 4: generated simulation instruction sequence
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Fig. 11. Branch coverage achieved across execution times

IV. CASE STUDY

This example illustrates how FGTSO systematically identifies,
analyzes, and resolves a specific simulation coverage hole. After
completing a simulation run, coverage data is collected directly
from the simulator. Using the MaxUncovd strategy, the most critical
coverage hole is automatically selected without additional manual
effort, as the simulator is capable of sorting coverage metrics by their
priority. The first step is shown in Fig. 7, the identified coverage hole

corresponds to a branch condition in the cache control module.
This coverage hole involves the cache subsystem, which introduces

challenges due to the presence of a BBOX cache model (Fig. 8)
in formal verification. To resolve this, we construct an abstraction
model for the cache, preserving only behaviors relevant to the target
property. Once the environments are aligned, we propose a formal
cover property that explicitly describes the target coverage condition
(Fig. 9). With assumptions and abstraction in place, the formal tool
successfully executes the cover property and generates a correspond-
ing cover trace. From this trace, we extract the associated instruction
sequence, capturing the precise conditions require to trigger the
uncovered behavior. This instruction sequence is then embedded into
a test case generated by RISCV-DV (Fig. 10). Upon simulation,
the target coverage hole is successfully resolved, validating the
correctness and effectiveness of the generated sequence. This case
highlights the seamless integration of formal and simulation-based
techniques within our framework, enabling efficient and scalable
coverage closure.

V. EXPERIMENT

In this experiment, we evaluate the branch coverage achieved by
different verification tools, including RISC-V Torture [5], RISCV-
DV [4], TheHuzz [6], HyPFuzz [3], and our proposed FGTSO-based
method. The DUV used for this study is the CVA6 RISC-V core
[9]. To conduct a comprehensive evaluation, we utilize Cadence
Jasper [2] as the formal verification tool and Synopsys VCS [8] as
the simulation platform. The experiments are executed on a system
equipped with an Intel(R) Xeon(R) Gold 5118 CPU @ 2.30 GHz
48-core Processor and 251 GB DDR4 RAM.

To assess both short-term and extended performance in achieving
branch coverage, the experiments are conducted over two time spans:
three days and eight days, as shown in Fig. 11. For TheHuzz
and HyPFuzz, the experimental data are obtained from HyPFuzz’s
publications, while the data for RISC-V Torture and RISCV-DV
are derived from their open-source implementations, with features
configured exactly as provided on their official websites without any
additional modifications. In the case of RISC-V Torture and RISCV-
DV, the generated test cases are compiled into binary files and fed
into the CVA6 UVM environment for simulation to measure the
experimental outcomes. Notably, this CVA6 UVM environment is
identical to the one employed in our proposed methodology, ensuring
a consistent basis for comparison across all evaluated techniques.



Fig. 12. FGTSO’s achievements of 100% simulation coverage in CVA6

To evaluate verification efficiency, we compare branch coverage
achieved within a 3-day execution period. RISC-V Torture reaches
79.47%, relying on random testing, which struggles to cover complex
design areas. RISCV-DV attains 94.19% by leveraging CRV for
more diverse test sequences. TheHuzz achieves 88.68%, effective in
bug detection but lacking systematic verification. HyPFuzz reaches
94.78%, benefiting from formal-guided simulation but limited by
test sequence effectiveness. In contrast, our FGTSO can achieve
the highest coverage at 99.38%, aligning formal verification with
simulation to generate targeted test sequences.

To assess long-term performance, we extend the evaluation to 8
days. RISC-V Torture shows minimal improvement at 79.64%, con-
firming its limitations. RISCV-DV plateaus at 94.20%, restricted by
predefined constraints. TheHuzz grows slightly to 90.00%, hindered
by the absence of systematic guidance. HyPFuzz reaches 95.50%,
though its improvement slows over time. FGTSO continues to refine
coverage, achieving 99.91%, outperforming all methods in extended
verification.

To assess the effectiveness of FGTSO, we analyze its final verifi-
cation coverage results. FGTSO can achieve 100% coverage across
all critical verification metrics, including Line, Toggle, Condition,
and Branch Coverage, as shown in Fig. 12. Its success stems from a
formal-guided test generation approach that aligns formal verification
with simulation, refining test data iteratively while eliminating re-
dundancies. Additionally, FGTSO addresses BBOX verification chal-
lenges by incorporating abstraction models, ensuring comprehensive
validation of all design components. These results confirm FGTSO’s
ability to enhance coverage efficiency and guarantee verification
completeness.

VI. CONCLUSION

This paper presents a verification framework that successfully
integrates the precision of formal verification in covering simulation
coverage holes with the scalability of simulation. By addressing key
challenges in formal-guided simulation, including false alarms and
BBOX handling, FGTSO enhances verification completeness while
reducing redundancy and manual intervention, surpassing traditional
approaches. In terms of performance, FGTSO demonstrates superior
efficiency in both simulation coverage and verification effectiveness.
Compared to HyPFuzz, our framework achieves a 98% improvement
in the coverage of previously uncovered regions, highlighting its

ability to more effectively identify hard-to-reach areas in the de-
sign. Furthermore, within 10 days, FGTSO ensures comprehensive
validation by achieving 100% coverage across all critical verification
metrics, including Line, Toggle, Condition, and Branch Coverage.
This guarantees a thorough verification of the target processor design,
significantly reducing blind spots and potential vulnerabilities.
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