2025

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

OCTOBER 14-15, 2025

Vertical Reuse of Reference Models in UVM

Joachim Geishauser, NXP Deutschland GmbH, Munich, Germany (joachim.geishauser@nxp.com)

Ciro Ceissler, NXP Deutschland GmbH, Munich, Germany (ciro.ceissler@nxp.com)

Leo Tran, NXP Deutschland GmbH, Munich, Germany (leo.tran@nxp.com)

Abstract—These days the complexity of designs is growing faster than ever. This leads to the requirement of dividing and
conquering the verification task in order to cope with the complexity. Besides formal verification of the individual blocks, random
verification is often still required to cover scenarios that cannot be covered formally due to complexity. For the random verification
a reference model is required in order to check if the response of the design is in line with the specification. The Universal Verification
Methodology (UVM) provides concepts to build up a testbench hierarchical to reuse verification environments in a bottom-up divide
and conquer verification flow. The vertical reuse of reference models, however, is not really documented in UVM. This paper shows
an approach on how the vertical reuse of reference model can be achieved.
(Style: Abstract)

Keywords—SystemVerilog, UVM, Refernce Model, Vertical Reuse, TLM2 Generic Payload

l. INTRODUCTION

Random verification covers the verification space best when formal verification reaches its limit. In order to check the Design
Under Test (DUT), typically, a reference model in different forms is used. On the other side the designs become more and more
complex which leads to the fact that one Intellectual Property (IP) must be split into several sub-I1Ps to cope with the complexity.
This divide and conquer creates the need to somehow combine sub-1Ps reference models to ensure the front-to-end functionality.
This paper outlines how the different challenges have been addressed to allow a seamless verification from sub-IP to top level
reuse of reference model collaterals.

As a side effect of the testbench architecture the testbench can be used with SystemC functional model instead of SystemVerilog
models. This effect will be elaborated in the subsequent sections.

The rest of the paper is organized as follows. Section 1l provides some background on UMV TLM2, outlines important features
which are made use in our approach, and introduces a method to address multiple transport ports limitations. Section Il and
Section IV discuss the handling of datapath and configuration in reference models. Section V presents the scoreboard building
blocks and the use of reference models for verification.

II. UVM TLM2 BASICS

TLM-2.0is a part of IEEE 1666 which defines the SystemC Transaction-Level Modeling standard [1]. As a successor of TLM1,
it addresses three major limitations of the early version. First, it standardizes transaction class. TLM-2 introduces generic
payloads as the standardized transaction object that significantly improves interoperability between models from different
sources. In TLM-1, the lack of such a class meant each application had to define its own transaction type. Second, TLM-2
allows timing information to be passed as function arguments in both blocking and non-blocking transport interfaces, enabling
more accurate performance modeling. Third, TLM-2 allows passing transaction objects as non-const reference, which improves
modeling performance compared to the copy or const-reference semantics required in TLM1.

TLM-2.0 has been adopted in Universal Verification Methodology (UVM), bringing multiple benefits in terms of model
integration, interoperability, and simulation performance. Its adoption is largely driven by the need to integrate SystemC-based
models into UVM-based verification environments — a common scenario in SoC/IP design verification projects. Additionally,
TLM-2.0 improves simulation performance by enabling efficient communication and concurrency. The following outlines the
main features of UVM TLM 2.0 including interfaces, sockets, generic payload, and its extension. For deeper technical insight,
see [1].

Interfaces: UVM TLM-2.0 supports two transport interfaces: blocking and non-blocking, which associate to b_transport task
and nb_transport_* functions

mailto:joachim.geishauser@nxp.com
mailto:ciro.ceissler@nxp.com
mailto:leo.tran@nxp.com

2025

DESIGN AND VERIFICATION™

DV OIN

CONFERENCE AND EXHIBITION

ooromer 142 1 [task b_transport(T t, uvm_tlm_time delay);

2 [function uvm_tlm_sync_e nb_transport fw(T t, ref P p, input uvm_tlm_time delay);
3 [function uvm_tlm_sync_e nb_transport_bw(T t, ref P p, input uvm_tlm_time delay);

Listing 1. Task and functions of UVM TLM-2.0 blocking and non-blocking transports

In blocking transport, the task suspends its execution and only returns when the transaction is complete. It is opposite to non-
blocking transport in which the calling function always returns immediately and there is also an indication to the caller
whether or not the transaction is complete.

