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Abstract—Chip design is, in a way, the art of managing complexity. Much of this complexity is handled by the
tools employed during the design process, which in itself need to be combined and configured properly. Docker (OCI)
containers can help deal with this complexity by bundling all dependencies and configuration together in a shareable
form. We show two use cases where containerization makes chip development more productive: chip development on
a local machine with VS Code Dev Containers, and container checkpointing as a way to skip redundant computation
in functional verification. Based on a user survey and telemetry data, we show that developers enjoy the productivity
wins from the Dev Container environment.
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I. INTRODUCTION

Many of us think and talk about developer and development productivity, for a good reason: increasing
productivity means getting a product into the market faster or cheaper. Yet, “increasing productivity” isn’t a
simple lever to turn. Productivity results from getting many of the things right that are involved in making a
product, or in our case, a chip. But it often boils down to a simple recipe: do more of what you want to do
(i.e., create value), and less of what you don’t want to do.

This advice is valid, but not actionable. In the ever-lasting effort to become even more productive in chip
development, we at IBM found Docker containerization to be a key enabler. We focus on the front-end
development flow, including RTL design and functional verification. We start the discussion by introducing
the reader to containers in Section II; Readers already familiar with the topic can skip ahead to Section III,
where we discuss how VS Code Dev Containers makes our front-end developers more productive. A second use
case for containerization is presented in Section IV: the ability to checkpoint and restore a complex simulation
environment to increase simulation efficiency. Section V concludes the paper by summarizing the results and
providing an outlook on future developments.

II. WHY CONTAINERS ARE GREAT IN CHIP DEVELOPMENT, AND HOW THEY WORK

To understand how containers lead the way to increased developer productivity, we need to take a closer
look at what a container actually is and what it is valued for.

A. A first look at Docker containers

At its core, a container can be seen as a way to bundle dependencies of a complex “application” in an
executable form, from the operating system up to all binaries, libraries, and configuration files needed to fulfill
a certain task (like running a simulation of a circuit). This makes containers portable between machines and
its execution reproducible.

Behind the scenes, containers build on top of a Linux kernel feature called “namespaces” [1]. Tools like
Docker [2] or Podman [3] simplify the interaction with containers. Initiatives like Open Container Initiative
(OCI) specify how container images are structured to enable sharing them between runtime environments.

Containers can run on any Linux machine; users of other operating systems like Windows or macOS can
run containers by creating a Linux virtual machine first, or by using a tool that does so under the covers, like
Docker Desktop [4].
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Individual containers can be conveniently managed on the command-line (e.g., by calling docker run).
For dozens of even thousands of containers orchestration tools allocate resources, start and stop containers as
needed, group related services, etc. The most common orchestration tool is Kubernetes, or a variant of it, like
Red Hat OpenShift.

Using Docker or Podman (a drop-in replacement in this case) is simple, as the following complete walkthrough
shows. Typically the contents of a container image are described in a Dockerfile, which looks a bit like a
shell script.

# Start with a minimal Red Hat Enterprise Linux (RHEL) 8.
FROM redhat/ubi8
# Install system tools.
RUN dnf install -y make git
# ...

A call to docker build then consumes the Dockerfile and produce a container image.

$ docker build -f Dockerfile -t my-namespace/my-image:latest .

After a few seconds, the container image is ready to be instantiated into a container with docker run,
followed by the command to execute inside the container. Our host runs Fedora Linux. To show that we are
actually executing the command inside the container with Red Hat Enterprise Linux (RHEL) 8 we take a look
at /etc/os-release.

$ cat /etc/os-release | grep PRETTY_NAME
PRETTY_NAME="Fedora Linux 42 (Workstation Edition)"
$ docker run -it my-namespace/my-image:latest cat /etc/os-release | grep PRETTY_NAME
PRETTY_NAME="Red Hat Enterprise Linux 8.10 (Ootpa)"

After the build, the container image is only available on the machine where it was built. To share the image
with others it is pushed to a remote location called “registry,” Docker Hub being the default.

$ docker push my-namespace/my-image:latest

Now anybody can get an identical environment by executing the same docker run command as used
above; the image is pulled automatically from the registry if it does not exist locally.

This short walkthrough already highlights why containers have become so ubiquitous: based on robust
technology in the Linux kernel, Docker and others have built very convenient tooling and an extensive ecosystem
around it, where many things “just work.”

The complexity of a container solution can increase, of course, as one adds requirements (be it “enterprise-
grade” authentication, or sophisticated deployments in Kubernetes clusters). Also, the use of the Docker
command-line tool is by far not the only way to build containers or interact with them. Still, the journey into
containerization can start small and expand as additional requirements come up. Given how vast the container
ecosystem is these days it’s unlikely that the journey hits a roadblock any time soon.

Equipped with a basic understanding of containers we are ready to explore how development on a local
computer with VS Code Dev Containers makes developers more productive.

