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Abstract—This paper investigates the feasibility of leveraging generative AI coding assistants, specifically Aider,
for functional design verification (DV) tasks. By comparing the generation of an AMBA APB3 Verification IP (VIP)
in both SystemVerilog with the Universal Verification Methodology (UVM) and Python with cocotb+PyUVM, we
assess how mature these AI tools are, in order to support the DV engineer in their day to day coding tasks. The
results showcase the strengths and current limitations of generative AI in producing functional and syntactically
correct testbenches.
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I.  MOTIVATION

The rapid evolution of generative AI is reshaping industries, with AI-driven coding assistants becoming an
integral part of software development. Tools like GitHub Copilot, ChatGPT, Claude Code, Aider [4], Cursor, to
name  a  few,  are  now  widely  accepted  as  standard  companions  for  coding  tasks,  drastically  improving
productivity. In the functional DV domain, however, the adoption of such tools offers room for improvement. At
first glance, one might expect languages like Python, along with frameworks such as cocotb [7] and PyUVM [8],
to align naturally with the strengths of modern AI models, given Python’s dominance in software development
and the abundance of related training data. Conversely, SystemVerilog (SV) [9] combined with UVM [10], the
industry’s standard for hardware verification, is more niche, with a steeper learning curve and a perceived lack of
accessible, machine-readable training material. This disparity raises critical questions:

 How effective is generative AI at producing cocotb+PyUVM code compared to UVM-SV?

 Is generative AI mature enough to assist DV engineers in creating complex VIP, or is its utility limited to
simpler code editing tasks?

This case study seeks to answer these questions, providing valuable insights for DV practitioners evaluating
AI’s role in their coding workflows. Readers will gain insights into the practical application of generative AI in
functional  design  verification,  including  detailed  comparisons  between  UVM-SV and cocotb+PyUVM code
generation.

II. METHODOLOGY

To explore these questions, we selected Aider, an AI-powered coding assistant designed for code editing and
generation.  Aider  serves  as  an  interface  between  human  developers  and  Large  Language  Models  (LLMs),
allowing for interactive, guided code development. While many AI discussions focus on RTL generation  [3],
formal property generation [2] or stimuli generation [1], our focus remains strictly on verification code generation
- specifically, generating VIP and self-checking testbenches of the same.

The methodology of this study was designed to systematically evaluate how effectively generative AI, via the
Aider coding assistant and leading large language models (LLMs), can produce production-quality Verification
IP (VIP) and self-checking testbenches in two verification ecosystems: SystemVerilog with UVM and Python
with cocotb + PyUVM. We describe below the tools, configurations, workflows, and evaluation criteria used.
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A. Aider and its Modes of Operation

According to its documentation, Aider offers “AI pair programming in your terminal”. Under the hood, Aider
constructs structured system prompts, passing them to the LLM and applying the responses as concrete code edits
or file creations. Aider supports multiple modes of interaction.

 Terminal mode: the main interface, using a command-line prompt to communicate with the LLM and
edit code.

 Web interface: an alternative browser-based UI.

 In-editor mode: embedding AI commands directly into code comments, which Aider then executes in-
place.

For the purpose of this study, we focused primarily on terminal mode, which allowed us to fully script the
workflow and systematically test all model and configuration permutations. The ability to automate Aider via
scripts was particularly advantageous in ensuring repeatability and fairness across experiments.

B. Experimental Dimensions

LLM provider

The  specific  LLM models  we  tested  were  the  top-ranked  offerings  from each  provider  at  the  time  of
experimentation (as listed on the Aider leaderboards [6]):

 Google: gemini-2.5-pro-preview-06-05

 Anthropic: claude-opus-4-20250514

 OpenAI: o3

Verification methodology

 SystemVerilog with UVM

 Python with cocotb + PyUVM

Coding conventions

 Without additional coding conventions

 With additional coding conventions [5]

C. Project Setup

For each test run, we prepared a clean directory structure, containing the following components:

dut/dut.sv
tb/
tb/tb_apb.f          (UVM-SV only)
tests/
vips/apb/
vips/apb/vlab_apb.f  (UVM-SV only)
Makefile
[conventions.md]     (optional, if conventions were applied)

Makefile, dut.sv, and the *.f (file list) files were handcrafted and identical across runs. All other directories
and files were generated by Aider during the experiment.

