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Abstract—These days the complexity of designs is growing faster than ever. This leads to the requirement of dividing and 

conquering the verification task in order to cope with the complexity. Besides formal verification of the individual blocks, random 

verification is often still required to cover scenarios that cannot be covered formally due to complexity. For the random verification 

a reference model is required in order to check if the response of the design is in line with the specification.  The Universal Verification 

Methodology  (UVM) provides concepts to build up a testbench hierarchical to reuse verification environments in a bottom-up divide 

and conquer verification flow. The vertical reuse of reference models, however, is not really documented in UVM. This paper shows 

an approach on how the vertical reuse of reference model can be achieved.  
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I. INTRODUCTION 

Random verification covers the verification space best when formal verification reaches its limit. In order to check the Design 

Under Test (DUT), typically, a reference model in different forms is used. On the other side the designs become more and more 

complex which leads to the fact that one Intellectual Property (IP) must be split into several sub-IPs to cope with the complexity. 

This divide and conquer creates the need to somehow combine sub-IPs reference models to ensure the front-to-end functionality. 

This paper outlines how the different challenges have been addressed to allow a seamless verification from sub-IP to top level 

reuse of reference model collaterals.  

As a side effect of the testbench architecture the testbench can be used with SystemC functional model instead of SystemVerilog 

models.  This effect will be elaborated in the subsequent sections. 

The rest of the paper is organized as follows. Section II provides some background on UMV TLM2, outlines important features 

which are made use in our approach, and introduces a method to address multiple transport ports limitations. Section III and 

Section IV discuss the handling of datapath and configuration in reference models. Section V presents the scoreboard building 

blocks and the use of reference models for verification.  

II. UVM TLM2 BASICS 

TLM-2.0 is a part of IEEE 1666 which defines the SystemC Transaction-Level Modeling standard [1]. As a successor of TLM1, 

it addresses three major limitations of the early version. First, it standardizes transaction class. TLM-2 introduces generic 

payloads as the standardized transaction object that significantly improves interoperability between models from different 

sources. In TLM-1, the lack of such a class meant each application had to define its own transaction type. Second, TLM-2 

allows timing information to be passed as function arguments in both blocking and non-blocking transport interfaces, enabling 

more accurate performance modeling. Third, TLM-2 allows passing transaction objects as non-const reference, which improves 

modeling performance compared to the copy or const-reference semantics required in TLM1.  

 

TLM-2.0 has been adopted in Universal Verification Methodology (UVM), bringing multiple benefits in terms of model 

integration, interoperability, and simulation performance. Its adoption is largely driven by the need to integrate SystemC-based 

models into UVM-based verification environments – a common scenario in SoC/IP design verification projects. Additionally, 

TLM-2.0 improves simulation performance by enabling efficient communication and concurrency. The following outlines the 

main features of UVM TLM 2.0 including interfaces, sockets, generic payload, and its extension. For deeper technical insight, 

see [1]. 

Interfaces: UVM TLM-2.0 supports two transport interfaces: blocking and non-blocking, which associate to b_transport task 

and nb_transport_* functions 
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task b_transport(T t, uvm_tlm_time delay); 
function uvm_tlm_sync_e nb_transport_fw(T t, ref P p, input uvm_tlm_time delay); 
function uvm_tlm_sync_e nb_transport_bw(T t, ref P p, input uvm_tlm_time delay); 

Listing 1. Task and functions of UVM TLM-2.0 blocking and non-blocking transports 

In blocking transport, the task suspends its execution and only returns when the transaction is complete. It is opposite to non-

blocking transport in which the calling function always returns immediately and there is also an indication to the caller 

whether or not the transaction is complete. 

One key benefit of TLM2 is that transaction (t), phase (p), and time object (delay) can all be modified by the target and the 

changes are visible to the initiator. This supports advanced test scenarios involving phases, latency tracking, and fine-grained 

performance measurement. Due to its non-blocking nature, nb_transport provides many advantages over b_transport. 

Instead of waiting for the transaction to be completed like b_transport, the caller can continue its own processing task while 

the transaction progresses. nb_transport, therefore, allows for concurrent execution of multiple transactions - enabling high-

performance simulation and better scalability. In addition, it provides better control over timing with phases and bi-directinoal 

transport – supporting an accurate modeling of complex system behavior. For these reasons, non-blocking transport is adopted 

in our work for building vertically reusable reference models. 