III. LOCAL DEVELOPMENT WITH VS CODE DEV CONTAINERS

Visual Studio Code (VS Code) Dev Containers seamlessly integrate VS Code [5], today’s most popular
integrated development environment (IDE) [6], with a containerized development environment in which all
chip development tools run. This combination creates a development environment that is easy to setup, fully
runs on a local computer, and is customizable to the individual developer personality.

We first take a closer look at why this setup makes developers productive, followed by a discussion of the
implementation, and finally results from a user survey.

A. Dev Containers from a user’s point of view

VS Code Dev Containers offer the user a fully integrated, local development environment for chip develop-
ment, as if they were running VS Code on a Linux machine with all development tools installed.
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Figure 1: An illustration showing VS Code Dev Containers in action.

Figure 1 shows the main work panes. Users can browse through the project’s files, open them in the integrated
editor with full syntax highlighting and state-of-the-art semantic autocomplete, use the AI integration, and do
all the other things one expects from an advanced editor. Additionally, users can open a terminal pane. This
terminal is the window into the underlying containerized Linux where all chip development tools are present.
To build the project, synthesize it, or run a simulation, users just type whatever commands they are used to (or
create shortcuts in the user interface for it).

Before development can start, users have to first perform a one-time setup of a small set of software
components.

• VS Code (free of charge)
• Dev Containers VS Code extension (free of charge)
• Docker1. On Windows and macOS, use either Docker Desktop (proprietary) or Rancher Desktop (open

source)
• On macOS to display graphical applications: XQuartz (optional, open source)

All software components are available for Windows, macOS, and Linux. On Macs with an ARM CPU the
project can either provide a ARM-based development environment (if all tools are available for ARM), or use
a x86 64 container (utilizing the built-in Rosetta binary translation).

Next developers obtain the project source code or directly specify a Git repository URL, and ask VS Code to
open the project in a Dev Container. Under the hood, VS Code reads the project configuration from dedicated
files in the project’s source code, instructs Docker to pull a container image suitable for the project, starts it,
places the source code in it, and finally presents the user with an editing window.

The whole one-time setup takes around 15 minutes in our experience. After that time, users are able to
continue coding in a highly productive, state-of-the-art development environment.

How does all of this work? The next section takes a look behind the scenes.

B. How to configure VS Code Dev Containers

Before developers can make use of a Dev Container, the project needs to set one up by adding at least one
file to its source code repository. In the following, we describe a setup that goes beyond the bare minium and
matches the production setup we are currently using at IBM. Dev Containers are by no means restricted to this
setup; refer to the official documentation for details.

1It is possible to use Podman and Podman Desktop instead of Docker, but Podman is not yet well supported by VS Code. We repeatedly
found edge cases that led us to using Docker for the time being.
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{
"name": "my-chip",
// The Docker image to build this container on.
"image": "icr.io/chip-projects/images/my-chip:v1",
// Initialization steps on the host, e.g. obtaining credentials.
"initializeCommand": "${localWorkspaceFolder}/.devcontainer/initialize_command.sh",
// Install Dev Container Features.
"features": {

"ghcr.io/devcontainers/features/common-utils:2": {},
"icr.io/chip-projects/features/vscode-developer-general:1": {},
"icr.io/chip-projects/features/vscode-developer-chip:1": {}

},
// Customizations like VS Code settings; we place them in reusable Features instead.
"customizations": {}

}

Listing 1: devcontainer.json, the configuration file describing the Dev Container.

The entry point is the configuration file is .devcontainer/devcontainer.json [7]. This file is read
by the Dev Containers extension when users open a project in a Dev Container. Listing 1 shows a slightly
simplified configuration file that describes a Dev Container project named “my-chip”.

At first, the Bash script initialize_command.sh is called on the host (or the Linux VM on the host in
case of Windows or macOS). We use this script to prompt the user for credentials to authenticate against the IBM
Cloud Container Registry (icr.io), from where the container image specified in the image key is downloaded.
The container image is described in the .container/Dockerfile file and provides an environment tailored
to the project’s needs.

For each project, we build a Docker image that contains everything to run batch jobs, e.g., simulations,
synthesis runs, etc. Re-use between projects is achieved by layering the project image on top of a more generic
“chip development” image.

To keep the image size small, it does not contain any tools needed for interactive (human) use, like debuggers,
documentation, etc. This functionality is added through Dev Container Features [8]. Features are essentially
a combination of a shell script and VS Code configuration snippets that are applied on top of the container
image. Just like for container images, they can be layered from from generic ones to project-specific ones.

Further customization can be done directly in the customizations object, where VS Code extensions
can be pre-installed, or settings configured.

C. Why VS Code Dev Containers make developers more productive

Developer productivity is a vast field of research with surprisingly little hard facts [9]. Much of the uncertainty
can be attributed to us being being individuals, each with unique preferences and habits. But even with that in
mind, we are able to identify properties of a development environment which influence developer productivity.
We look at three properties: the value of a ready-to-use environment, the ability to customize the development
environment, and finally, the value of iteration speed.