One key benefit of TLMZ2 is that transaction (t), phase (p), and time object (delay) can all be modified by the target and the
changes are visible to the initiator. This supports advanced test scenarios involving phases, latency tracking, and fine-grained
performance measurement. Due to its non-blocking nature, nb_transport provides many advantages over b_transport.
Instead of waiting for the transaction to be completed like b_transport, the caller can continue its own processing task while
the transaction progresses. nb_transport, therefore, allows for concurrent execution of multiple transactions - enabling high-
performance simulation and better scalability. In addition, it provides better control over timing with phases and bi-directinoal
transport — supporting an accurate modeling of complex system behavior. For these reasons, non-blocking transport is adopted
in our work for building vertically reusable reference models.

Sockets: UVM TLM-2.0 defines two types of sockets representing bidirectional connection between the initiator and the target
components: uvm_tlm _nb_initiator_socket and uvm_tlm_nb_target_socket. In typical non-blocking TLM-2.0 setup,
each connection endpoint includes one of each socket type. These sockets must be bound to the implementation of
nb_transport_bw() and nb_transport_fw(). Between endpoints, passthrough sockets may be inserted to support complex
topologies. Sockets are created and connected like UVM ports and exports, since they are derived from uvm_port_base#(IF).

Generic payload: the t1m_generic_payload class encapsulates transaction data and its attributes. It is designed to be flexible
and extensible, allowing users to define their own transaction types and customize the payload as needed. A generic payload
transaction has 10 attributes, with the most important being the command, address, data array, data length, and response status.

Extension: For protocols that require information beyond the standard payload fields, the extension mechanism can be used.
The extensions are especially useful for non-memory mapped buses or user-defined metadata. Even in simple use cases, it is
considered good practice to include extensions with payload [2]. The following shows a simple use of generic payload and
extensions.

1 |class rm_config extends uvm_tlm_extension #(rm_config);
2 rand bit settingl;
B rand bit [15:0] setting2;
4 “uvm_object_utils_begin(rm_config)
“uvm_field_int(settingl, UVM_DEFAULT)
: “uvm_field_int(setting2, UVM_DEFAULT)
6 “uvm_object_utils_end
7 function new(string name = "rm_config");
8 super.new(name);
9 endfunction : new
10 endclass : rm_config
// to set extension
11 .
uvm_tlm_generic_payload gp;
12 rm_config cfg = new("cfgl");
13 |gp.set_extension(cfgl);
14 |// to get extensions
15 |[$cast(cfgl, gp.get_extension(ref_configuration::ID));
16

Listing 2. Extension declaration and usages

In UVM TLM-2.0, a component is limited to having only one interface per direction. Since sockets are bound to
nb_transport_fw and nb_transport_bw along with the SystemVerilog limitation of single inheritance, this effectively
restricts each UVM component to a single target socket and a single initiator socket. To address this limitation, the following
mechanism is implemented using macros, enabling flexibility in handling multiple sockets within a component.

1 [define NXP_UVM_TLM_NB_TARGET_SOCKET_IMP(REF,SFX) \

2 |class nxp_uvm_tlm_nb_target_socket_ " "SFX #(type T=uvm_tlm_generic_payload, \
3 type P=uvm_tlm_phase_e) \

4 extends uvm_component; \

5 uvm_tlm_nb_target_socket #(nxp_uvm_tlm_nb_target_socket_ " SFX,T) \

2025

DESIGN AND VERIFICATION™

DV OIN

CONFERENCE AND EXHIBITION

ocToBER 1a-1 O m_nb_target_socket; \
7 local " "REF 1_parent; \
8 function new(string name, uvm_component parent); \
9 super.new (.name(name),.parent(parent)); \
10 $cast (1_parent, parent); \
11 m_nb_target_socket = new("m_nb_target_socket", this); \
12 endfunction : new \
13 function uvm_tlm_sync_e nb_transport_fw(T t, \
14 ref P p, \
12 input uvm_tlm_time delay); \

if (1_parent) return 1_parent.nb_transport_fw_" SFX(t, p, delay); \

w endfunction : nb_transport_fw \

12 virtual function uvm_tlm_sync_e nb_transport_bw(T t, ref P p, input uvm_tlm_time delay); \
1 return m_nb_target_socket.nb_transport_bw(t, p, delay); \

20 . T - N -

o endfunction : nb_transport_bw \

22 endclass : nxp_uvm_tlm_nb_target_socket_ " " SFX

53 | define NXP_UVM_TLM_NB_TARGET_SOCKET (REF,SFX)

Listing 3. Overcoming of the port limitation in UVM TLM-2.0 with predefined macro

For an example of using the macro in reference models, please refer to Listing 4, lines 17-24. The example shows how two
target sockets and two initiator sockets can be added to one class and how the two call back functions receive the generic
payload on these ports.