Sockets: UVM TLM-2.0 defines two types of sockets representing bidirectional connection between the initiator and the target 

components: uvm_tlm_nb_initiator_socket and uvm_tlm_nb_target_socket. In typical non-blocking TLM-2.0 setup, 

each connection endpoint includes one of each socket type. These sockets must be bound to the implementation of 

nb_transport_bw() and nb_transport_fw(). Between endpoints, passthrough sockets may be inserted to support complex 

topologies.  Sockets are created and connected like UVM ports and exports, since they are derived from uvm_port_base#(IF). 

Generic payload: the tlm_generic_payload class encapsulates transaction data and its attributes. It is designed to be flexible 

and extensible, allowing users to define their own transaction types and customize the payload as needed. A generic payload 

transaction has 10 attributes, with the most important being the command, address, data array, data length, and response status. 

Extension: For protocols that require information beyond the standard payload fields, the extension mechanism can be used. 

The extensions are especially useful for non-memory mapped buses or user-defined metadata. Even in simple use cases, it is 

considered good practice to include extensions with payload [2]. The following shows a simple use of generic payload and 

extensions. 
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class rm_config extends uvm_tlm_extension #(rm_config); 
  rand bit setting1; 
  rand bit [15:0] setting2;  
  `uvm_object_utils_begin(rm_config) 
    `uvm_field_int(setting1, UVM_DEFAULT) 
    `uvm_field_int(setting2, UVM_DEFAULT) 
  `uvm_object_utils_end 
  function new(string name = "rm_config"); 
    super.new(name); 
  endfunction : new 
endclass : rm_config 
// to set extension 
uvm_tlm_generic_payload gp;  
rm_config cfg = new("cfg1");  
gp.set_extension(cfg1);  
// to get extensions 
$cast(cfg1, gp.get_extension(ref_configuration::ID)); 

Listing 2. Extension declaration and usages 

In UVM TLM-2.0, a component is limited to having only one interface per direction. Since sockets are bound to  

nb_transport_fw and nb_transport_bw along with the SystemVerilog limitation of single inheritance, this effectively 

restricts each UVM component to a single target socket and a single initiator socket. To address this limitation, the following 

mechanism is implemented using macros, enabling flexibility in handling multiple sockets within a component. 
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`define NXP_UVM_TLM_NB_TARGET_SOCKET_IMP(REF,SFX) \   

class nxp_uvm_tlm_nb_target_socket_``SFX #(type T=uvm_tlm_generic_payload, \   

                                           type P=uvm_tlm_phase_e) \   

  extends uvm_component; \   

  uvm_tlm_nb_target_socket #(nxp_uvm_tlm_nb_target_socket_``SFX,T) \   
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                             m_nb_target_socket; \   

  local ``REF l_parent; \   

  function new(string name, uvm_component parent); \   

    super.new (.name(name),.parent(parent)); \   

    $cast (l_parent, parent); \   

    m_nb_target_socket = new("m_nb_target_socket", this); \   

  endfunction : new \   

  function uvm_tlm_sync_e nb_transport_fw(T t, \   

                                          ref P p, \   

                                          input uvm_tlm_time delay); \   

    if (l_parent) return l_parent.nb_transport_fw_``SFX(t, p, delay); \   

  endfunction : nb_transport_fw \   

  virtual function uvm_tlm_sync_e nb_transport_bw(T t, ref P p, input uvm_tlm_time delay); \   

    return m_nb_target_socket.nb_transport_bw(t, p, delay); \   

  endfunction : nb_transport_bw \   

endclass : nxp_uvm_tlm_nb_target_socket_``SFX   

`define NXP_UVM_TLM_NB_TARGET_SOCKET(REF,SFX) 

Listing 3. Overcoming of the port limitation in UVM TLM-2.0 with predefined macro 

For an example of using the macro in reference models, please refer to Listing 4, lines 17-24. The example shows how two 

target sockets and two initiator sockets can be added to one class and how the two call back functions receive the generic 

payload on these ports. 

III. DATAPATH HANDLING 

Any IP exposes several orthogonal functional aspects – register setting, clock- and reset management, power states, interrupt 

handling, and the data path. The data path represents the flow of data coming in from one or more ingress ports, is optionally 

transformed, and exits through one or more egress ports. Because it embodies the IP’s primary algorithmic function, it is usually 

the performance-critical region and the part that is replicated throughout higher-level hierarchies (sub-system, SOC). A scalable 

and reusable approach for data path handling is therefore essential for vertical reuse of reference models. 