D. Prompts and Commands

To  ensure  comparability,  the  same  sequence  of  prompts  and  commands  was  used  for  all  LLMs  and
configurations. Coding conventions (when used) were supplied via Aider’s configuration file (.aider.conf.yaml),
which pointed to a conventions.md document.
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1) UVM-SV Flow

VIP Generation

aider --yes-always -m "Create under vips/apb directory a production-quality UVM-1.2 SystemVerilog VIP for
the  AMBA APB3 protocol.  The  VIP  should  include  all  standard  UVM components  plus  a  comprehensive
sequence library, a functional coverage model and protocol checks implementing the entire APB3 specification."

Compilation & Fixes

aider --test-cmd "make compile_vip" --read vips/apb

Testbench Generation

aider --read vips/apb --read dut --yes-always -m "Create under tb directory a production-quality self-checking
UVM-1.2 SystemVerilog TB for the DUT found under dut/dut.sv which is a pass through of an APB3 master port
to an APB3 slave port. The TB should instantiate and hook up the previously created APB3 VIP to the DUT,
instantiate  a  scoreboard  to check the master-slave  connection.  The TB does not  need to create  a  functional
coverage model. Under directory tests create a first single test to perform a simple read-write sequence."

Simulation & Fixes

aider --test-cmd "make sim" --read vips/apb --read dut --read tb --read tests

2) PyUVM Flow

VIP Generation

aider --yes-always -m "Create under vips/apb directory a production-quality PyUVM VIP for the AMBA
APB3 protocol. The VIP should include all standard UVM components plus a comprehensive sequence library, a
functional coverage model and protocol checks implementing the entire APB3 specification."

Static Analysis & Fixes

aider --test-cmd "make compile_vip"

Testbench Generation

aider --read dut --yes-always -m "Create under tb directory a production-quality self-checking PyUVM TB for
the DUT found under dut/dut.sv which is a pass through of an APB3 master port to an APB3 slave port. The TB
should instantiate and hook up the previously created APB3 VIP to the DUT, instantiate a scoreboard to check
the master-slave connection. The TB does not need to create a functional coverage model. Under directory tests
create a first single test to perform a simple read-write sequence."

Simulation & Fixes

aider --test-cmd "make sim" --read dut

E. Coding Conventions

We tested each flow both with and without coding conventions. For UVM-SV, we adapted general coding
guidelines from Verilab into a conventions.md file in markdown format. For PyUVM, we created a simplified
version  of  the  UVM-SV guidelines  and  iteratively  enhanced  it  based  on  observed  deficiencies  during  runs
without  conventions.  These  conventions were  automatically  loaded  into Aider  and provided to  the  LLM as
additional context during code generation.

F. Evaluation Procedure

After generating the VIP and testbench, we analyzed the outputs across several dimensions.
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 Review of the generated VIP code: Compared code completeness and code quality between LLMs and
between conventions and no conventions being used. That step was only performed for the UVM-SV
runs.

 Syntactic correctness & elaboration

o For UVM-SV: used commercial simulator to compile and elaborate the code.

o For PyUVM: used mypy as a static code analyzer.

o This was only run for permutations without coding conventions

 Iteration count VIP: Tracked how many Aider iterations were needed (with or without additional human
prompting)  to  achieve  compiling  and  elaborating  code  for  the  VIP  alone.  This  was  only  run  for
permutations without coding conventions

 Iteration count TB+VIP: Similarly, counted iterations required to generate a functioning testbench with
the VIP integrated and running to completion in simulation. This was only run for cases without coding
conventions.

 Functional correctness: Once the testbench ran, we inspected the initial simulation waveforms to verify
the correctness of APB3 transfers. This was run for cases without coding conventions. For PyUVM, note
that in the final step we focused on running the simulation directly without further mypy checks at that
point.

 LLM Costs:  Aider  prints  out  the  costs  of  each  LLM request.  That  is  summed up  and  reported  for
generation of VIP and for overall TB+VIP debug.

III. RESULTS 

A. UVM-SV VIP code review

The first step was to look at the generated VIP code and analyse if additional coding conventions help the
LLM to produce more industry aligned code. Overall it is surprising how different the code generation results are
between the LLMs.

Google's  LLM benefits  notably from being guided. While it  doesn't  reach  the completeness  or  depth of
Anthropic, conventions help it build a more structured and usable baseline.

Anthropic is capable of rich and technically aware output without guidance, but its response to conventions
may lead to over-conformity at the cost of functionality. It excels when allowed to "think freely."

OpenAI’s  LLM responds  well  to  structured  prompting,  producing  technically  aligned  output  with  more
formalism. However, gaps in configurability and verification depth remain. It trades breadth for cleanliness.