I1l. DATAPATH HANDLING

Any IP exposes several orthogonal functional aspects — register setting, clock- and reset management, power states, interrupt
handling, and the data path. The data path represents the flow of data coming in from one or more ingress ports, is optionally
transformed, and exits through one or more egress ports. Because it embodies the IP’s primary algorithmic function, it is usually
the performance-critical region and the part that is replicated throughout higher-level hierarchies (sub-system, SOC). A scalable
and reusable approach for data path handling is therefore essential for vertical reuse of reference models.

To ensure portability of the reference model across different abstraction levels, every data path transfer is represented using the
TLM-2.0 Generic Payload (GP). The core idea is to keep data movement through various design components and abstraction
levels as simple and uniform as possible. The GP’s core fields (command, address, data, and length) are flexible and sufficient
for tracking the flow of information across the system. As discussed earlier, TLM-2.0 GP offers key advantages in terms of
interoperability and simulation performance. For any functionality beyond these core fields, a dedicated extension bundle is
recommended. This bundle can carry side-band information such as source 1D, QoS, clock domain, parity or ECC codes, and
timing information. Keeping this metadata separate from the core payload allows a single, generic structure to support a wide
variety of protocols without requiring a dedicated extended object class for each data path. A common practice is to use adapters
to bridge protocol-specific data representations between components, allowing each block to communicate through the uniform
GP format.

Figure. 1 shows an example of an IP subsystem. IP1 receives and transforms data from different sources and different bus
protocols. The outputs of IP1 are then processed by IP2 and IP3 before writing into the memory. IP1 assembles two Sub IPs,
Sub-IP1 and Sub-I1P2, and optional Sub-IP3 depending on IP configuration. Sub-IP1 and Sub-IP3 share the same algorithmic
data processing function but are distinguished in communication logics bound to protocol specifications of external interface 1
and external interface 2. Considering data abstraction with general payload, a single reference model can be used for these Sub-
IPs.

Sub-IP2
Ext, Interface 2 — > SubtP3 — | > P3 |—>

A 4 P \ 4 N
Ext. Interface 1 ——>| Sub-IP1 |—| |
v MEM

Figure 1. Example of IP subsystem

2025

DESIGN AND VERIFICATION™

DV OIN

CONFERENCE AND EXHIBITION

ooroser 1o EIRRME 2 illustrates the data path view of IP1 reference model. The data path connectivity of reference models is established
through target and initiator sockets. Ingress ports and egress ports are realized with uvm_tlm_nb_target_socket and
uvm_tlm_nb_initiator_socket respectively.

IP1
11| i1 ol |ol
---1" Sub-IP1 --
i2| o1 | SubP2 o2 (o2
| i2
uvmft.’.mﬁnbﬁtargetﬁsocket == gbject _r'efer'ence i

Figure 2. Datapath view of IP1 reference model

By employing the macro introduced in Listing 3, the limitation of a single socket per input or output can be addressed. Each
socket instance, whether target or initiator, has its own corresponding nb_transport_fw and nb_transport_bw functions, as
exemplified in the Sub-1P2 class. Within higher-level IP blocks such as IP1, subcomponents like Sub-1P1 and Sub-1P2 can be
connected directly via their sockets by invoking the connect () function of m_nb_initiator_socket.

1 |class RM_SUBIP1 extends uvm_component;

2 “uvm_component_utils(RM_SUBIP1);

3 *NXP_UVM_TLM_NB_TARGET_SOCKET(RM_SUBIP1, i1)

4 nxp_uvm_tlm_nb_target_socket_il #(uvm_tlm_generic_payload) il;

5 *NXP_UVM_TLM_NB_INITIATOR_SOCKET(RM_SUBIP1, o1l)

6 nxp_uvm_tlm_nb_initiator_socket_ol #(uvm_tlm_generic_payload) o1l;

7

8 function uvm_tlm_sync_e nb_transport_fw_il (uvm_tlm_generic_payload payload, ref
uvm_t1lm_phase_e tlm_phase, input uvm_tlm_time tlm_delay);

9 // Data processing ...