To ensure portability of the reference model across different abstraction levels, every data path transfer is represented using the 

TLM-2.0 Generic Payload (GP). The core idea is to keep data movement through various design components and abstraction 

levels as simple and uniform as possible. The GP’s core fields (command, address, data, and length) are flexible and sufficient 

for tracking the flow of information across the system. As discussed earlier, TLM-2.0 GP offers key advantages in terms of 

interoperability and simulation performance. For any functionality beyond these core fields, a dedicated extension bundle is 

recommended. This bundle can carry side-band information such as source ID, QoS, clock domain, parity or ECC codes, and 

timing information. Keeping this metadata separate from the core payload allows a single, generic structure to support a wide 

variety of protocols without requiring a dedicated extended object class for each data path. A common practice is to use adapters 

to bridge protocol-specific data representations between components, allowing each block to communicate through the uniform 

GP format. 

Figure. 1 shows an example of an IP subsystem. IP1 receives and transforms data from different sources and different bus 

protocols. The outputs of IP1 are then processed by IP2 and IP3 before writing into the memory. IP1 assembles two Sub IPs, 

Sub-IP1 and Sub-IP2, and optional Sub-IP3 depending on IP configuration. Sub-IP1 and Sub-IP3 share the same algorithmic 

data processing function but are distinguished in communication logics bound to protocol specifications of external interface 1 

and external interface 2. Considering data abstraction with general payload, a single reference model can be used for these Sub-

IPs. 

 

  
Figure 1. Example of IP subsystem 



 

4 

 

Figure 2 illustrates the data path view of IP1 reference model. The data path connectivity of reference models is established 

through target and initiator sockets. Ingress ports and egress ports are realized with   uvm_tlm_nb_target_socket and 

uvm_tlm_nb_initiator_socket respectively.  

  
Figure 2. Datapath view of IP1 reference model 

By employing the macro introduced in Listing 3, the limitation of a single socket per input or output can be addressed. Each 

socket instance, whether target or initiator, has its own corresponding nb_transport_fw and nb_transport_bw functions, as 

exemplified in the Sub-IP2 class. Within higher-level IP blocks such as IP1, subcomponents like Sub-IP1 and Sub-IP2 can be 

connected directly via their sockets by invoking the connect() function of m_nb_initiator_socket. 
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class RM_SUBIP1 extends uvm_component;  

  `uvm_component_utils(RM_SUBIP1);  

  `NXP_UVM_TLM_NB_TARGET_SOCKET(RM_SUBIP1, i1)  

  nxp_uvm_tlm_nb_target_socket_i1 #(uvm_tlm_generic_payload) i1;  

  `NXP_UVM_TLM_NB_INITIATOR_SOCKET(RM_SUBIP1, o1)  

  nxp_uvm_tlm_nb_initiator_socket_o1 #(uvm_tlm_generic_payload) o1;  

  

  function uvm_tlm_sync_e nb_transport_fw_i1 ( uvm_tlm_generic_payload payload, ref  

uvm_tlm_phase_e tlm_phase, input uvm_tlm_time tlm_delay);  

    // Data processing ...  

    void'(o1.nb_transport_fw (payload, tlm_phase, tlm_delay));  

  endfunction : nb_transport_fw_i1  

endclass : RM_SUBIP1  

   

class RM_SUBIP2 extends uvm_component;  

  `uvm_component_utils(RM_SUBIP2);  

    `NXP_UVM_TLM_NB_TARGET_SOCKET(RM_SUBIP2, i1)  

  nxp_uvm_tlm_nb_target_socket_i1 #(uvm_tlm_generic_payload) i1;  

  `NXP_UVM_TLM_NB_TARGET_SOCKET(RM_SUBIP2, i2)  

  nxp_uvm_tlm_nb_target_socket_i2 #(uvm_tlm_generic_payload) i2;  

  `NXP_UVM_TLM_NB_INITIATOR_SOCKET(RM_SUBIP2, o1)  

  nxp_uvm_tlm_nb_initiator_socket_o1 #(uvm_tlm_generic_payload) o1;  

  `NXP_UVM_TLM_NB_INITIATOR_SOCKET(RM_SUBIP2, o2)  

  nxp_uvm_tlm_nb_initiator_socket_o2 #(uvm_tlm_generic_payload) o2;  