The following high-level trends emerged:

 Conventions  Improve  Structural  Quality:  All  LLMs  showed  some  form  of  improvement  in  file
organization, naming, or modularity when prompted with conventions. File boundaries were respected
more consistently, and reusable types were often abstracted properly.

 Loss  of  Functionality  Is  a  Risk:  While  conventions  guide  structure,  they  sometimes  lead  to
oversimplification. Anthropic, in particular, removed useful protocol logic (reset handling, pready delay
monitoring) under convention pressure — highlighting the trade-off between conformity and insight.

 Protocol Versions Are a Common Pitfall: Despite clear APB3 context, APB4 signals (like pstrb, pprot)
were  frequently  included  across  all  vendors  —  both  with  and  without  conventions  — indicating  a
misunderstanding of specification scoping or a lack of contextual filtering.
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 Coverage  Quality  Varies  Greatly:  Anthropic  and  OpenAI  both  managed  to  produce  meaningful
coverage bins and crosses (especially under guidance). Google, by contrast, lagged behind, often skipping
coverage entirely or defining very basic logic.

 Reset and Timing Are Weak Points: Few implementations across the board handled reset synchronously
and  comprehensively.  Misuse  of  clocking  blocks  and  delayed  inputs  was  prevalent,  especially  with
Google and Anthropic.

 Sequence Libraries Show Promise: All models attempted to build sequence libraries with write/read
support. Anthropic led in terms of breadth (burst, random, walking patterns), while OpenAI and Google
were more minimal.

The following section shows some examples of how the code conventions influenced the outcome.

Convention: Use the covergroup sample() method to collect coverage

Without convention With convention

covergroup apb_cg; covergroup apb_cg with function 
sample(apb_transaction trans);

Convention: Use prefix_ and _postfix to delineate name types

Without convention With convention

virtual apb_if vif;

apb_config cfg;

virtual apb_if m_vif;

apb_config m_config;

Convention: Use a begin-end pair to bracket conditional statements

Without convention With convention

if (!uvm_config_db#(apb_config)::get(this, "", "cfg", cfg))
      `uvm_fatal("NOCFG", "No apb_config found")

if (!uvm_config_db#(apb_config)::get(this, "", "cfg", m_cfg)) begin
      `uvm_fatal("NOCFG", "No apb_config found")
end

B. Syntactic correctness of VIP code

This was one of the huge surprises that none of the LLMs, regardless of being asked to generate PyUVM or
SV-UVM, generated compile and elaboration clean code. Table I shows the iteration count that was needed to
achieve error free code. It distinguishes between full automatic code changes and additional user prompting being
necessary. E.g. if the table shows 3(4) it means 3 out of 4 issues could be solved automatically.

Table I. 

Generated
Framework

LLM

Anthropic Opus Google Gemini OpenAI o3

UVM-SV 1(1) 1(3) 0(3)

PyUVM 1(1) 0(3) 0(3)

The authors noted the following general observations while fixing compile time issues with the help of Aider and
the different LLMs:
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 Multiple automatic bug fix runs from the same starting point produce different results

o Seems some heuristic gets applied

o Sometimes able to fix the code, sometimes not

o Thinking sometimes suggests two potential fixes and it seems to roll a dice to pick one of those or let the

user choose

 All LLMs work like trial and error. Especially with the “thinking/reasoning” enabled one can read the step
by step reasoning like a human engineer would do: Trial and error. The LLMs literally write into their
reasoning output “Let’s try xyz and see if that fixes the issue”. This is no surprise, given the LLMs are
trained with what we humans wrote about debugging.

 The LLMs don’t  seem to understand PyUVM at a  similar  level  like other more widely used Python
standard libraries. The authors got the impression that the LLMs mostly try to guess that whatever worked
in UVM-SV might work as well in PyUVM. The differences though do not seem to be understood well as
the more detailed results show in the later chapters.

C. LLM iterations needed for first simulation

All three LLMs performed at a similar level when it came to compiling and running the entire UVM-SV
TB+VIP. On the PyUVM side though the results were not as encouraging. The authors started with the Google
Gemini  LLM but  in  the  end  spent  4  hours  running  through  33  iterations  of  mostly  automatic  bug  fixing.
Anthropic we had to abort and OpenAI was very slow to respond. Table  II shows the iteration count that was
needed to achieve a complete simulation run. It distinguishes between full automatic code changes and additional
user  prompting  being  necessary.  E.g.  if  the  table  shows  3(4)  it  means  3  out  of  4  issues  could  be  solved
automatically.

Table II. 