10 void' (ol.nb_transport_fw (payload, tlm_phase, tlm_delay));

11 endfunction : nb_transport_fw_il
12 |endclass : RM_SUBIP1

13
14 |class RM_SUBIP2 extends uvm_component;

15 “uvm_component_utils(RM_SUBIP2);

16 *NXP_UVM_TLM NB_TARGET SOCKET(RM_SUBIP2, il)

17 nxp_uvm_tlm_nb_target_socket_il #(uvm_tlm_generic_payload) i1;

18 | “NXP_UVM_TLM_NB_TARGET_SOCKET(RM_SUBIP2, i2)

19 nxp_uvm_tlm_nb_target_socket_i2 #(uvm_tlm_generic_payload) i2;

20 | “NXP_UVM_TLM_NB_INITIATOR_SOCKET(RM_SUBIP2, o01)

21 nxp_uvm_tlm_nb_initiator_socket_ol #(uvm_tlm_generic_payload) o1l;
22 | “NXP_UVM_TLM_NB_INITIATOR SOCKET(RM_SUBIP2, 02)

23 nxp_uvm_tlm_nb_initiator_socket_o2 #(uvm_tlm_generic_payload) o02;
24 ce
25 l|endclass: RM_SUBIP2
26
27 |class RM_IP1 extends uvm_component;

28 “uvm_component_utils(RM_IP3);

29 | RM_SUBIP2 sipi;

30 | RM_SUBIP2 sip2;

31 function void connect_phase(uvm_phase phase);

32 sipl.0l.m_nb_initiator_socket.connect(sip2.il.m_nb_target_socket);
33 endfunction : connect_phase

34 |endclass: RM_IP2

Listing 4. Implementation of data path with TLM sockets and generic payload

Beside the data checking on the data path, the timing of the data that propagates through the system may have to be checked.
This depends on the specification of the IP. For this, the delay of the generic payload or an time stamp extension can be used
to control and measure the data propagated to the system. The use of the TLM2 delay would be the active modeling whereas

2025

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

ooroser 14 aHEotHMEStaMp extension would be a passive one. The details on this are not captured in this paper as it would exceed the

expected size of the paper.

The table below summarizes the objective of reference model reuse at different hierarchies and the benefit of the proposed
data path handling.
Table 1. The reuse objective and benefit of data path handling across hierarchy levels.

Hierarchy Level Re-use Objective Benefit

IP Golden functional prediction Fast modeling (SystemC/System Verilog); Enable
Scoreboard checking; Seamless integration into
UVM Environment when RTL is in place.

Subsystem Connect multiple IPs NoC/Bus Adapter convert GP; functional model +
Scoreboard reuse.
SOC Early firmware and Entire data path execution is available. RTL drop-
performance analysis in with adapter change. Individually Switching

between loosely timed and cycle-accurate model.

IV. CONFIGURATION

In addition to the data path, a design needs configuration for e.g., data setting, algorithmic functionality. This is typically done
through a configuration interface. The configuration interface can be implemented in different ways. One way is to add a bus
interface to a module to program register. The programmed register define the configuration of the module. Another approach
is to have signals at the interface of a module that defines the configuration. These interface ports are then driven from another
module in the design, e.g., by having a bus interface with registers capturing the configuration and providing the content via
an interface to another module. As this paper deals with reference models to verify the behave of the design, the configuration
information need to be populated on an abstract level to the reference model and on the other side in either driving a signal to
a module or writing to a register in the System Verilog module via a bus interface to the design under test RTL.

A. Handling on the Abstract Level

The abstract configuration interface is required as some IPs will not have the registers implemented in the IP itself but rather
have just ports that are fed by other IPs in the overall system. The configuration interface on the abstract level includes a UVM
TLM generic payload extension to incorporate all necessary configurations for the IP. The register model abstracts register
access Vvia a defined interface to each address map. The predictor component populates an GP object with the extension, using
information available through the updates on registers, and propagates them to the reference models via a TLM2 port. The
advantage of having a UVM TLM2 GP port using an extension to provide this information is that IPs that have the configuration
registers implemented in the IP itself will also have an TLM2 GP port that represents the register access interface of this IP.