  ... 

endclass: RM_SUBIP2  

   

class RM_IP1 extends uvm_component;  

  `uvm_component_utils(RM_IP3);  

  RM_SUBIP2 sip1;  

  RM_SUBIP2 sip2;   

  function void connect_phase(uvm_phase phase);  

    sip1.o1.m_nb_initiator_socket.connect(sip2.i1.m_nb_target_socket);  

  endfunction : connect_phase  

endclass: RM_IP2 

Listing 4. Implementation of data path with TLM sockets and generic payload 

Beside the data checking on the data path, the timing of the data that propagates through the system may have to be checked. 

This depends on the specification of the IP.  For this, the delay of the generic payload or an time stamp extension can be used 

to control and measure the data propagated to the system. The use of the TLM2 delay would be the active modeling whereas 
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the timestamp extension would be a passive one. The details on this are not captured in this paper as it would exceed the 

expected size of the paper.   

The table below summarizes the objective of reference model reuse at different hierarchies and the benefit of the proposed 

data path handling. 

Table 1. The reuse objective and benefit of data path handling across hierarchy levels. 

Hierarchy Level Re-use Objective Benefit 

IP Golden functional prediction Fast modeling (SystemC/System Verilog); Enable 

Scoreboard checking; Seamless integration into 

UVM Environment when RTL is in place. 

Subsystem Connect multiple IPs NoC/Bus Adapter convert GP; functional model + 

Scoreboard reuse. 

SOC Early firmware and 

performance analysis 

Entire data path execution is available. RTL drop-

in with adapter change. Individually Switching 

between loosely timed and cycle-accurate model. 

IV. CONFIGURATION 

In addition to the data path, a design needs configuration for e.g., data setting, algorithmic functionality. This is typically done 

through a configuration interface. The configuration interface can be implemented in different ways. One way is to add a bus 

interface to a module to program register. The programmed register define the configuration of the module. Another approach 

is to have signals at the interface of a module that defines the configuration. These interface ports are then driven from another 

module in the design, e.g., by having a bus interface with registers capturing the configuration and providing the content via 

an interface to another module. As this paper deals with reference models to verify the behave of the design, the configuration 

information need to be populated on an abstract level to the reference model and on the other side in either driving a signal to 

a module or writing to a register in the System Verilog module via a bus interface to the design under test RTL. 

A. Handling on the Abstract Level 

The abstract configuration interface is required as some IPs will not have the registers implemented in the IP itself but rather 

have just ports that are fed by other IPs in the overall system. The configuration interface on the abstract level includes a UVM 

TLM generic payload extension to incorporate all necessary configurations for the IP. The register model abstracts register 

access via a defined interface to each address map. The predictor component populates an GP object with the extension, using 

information available through the updates on registers, and propagates them to the reference models via a TLM2 port. The 

advantage of having a UVM TLM2 GP port using an extension to provide this information is that IPs that have the configuration 

registers implemented in the IP itself will also have an TLM2 GP port that represents the register access interface of this IP.  

B. Handling on the RTL Level 

The RTL-level configuration interface is a sub-IP, where a standard interface is not available, and pin-level driving is necessary 

to propagate the information. In contrast to the configuration interface on the abstract level, the configuration on the RTL level 

is responsible for propagating configuration information to the RTL design. 

For example, in a data path RTL design composed of multiple sub-IPs, configuration is performed via a standard interface 

connected to a register map. This register map translates configuration data into individual signals for each sub-IP. The 

configuration uses a consistent programming model - UVM Register Abstraction Layer – allowing to program the design 

independently sub-IP hierarchy or combination, which may vary due to design complexities and development schedules.  

Each sub-IP includes UVM components to receive a configuration transaction, an UVM TLM generic payload extension, and 

drives accordingly to its interface. The UVM register model expects one address map for one interface, which translates the 

information to all sub-IPs. However, each sub-IP has a different interface for the same address map, and the UVM register 

model adapter allows only one UVM sequencer connection. To overcome this situation, the main interface sequencer will be 

extended to propagate every transaction received to each sub-IP's sequencer - listeners. Figure 3 below illustrates the 

components and interconnections. 
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Figure 3. UVM Sequencer broadcasting a request to all listeners 