Generated
Framework

LLM

Anthropic Opus Google Gemini OpenAI o3

UVM-SV 4(5) 3(3) 5(6)

PyUVM 20(>24 aborted) 25(33) 16(19)

D. Waveform analysis

 PyUVM Google Gemini

o Despite the prompt asking for a simple read write test, the waves show only read transactions and all to the

same address

o No signals are X or Z

o The transactions are two cycle transactions but the slave asserts PREADY only after seeing both PSEL

and PENABLE, which turns the transactions into 3 cycle long

 PyUVM Anthropic Opus

o No waves analyzed as fixing bugs took too many iterations

 PyUVM OpenAI o3

o All signals HiZ as the code misses the DUT to VIP hookup code

 UVM-SV Google Gemini
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o It correctly shows a write and a read transaction, both 2 cycles long back to back

o Transactions happen though while still in reset

o The second APB3 agent configured as passive, does not drive PREADY and PSLVERR, hence those

show as X

 UVM-SV Anthropic Opus

o Well formed read and write transactions, each 2 cycles long

o One idle cycle between transactions though

o Memory model in TB attached to slave port

o No signals X

o Waveform shows what got written into memory gets read correctly

 UVM-SV OpenAI o3

o apb_driver is not driving nor waiting on the PRESETn signal to be deasserted before starting the transfers

o apb_driver implementing 3+ cycle transfers

o PREADY is driven by another module generated by the LLM to represent a simple memory slave

o No signals are X

E. Cost analysis

Table III reports the costs of the first VIP generation. Table IV reports the overall cost of VIP+TB generation
plus bug fixing iterations.

Table III.  VIP generation cost in USD

Generated
Framework

LLM

Anthropic Opus Google Gemini OpenAI o3

UVM-SV 0.88 0.08 0.10

UVM-SV conv 0.84 0.13 0.09

PyUVM 0.92 0.08 0.06

PyUVM conv 0.85 0.10 0.11

Table IV.  Overall cost in USD

Generated
Framework

LLM

Anthropic Opus Google Gemini OpenAI o3

UVM-SV 8.35 0.62 0.98

PyUVM 29.94 6.76 1.06
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IV. CONCLUSION

This study set out to explore two key questions.

1. How effective is generative AI at producing cocotb+PyUVM code compared to UVM-SystemVerilog?

2. Is generative AI mature enough to assist DV engineers in creating complex VIP, or is its utility limited
to simpler code editing tasks?

Based on our experiments, we conclude that, as of today, generating UVM-SV code appears more mature and
reliable  than generating  cocotb+PyUVM code.  Despite  the initial  expectation that  Python-based frameworks
might  align  better  with AI  models  due  to  Python’s  prevalence  and  the  good documentation  of  cocotb  and
PyUVM, the actual results suggest otherwise. One likely explanation is that UVM-SV enjoys a richer ecosystem
of publicly available examples, tutorials, and community content, which likely provided the LLMs with more
relevant  training material.  In  contrast,  cocotb and PyUVM, while well-documented, have far  fewer  publicly
available code examples, limiting the LLMs’ familiarity with them.

Another  key  insight  is  that  achieving  high-quality  outputs  — particularly  for  complex  VIP  — requires
carefully  crafted,  detailed prompts.  Including specific details  such as master/slave roles,  active/passive agent
behavior, and explicit coverage or protocol-checking requirements consistently improved the generated results.
Vague or minimal prompts tended to produce incomplete or superficial solutions. Similarly, providing coding
conventions  as  additional  context  helped  steer  the  LLMs  toward  more  structured  and  maintainable  code.
However, we observed that strict conventions sometimes constrained the models in ways that reduced functional
completeness, suggesting a need to develop conventions specifically tailored for LLM consumption rather than
reusing traditional human-oriented guidelines.

Importantly, during the debugging and correction phase, we observed that LLMs were often able to propose
plausible solutions to compilation or simulation errors far faster than a human engineer would have identified
them — though this was not always the case. While their suggestions sometimes required further refinement, the
ability to quickly generate hypotheses and corrective code proved valuable. This suggests that generative AI is
not just a code generator but also a potentially powerful partner in diagnosing and resolving issues, especially
when guided by an experienced engineer who can validate and correct its output efficiently.

Overall, our findings suggest that AI coding assistants are already mature enough to contribute meaningfully
to verification workflows, particularly when generating block-level VIP and self-checking testbenches, and when
used as a debugging aid. They enable engineers to spend less time on boilerplate and more time architecting,
reviewing,  and  refining.  The  combination  of  human  expertise  and  AI  assistance  appears  to  yield  the  best
outcomes.
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