B. Handling on the RTL Level

The RTL-level configuration interface is a sub-1P, where a standard interface is not available, and pin-level driving is necessary
to propagate the information. In contrast to the configuration interface on the abstract level, the configuration on the RTL level
is responsible for propagating configuration information to the RTL design.

For example, in a data path RTL design composed of multiple sub-IPs, configuration is performed via a standard interface
connected to a register map. This register map translates configuration data into individual signals for each sub-IP. The
configuration uses a consistent programming model - UVM Register Abstraction Layer — allowing to program the design
independently sub-IP hierarchy or combination, which may vary due to design complexities and development schedules.

Each sub-IP includes UVM components to receive a configuration transaction, an UVM TLM generic payload extension, and
drives accordingly to its interface. The UVM register model expects one address map for one interface, which translates the
information to all sub-1Ps. However, each sub-IP has a different interface for the same address map, and the UVM register
model adapter allows only one UVM sequencer connection. To overcome this situation, the main interface sequencer will be
extended to propagate every transaction received to each sub-IP's sequencer - listeners. Figure 3 below illustrates the
components and interconnections.

2025

DESIGN AND VERIFICATION™

DV OIN

CONFERENCE AND EXHIBITION

MUNICH, GERMANY

OCTOBER 14-15, 2025

ITestbench

main_interface agent | .

main_interface_env CmemmTTTTIITE

-17 | . _ [sub_ip_A_env ~..
mainfinter-facefsequencgr, T T Sl

sub_ip_B_env I -

sub_ip_C_env

O'E sub_ip-A_agent
listener CF

sub_ip_B_agent

sub_ip_C_agent |

¢ [sub_ip A sequencer] [sub_ip_B_sequencer] sub_ip_C_sequencer
[main_interface_dir‘ver‘] ¢ ¢

sub_ip C_driver

Figure 3. UVM Sequencer broadcasting a request to all listeners

[sub_ip_A driver] [sub_ip_B_driver]

The sequencer can either connect directly to a register model or a main interface sequencer with listener capabilities. In the
second option, all environments are built, and the main interface sequencer connects to sub-IP sequencer pointers during the
connection phase. The execution flow follows a daisy chain topology, where the main interface driver is executed first, and
subsequently the sub-IPs will follow the flow. The uvm_sequencer implementation stores the transaction received during a
call to send_request and during wait_for_item_done, sequentially executes the same transaction on all listeners. The code
snippet below demonstrates the daisy-chain sequencer, excluding response handling.

1 |class daisy_chain_sequencer extends uvm_sequencer#(uvm_tlm_gp);

2 uvm_sequencer listeners[];

3 protected uvm_sequence_item queue[$];

4 “uvm_component_utils(daisy_chain_sequencer)

5 function void send_request(uvm_sequence_base sequence_ptr,

6 uvm_sequence_item t, bit rerandomize = 0);
7 super.send_request(sequence_ptr, t, rerandomize);

8 // add item to the queue to be consumed by “wait_for_item_done”

9 queue.push_back(t);

1e endfunction : send_request

11

Lz task wait_for_item_done(uvm_sequence_base sequence_ptr, int transaction_id);
L) uvm_sequence_item t;

14 super.wait_for_item_done(sequence_ptr, transaction_id);

. // remove item from the queue and execute on all listeners

13 t = queue.pop_front();

18 foreach (listeners[i])

19 listeners[i].execute_item(t);

20 endtask : wait_for_item_done

21 endclass : daisy_chain_sequencer

Listing 5. Implementation of daisy chain-based sequencer

V. USING THE REFERENCE MODEL TO VERIFY THE DESIGN

Using a reference model to verify a design using random sequences is not new. The approach shown in this paper does make a
difference as it uses active reference models and does not require monitors on each and every interconnect of the design. The
method used is to do end-to-end checking only. The active model usage has the advantage that these models can be implemented
in a top-down design approach first and can be also implemented e.g., in the SystemC. Second, as these models are driven by
GP, they are independent of vendor specific implementations. Third, the generic interfaces allow the generation of score board
build blocks which makes the assembly of testbench fast due to a high level of code reuse.