The sequencer can either connect directly to a register model or a main interface sequencer with listener capabilities. In the 

second option, all environments are built, and the main interface sequencer connects to sub-IP sequencer pointers during the 

connection phase. The execution flow follows a daisy chain topology, where the main interface driver is executed first, and 

subsequently the sub-IPs will follow the flow. The uvm_sequencer implementation stores the transaction received during a 

call to send_request and during wait_for_item_done, sequentially executes the same transaction on all listeners. The code 

snippet below demonstrates the daisy-chain sequencer, excluding response handling. 
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class daisy_chain_sequencer extends uvm_sequencer#(uvm_tlm_gp);  

  uvm_sequencer listeners[];  

  protected uvm_sequence_item queue[$];  

  `uvm_component_utils(daisy_chain_sequencer)  

  function void send_request(uvm_sequence_base sequence_ptr,  

                             uvm_sequence_item t, bit rerandomize = 0);  

      super.send_request(sequence_ptr, t, rerandomize);  

      // add item to the queue to be consumed by `wait_for_item_done`  

      queue.push_back(t);  

  endfunction : send_request  

 

  task wait_for_item_done(uvm_sequence_base sequence_ptr, int transaction_id);  

      uvm_sequence_item t;  

      super.wait_for_item_done(sequence_ptr, transaction_id);  

      // remove item from the queue and execute on all listeners  

      t = queue.pop_front();  

      foreach (listeners[i])  

          listeners[i].execute_item(t);  

  endtask : wait_for_item_done  

endclass : daisy_chain_sequencer 

Listing 5. Implementation of daisy chain-based sequencer 

V. USING THE REFERENCE MODEL TO VERIFY THE DESIGN 

Using a reference model to verify a design using random sequences is not new. The approach shown in this paper does make a 

difference as it uses active reference models and does not require monitors on each and every interconnect of the design. The 

method used is to do end-to-end checking only. The active model usage has the advantage that these models can be implemented 

in a top-down design approach first and can be also implemented e.g., in the SystemC. Second, as these models are driven by 

GP, they are independent of vendor specific implementations. Third, the generic interfaces allow the generation of score board 

build blocks which makes the assembly of testbench fast due to a high level of code reuse. 

A. Score Board Build Blocks 

To maximize the reusability of reference models, a set of building blocks is introduced to facilitate connectivity and simplify 

output check. The building blocks are categorized into two groups: check types and connect types as listed in Table 2 and Table 

3 respectively.  
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Table 2. NXP UVM TLM Building Block Check Types 
Name / Interface Description 

nxp_uvm_tlm_gp_subscriber_target 

 

Checks GP received via the analysis port against the GP received from 

the TLM2 target socket. 

nxp_mem_driver_tlm2_gp_subscriber_target 

 

Checks GP received via TLM2 target socket in the UVM check phase 

against the data seen by the NXP memory driver API. 
 

 

Table 3. NXP UVM TLM Building Block Connect Types 
Name/ Interface Description 

nxp_uvm_tlm_gp_subscriber_initiator 

 

Forwards GP from analysis port to TLM2 initiator socket. 

nxp_uvm_tlm2_b_target_to_nb_initiator 

 

Connects TLM2 blocking interface to non-blocking interface. 
 

nxp_uvm_tlm2_nb_passthrough_fifo_target 

 

Pass through a TLM2 non-blocking target socket to a non-blocking 
initiator socket, while maintaining a reference of the transaction inside an 

internal FIFO. 

nxp_uvm_tlm2_nb_target_broadcast 

 Broadcast a transaction received from a TLM2 non-blocking target 

socket to multiple TLM2 non-blocking target sockets. 

nxp_uvm_tlm2_nb_multi_targets_to_one_initiator 

 

Aggregate multiple transactions received from TLM2 non-blocking target 

sockets to one TLM2 non-blocking initiator socket. 

 

B. Using the Reference Model in the Module Level 

The starting point for a vertical reuse of a reference model is module level verification. Figure 4 shows the module level 

reference model, which is an abstract model of the IP. This means the IP does also have two data input ports and 2 output data 

ports as well as a configuration port. 

 
Figure 4. Sub-IP2 reference model with two data ingress ports (i1, i2), two data 

egress ports (o1, o2) and a configuration port (c1) 

The testbench is built up as described in [3] which divides the reusable from the nonreusable code. In this context, the reference 

model is placed as a reusable component into the score board and is connected to the DUT using the build blocks described in 
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the previous section. The check is done by the checking blocks that compare the calculated responses from the reference model 

with the results generated by the DUT. The score board itself is not a reusable component in this concept.  

C. Reusing a Module Level Reference Model  

This section will outline how reference models can be used to verify the design. The reference models we use in this paper are 

active reference models. This means they provide an active response to a given input. This is different from a scoreboard, where 

the given input is checked by the scoreboard checking function. The checking of the reference models in this paper is done by 

generic checking blocks that are added to the outputs of the reference models. These checking blocks are on Table 2 with the 

distinct types of checking being push and pull driven. This leverages the UVM phasing to ensure correct checking. The figure 

below illustrates how to reuse reference models with building blocks with two different checking options. 

 

Figure 4. Reusing Reference Models with Building Blocks 

Figure 4 illustrates an interconnection of multiple module level reference models and additional elements on the testbench, e.g., 

a monitor from an external interface and register model predictor. The reference models have configuration propagated from a 

register map, transactions from other models, and external interfaces. The output from the reference models that are not 

propagated to other ones is written to a single output port. The outputs are compared against memory interface to write 

transactions published, i.e., option 1 in Figure 4. The code snippet below illustrates a scoreboard example: 
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class scoreboard extends uvm_scoreboard;  

  // port input  

  nxp_uvm_tlm_gp_subscriber_initiator m_interface_1_input;  

  nxp_uvm_tlm_gp_subscriber_initiator m_interface_2_input;  

  // configuration  

  reg_predictor m_reg_predictor;  

  // reference models  

  rm_ip_1 m_rm_ip_1;  

  rm_ip_2 m_rm_ip_2;  

  rm_ip_3 m_rm_ip_3;  

  // building blocks  

  nxp_uvm_tlm2_nb_target_broadcast m_broadcast_config;  

  nxp_uvm_tlm2_nb_targets_to_one_initiator m_aggregate_targets;  

  // checking  

  nxp_uvm_tlm_gp_subscriber_target m_check_output;  

  ...  

  virtual function void build_phase (uvm_phase phase);  

    ...  

    m_broadcast_config.create_broadcast_ports(3);  

    m_aggregate_targets.create_target_ports(2);  

  endfunction : build_phase  

 

  virtual function void connect_phase (uvm_phase phase);  

    super.connect_phase (phase);  

    // interface inputs  

    m_interface_1_input.m_nb_initiator_socket.connect(m_rm_ip_1.m_port_in.m_nb_target_socket);  

    m_interface_2_input.m_nb_initiator_socket.connect(m_rm_ip_1.m_port_in.m_nb_target_socket);  

    // configuration connections  

    m_reg_predictor.config_out.m_nb_initiator_socket.connect(m_broadcast_config.socket_in);  

    m_broadcast_config.socket_out[0].connect(m_rm_ip_1.config_in.m_nb_target_socket);  
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    m_broadcast_config.socket_out[1].connect(m_rm_ip_2.config_in.m_nb_target_socket);  

    m_broadcast_config.socket_out[2].connect(m_rm_ip_3.config_in.m_nb_target_socket);  

    // reference models connections  

    m_rm_ip_2.m_port_out[0].m_nb_initiator_socket. 

            connect(m_rm_ip_2.m_port_in.m_nb_target_socket);  

    m_rm_ip_2.m_port_out[1].m_nb_initiator_socket. 

            connect(m_rm_ip_3.m_port_in.m_nb_target_socket);  

    // checking connections  

    m_rm_ip_2.m_port_out.m_nb_initiator_socket.connect(m_aggregate_targets.socket_in[0]);  

    m_rm_ip_3.m_port_out.m_nb_initiator_socket.connect(m_aggregate_targets.socket_in[1]);  

    m_aggregate_targets.socket_out.connect(m_check_output.m_nb_target_socket);  

  endfunction : connect_phase  

endclass : scoreboard 

Listing 5. UVM scoreboard 

The IPs’ configuration is managed by a register model predictor, knows a register model mirror on observed bus transaction. 

It receives registers configuration as a subscriber component and transfer via a TLM2 non-blocking initiator port. However, 

the port allows one-to-one connection and nxp_uvm_tlm2_nb_target_broadcast broadcast configuration transactions to all 

IPs. During the build phase, the broadcast component, called m_broadcast_config, is built with a pre-defined number of 

broadcast ports, line 19-20 Listing 5. Then, in the connect phase, the register predictor is connected directly to the broadcast 

component and outputs to their respective IPs, line 26-41 Listing 5.  