A. Score Board Build Blocks

To maximize the reusability of reference models, a set of building blocks is introduced to facilitate connectivity and simplify
output check. The building blocks are categorized into two groups: check types and connect types as listed in Table 2 and Table
3 respectively.

2025

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

OCTOBER 14-15, 2025

Table 2. NXP UVM TLM Building Block Check Types

Name / Interface Description

nxp_uvm_tlm_gp_subscriber_target

TLM2 non-blocking
target —3 Checks GP received via the analysis port against the GP received from
the TLM2 target socket.

TLM Analysis
Port

nxp_mem_driver_tim2_gp_subscriber_target))]
Checks GP received via TLM2 target socket in the UVM check phase

against the data seen by the NXP memory driver API.

TLM2 non-blocking |

target —)»

NXP Memory
Driver API

Table 3. NXP UVM TLM Building Block Connect Types

Name/ Interface Description

nxp_uvm_tlm_gp_subscriber_initiator

TLM2 non-blocking
initiator

Forwards GP from analysis port to TLM2 initiator socket.

TLM Analysis
Port

nxp_uvm_tim2_b_target_to_nb_initiator

Connects TLM2 blocking interface to non-blocking interface.
TLM2 blocking

target —Jp

TLM2 non-blocking
initiator

nxp_uvm_tim2_nb_passthrough_fifo_target

Pass through a TLM2 non-blocking target socket to a non-blocking
initiator socket, while maintaining a reference of the transaction inside an
internal FIFO.

TLM2 non-blocking
initiator

TLM2 non-blocking

target —3»

API to access the FIFO

nxp_uvm_tlm2_nb_target_broadcast

TLM2 non-blocking
initiator

Broadcast a transaction received from a TLM2 non-blocking target

TLh2 non-blocking socket to multiple TLM2 non-blocking target sockets.

target—»

nxp_uvm_tlm2_nb_multi_targets_to_one_initiator

TLM2 non-blocking
target —»

TLM2 non-blocking
initiator

Aggregate multiple transactions received from TLM2 non-blocking target
sockets to one TLM2 non-blocking initiator socket.

B. Using the Reference Model in the Module Level
The starting point for a vertical reuse of a reference model is module level verification. Figure 4 shows the

module level

reference model, which is an abstract model of the IP. This means the IP does also have two data input ports and 2 output data

ports as well as a configuration port.

cl

— 0l

111 Sub-IP2 |42
i2
Figure 4. Sub-IP2 reference model with two data ingress ports (i1, i2), two data
egress ports (o1, o2) and a configuration port (c1)

The testbench is built up as described in [3] which divides the reusable from the nonreusable code. In this context, the reference
model is placed as a reusable component into the score board and is connected to the DUT using the build blocks described in

2025

DESIGN AND VERIFICATION™

DV

ON

CONFERENCE AND EXHIBITION

ICH, GE

ooroser 14 H1EREEVIOUS Section. The check is done by the checking blocks that compare the calculated responses from the reference model

with the results generated by the DUT. The score board itself is not a reusable component in this concept.

C. Reusing a Module Level Reference Model

This section will outline how reference models can be used to verify the design. The reference models we use in this paper are
active reference models. This means they provide an active response to a given input. This is different from a scoreboard, where
the given input is checked by the scoreboard checking function. The checking of the reference models in this paper is done by
generic checking blocks that are added to the outputs of the reference models. These checking blocks are on Table 2 with the
distinct types of checking being push and pull driven. This leverages the UVM phasing to ensure correct checking. The figure
below illustrates how to reuse reference models with building blocks with two different checking options.

=
Qo
b= Monitor
3> ¢ v
‘g) c1
o A7 o1 S e
5 —)D—)
T TP o2 45 c1
= —)# h—) g
12 IP3

NXP Memory
Driver API

Figure 4. Reusing Reference Models with Building Blocks

Figure 4 illustrates an interconnection of multiple module level reference models and additional elements on the testbench, e.g.,
a monitor from an external interface and register model predictor. The reference models have configuration propagated from a
register map, transactions from other models, and external interfaces. The output from the reference models that are not
propagated to other ones is written to a single output port. The outputs are compared against memory interface to write
transactions published, i.e., option 1 in Figure 4. The code snippet below illustrates a scoreboard example:

1 |class scoreboard extends uvm_scoreboard;

2 // port input

3 nxp_uvm_t1lm_gp_subscriber_initiator m_interface_1_input;

4 nxp_uvm_t1lm_gp_subscriber_initiator m_interface_2_input;

5 // configuration

6 reg_predictor m_reg_predictor;

7 // reference models

8 rm_ip_1 m_rm_ip_1;

9 rm_ip_2 m_rm_ip_2;

10 rm_ip_3 m_rm_ip_3;

11 // building blocks

12 nxp_uvm_t1lm2_nb_target_broadcast m_broadcast_config;

13 nxp_uvm_tlm2_nb_targets_to_one_initiator m_aggregate_targets;

14 // checking

15 nxp_uvm_tlm_gp_subscriber_target m_check_output;

16

17 virtual function void build_phase (uvm_phase phase);

18 e

19 m_broadcast_config.create_broadcast_ports(3);

20 m_aggregate_targets.create_target_ports(2);

21 endfunction : build_phase

22

23 virtual function void connect_phase (uvm_phase phase);

24 super.connect_phase (phase);

25 // interface inputs

26 m_interface_1_input.m_nb_initiator_socket.connect(m_rm_ip 1.m_port_in.m_nb_target_socket);
27 m_interface_2_input.m_nb_initiator_socket.connect(m_rm_ip 1.m_port_in.m_nb_target_socket);
28 // configuration connections

29 m_reg_predictor.config_out.m_nb_initiator_socket.connect(m_broadcast_config.socket_in);
30 m_broadcast_config.socket_out[@].connect(m_rm_ip 1.config in.m_nb_target_socket);

2025

DESIGN AND VERIFICATION™

DV

ON

CONFERENCE AND EXHIBITION

ooroser 141 31 m_broadcast_config.socket_out[1].connect(m_rm_ip_2.config_in.m_nb_target_socket);
32 m_broadcast_config.socket_out[2].connect(m_rm_ip_3.config_in.m_nb_target_socket);
33 // reference models connections
34 m_rm_ip 2.m_port_out[@].m_nb_initiator_socket.
35 connect(m_rm_ip_2.m_port_in.m_nb_target_socket);
36 m_rm_ip_2.m_port_out[1].m_nb_initiator_socket.
37 connect(m_rm_ip_3.m_port_in.m_nb_target_socket);
38 // checking connections
39 m_rm_ip_2.m_port_out.m_nb_initiator_socket.connect(m_aggregate_targets.socket_in[@]);
40 m_rm_ip_3.m_port_out.m_nb_initiator_socket.connect(m_aggregate_targets.socket_in[1]);
41 m_aggregate_targets.socket_out.connect(m_check_output.m_nb_target_socket);
42 endfunction : connect_phase
43 |endclass : scoreboard

Listing 5. UVM scoreboard

The IPs’ configuration is managed by a register model predictor, knows a register model mirror on observed bus transaction.
It receives registers configuration as a subscriber component and transfer via a TLM2 non-blocking initiator port. However,
the port allows one-to-one connection and nxp_uvm_tlm2_nb_target_broadcast broadcast configuration transactions to all
IPs. During the build phase, the broadcast component, called m_broadcast_config, is built with a pre-defined number of
broadcast ports, line 19-20 Listing 5. Then, in the connect phase, the register predictor is connected directly to the broadcast
component and outputs to their respective IPs, line 26-41 Listing 5.

The m_interface_1_input and m_interface_2_input represent two interfaces where they receive a GP transaction from
their monitors. The nxp_uvm_tlm_gp_subscriber_initiator translates a transaction received to a new transaction-level
interface, i.e., TLM2, via a non-blocking socket initiator. Both interfaces, after translation, connect to IP 1. The intra-connection
of reference models is mapped directly because both input and output interfaces follow a TLM2 non-blocking implementation.
Finally, IPs outputs are combined with nxp_uvm_t1lm2_nb_targets_to_one_initiator to generate a single TLM2 non-
blocking output port that is connected to a subscriber of type nxp_uvm_t1lm_gp_ subscriber_target. The subscriber receives
a GP transaction from reference models and compares against a transaction received from a monitor attached to the output
interface of RTL.