The m_interface_1_input and m_interface_2_input represent two interfaces where they receive a GP transaction from 

their monitors. The nxp_uvm_tlm_gp_subscriber_initiator translates a transaction received to a new transaction-level 

interface, i.e., TLM2, via a non-blocking socket initiator. Both interfaces, after translation, connect to IP 1. The intra-connection 

of reference models is mapped directly because both input and output interfaces follow a TLM2 non-blocking implementation. 

Finally, IPs outputs are combined with nxp_uvm_tlm2_nb_targets_to_one_initiator to generate a single TLM2 non-

blocking output port that is connected to a subscriber of type nxp_uvm_tlm_gp_subscriber_target. The subscriber receives 

a GP transaction from reference models and compares against a transaction received from a monitor attached to the output 

interface of RTL.  

Concerning option 2 in Figure 4, the checking is done by a building block with direct connection to the memory via NXP 

memory driver API [3]. Instead of receiving a transaction from the monitor and checking during the UVM run phase, this 

moves to the UVM check phase. The nxp_mem_driver_tlm2_gp_subscriber_target receives a transaction from an initiator 

and compares against the memory. The code snippet below shows the necessary modifications. 
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4 

5 

6 
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9 

10 

11 

12 
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// checking 

nxp_mem_driver_api m_mem_driver_api; 

nxp_mem_driver_tlm2_gp_subscriber_target m_mem_check; 

 

virtual function void build_phase(uvm_phase phase); 

  ... 

  m_mem_check=nxp_mem_driver_tlm2_gp_subscriber_target::type_id::create("m_mem_check", this); 

  m_mem_check.set_mem_driver_api(m_mem_driver_api);    

endfunction : build_phase 

virtual function void connect_phase(uvm_phase phase); 

  ... 

  m_aggregate_targets.socket_out.connect(m_mem_check.m_nb_target_socket); 

endfunction : connect_phase 

Listing 6. Usage of NXP memory driver API for checker 

Furthermore, one can make use of the nxp_uvm_tlm2_nb_passthrough_fifo_target (see Table 3) to eavesdrop on 

communication between reference models. This is especially useful in the case that an intermediate check in addition to an end-

to-end check is required. The transaction captured on the FIFO with similar behavior to the UVM analysis FIFO may be used 

to improve observability with additional checkers or information for debugging. Listing 7 below illustrates how to modify the 

scoreboard to capture the transaction and use the building block API to manage the data. 

1 

2 

3 

nxp_uvm_tlm2_nb_passthrough_fifo_target m_passthrough_fifo_target; 

virtual function void connect_phase (uvm_phase phase); 

  ... 
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  // reference models connection 

  m_rm_ip_2.m_port_out[0].m_nb_initiator_socket.connect(m_passthrough_fifo_target.socket_in); 

  m_passthrough_fifo_target.socket_out.connect(m_rm_ip_2.m_port_in.m_nb_target_socket);     

  ... 

endfunction : connect_phase 
 

virtual task main_phase(uvm_phase phase); 

  ... 

  forever begin 

    m_passthrough_fifo_target.get(payload); 

    ... 

  end  

endfunction : main_phase 

Listing 7. UVM scoreboard 

VI. CONCLUSION 

The concept presented in this paper differs from the traditional UVM concept which reuses all  code in the next level up with 

by turning off active components of the lower level. The proposed approach divides the code into reusable and non-reusable 

code as part of the testbench architecture and therefore saves a lot of code compilation as well as execution that will not be 

activated (numbers to be added later).   

The other concept shown in this paper is the use of the GP with extensions instead of interface specific objects that allow the 

creation of standard building blocks as well as, although not shown in this paper, an easy way to use SystemC components. 

The use of SystemC components hereby fit to a top-down approach where the function of the system is first defined as SystemC 

functional blocks and then handed off to the implementation stage as executable specifications.  

The GP also abstracts the interface type away from the reference model, which supports the use of functional code for IP 

implementation on different physical interfaces. The definition of standard extension, e.g. from ARM would further unify this 

concept. As of now, these user extensions carry the same content but are based on different variables and class names for 

different projects. Last but not least, the use of the GP extension to carry configuration data has created a high flexibility for 

the actual implementation of the configuration data.  
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