Concerning option 2 in Figure 4, the checking is done by a building block with direct connection to the memory via NXP
memory driver API [3]. Instead of receiving a transaction from the monitor and checking during the UVM run phase, this
moves to the UVM check phase. The nxp_mem_driver_tlm2_gp subscriber_target receives a transaction from an initiator
and compares against the memory. The code snippet below shows the necessary modifications.

1 |// checking

2 |nxp_mem_driver_api m_mem_driver_api;

3 |nxp_mem_driver_tlm2_gp_subscriber_target m_mem_check;

4

5 |virtual function void build_phase(uvm_phase phase);

6 ce

7 m_mem_check=nxp_mem_driver_tlm2_gp_subscriber_target::type_id::create("m_mem_check", this);
8 m_mem_check.set_mem_driver_api(m_mem_driver_api);

9 |endfunction : build_phase

10 |virtual function void connect_phase(uvm_phase phase);

11 ce

12 m_aggregate_targets.socket_out.connect(m_mem_check.m_nb_target_socket);
13 |endfunction : connect_phase

Listing 6. Usage of NXP memory driver API for checker

Furthermore, one can make use of the nxp_uvm_tlm2_nb_passthrough_fifo_target (see Table 3) to eavesdrop on
communication between reference models. This is especially useful in the case that an intermediate check in addition to an end-
to-end check is required. The transaction captured on the FIFO with similar behavior to the UVM analysis FIFO may be used
to improve observability with additional checkers or information for debugging. Listing 7 below illustrates how to modify the
scoreboard to capture the transaction and use the building block API to manage the data.

1 |nxp_uvm_tlm2_nb_passthrough_fifo_target m_passthrough_fifo_target;
2 |virtual function void connect_phase (uvm_phase phase);
3

2025

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

OCTOBER 14-1

4 // reference models connection

5 m_rm_ip_2.m_port_out[@].m_nb_initiator_socket.connect(m_passthrough_fifo_target.socket_in);
6 m_passthrough_fifo_target.socket_out.connect(m_rm_ip_2.m_port_in.m_nb_target_socket);
7

8

9

endfunction : connect_phase

19 |virtual task main_phase(uvm_phase phase);

11 e
12 forever begin

13 m_passthrough_fifo_target.get(payload);
14 R

15 end

16 |endfunction : main_phase

Listing 7. UVM scoreboard

VI. CONCLUSION

The concept presented in this paper differs from the traditional UVM concept which reuses all code in the next level up with
by turning off active components of the lower level. The proposed approach divides the code into reusable and non-reusable
code as part of the testbench architecture and therefore saves a lot of code compilation as well as execution that will not be
activated (numbers to be added later).

The other concept shown in this paper is the use of the GP with extensions instead of interface specific objects that allow the
creation of standard building blocks as well as, although not shown in this paper, an easy way to use SystemC components.
The use of SystemC components hereby fit to a top-down approach where the function of the system is first defined as SystemC
functional blocks and then handed off to the implementation stage as executable specifications.

The GP also abstracts the interface type away from the reference model, which supports the use of functional code for IP
implementation on different physical interfaces. The definition of standard extension, e.g. from ARM would further unify this
concept. As of now, these user extensions carry the same content but are based on different variables and class names for
different projects. Last but not least, the use of the GP extension to carry configuration data has created a high flexibility for
the actual implementation of the configuration data.

VIlI. ACKNOWLEDGMENT

This paper is part of the IPCEI ME/CT and is funded by the European Union Next Generation EU, the German Federal Ministry
for Economic Affairs and Energy, the Bavarian Ministry of Economic Affairs, Regional Development and Energy, the Free
State of Saxony with the help of tax revenue based on the budget approved by the Saxon State parliament and the Free and
Hanseatic City of Hamburg.

VIIl. REFERENCES

[1] “IEEE Standard for Standard SystemC Language Reference Manual,” IEEE Std 1666-2024

[2] Delbergue, Guillaume, Mark Burton, Bertrand Le Gal, and Christophe Jego. "Analysis of TLM-2.0 and it’s Applicability
to Non Memory Mapped Interfaces.", the Design & Verification Conference & Exhibition United State. (DVCon 2016).

[3] Geishauser et. al. , “uvm_mem — challenges of using UVM infrastructure in a hierarchical verification”. the Design &
Verification Conference & Exhibition Europe (DVCon 2022)

10