1) The value of ready-to-use environments: A “chip development environment” is rarely a single tool; it is a
combination in-house and third-party tools, scripts, configuration files, and source code from different origins.
Since the development environment itself is not the product, it tends to be developed only to the extent that it
can get the chip done, resulting in an environment that is sometimes fragile to setup. Documentation to guide
new developers through the process helps, but is prone to errors and time-consuming to follow. Especially for
short-term assignments (e.g., internships, helping out with a problem on another project, etc.), the hurdle to get
a working development setup can consume a significant portion of time spent on the project.

With containers, we describe in executable form what an optimal project environment looks like, starting with
a bare operating system installation. We test these instructions as part of our continuous integration pipelines
to ensure they remain valid.

Additionally, the Dev Container ships with pre-configured editor settings and recommended extensions that
the development project as a whole has found to be helping productivity – a way of sharing best practices in
executable form. Taken together, developers can get “real” work done faster – a win for productivity.
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2) Customize the development environment: Developers are human, and development is a creative process.
A development environment must be able to adapt to the individual user.

With Dev Containers, users get an abundance of customization options, if they wish to do so. With over
75,000 extensions2 and thousands of configuration options, users are very likely to find the customization they
are looking for. Furthermore, developers have root permissions in their local development environment and are
able to install any utility that makes them productive, without impacting others.

3) Local development iterations are probably faster: The development process (no matter if it’s software or
hardware) is done in iterations: code, build, debug, publish, and start over. Some parts of the iteration create
value, most notably the coding and debugging parts. Other parts of the iteration have to be performed, but don’t
add value. Productive developers spend less time on those steps.

In our environment at IBM, we have experienced that local development in a Dev Container reduces the
amount of time spent waiting for commands to complete. Even though this observation is not universally true,
it matches anecdotal evidence from other companies.

The time to build and commit code is often dominated by file access latencies. During a development iteration,
developers tend to modify only a handful of files; all the others are unchanged and the build outputs should be
re-used from previous runs. Still, tools like Git or GNU Make have to access all files to determine which files
actually changed. Even though accessing a single file does not take long, the effect is multiplied thousandfold
in large repositories. In those, it is not uncommon to see commands like git status take minutes instead
of fractions of a second when a large source code repository is stored on a network file system as opposed to
a local SSD. Additionally, file access latencies heavily influence the user experience in interactive editing.

Somewhat counterintuitively, we also observe that simulations for functional verification often run faster in
local containers. The single-thread performance of a CPU in a modern developer laptop can, in many cases,
beat server processors which are optimized for lower frequencies and higher core counts.

Even though there’s no single knob to influence productivity, we have seen a rise in perceived productivity
from our developers. Three of the main contributing aspects are pre-configured environments, the ability to
fully customize the development environment, and faster development iterations.

D. User reception

Does the Dev Container increase productivity? We think so, even though measuring productivity is almost
impossible. What we can provide instead are hints towards that, or proxy metrics.

A key metric for us is developer adoption. Developers want to be productive, they want to “get things done.”
Today, our primary development environment is a remote desktop environment. In early 2025, we added the
Dev Container to one of our projects and allowed developers to opt into this way of doing development. After
only three months, and with no requirement to do so, around thirty percent of developers use the Dev Container
daily, and more than half of the users have tried it at least once.

To better understand the motivations of users, we conducted a user survey. Overall, 88 percent of respondents
felt the Dev Container made them more productive. They attributed that largely to the ability to work locally
and the speed and especially latency advantages seen there. As many users have not used VS Code before, they
also observed that this editor supports them well.

E. Limits of local development

We found that Dev Containers are a great solution for front-end chip design, i.e., development tasks that are
close to software development. But Dev Containers are neither the only solution to tackle the challenges we
have described, nor are they applicable in all scenarios.

First and foremost, a Dev Container cannot use more resources than the local computer provides. Memory-
intensive workloads, especially back-end tasks like the synthesis of large chip designs, can easily exceed the

2On June 30, 2025, 76,783 extensions were listed at https://marketplace.visualstudio.com/search?target=VSCode.

https://marketplace.visualstudio.com/search?target=VSCode
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memory limits of a developer laptop with 16 or 32 GB of memory. Large-scale regression runs in functional
verification that benefit from parallelization are also a bad fit for a laptop CPU.

Sharing of simulation results and collaborative debugging also requires rethinking. With our remote desktop
setup, all users can access the same network file system and collaborate to debug simulation failures by looking
at the same output files. For our container users, we have explored ways to share simulation outputs, but
continue to iterate on tools and processes in that area.

For us, Dev Containers for chip development are a success story. Our second use case for containers promises
to become a similar win for productivity.

IV. CONTAINER CHECKPOINTING

A. The motivation for checkpointing

Some computation tasks in a chip design flow can take hours or even days. For those jobs, checkpointing
can increase development productivity in a number of ways.

• Skip repeated computation, e.g., long-running initialization sequences at the beginning of a simulation or
an analysis task.

• Add resiliency to the computation by taking periodic checkpoints to recover from infrastructure failure, or
to move workload from one machine to another for maintenance work (“live migration”).

• Share an application in a specific state with a team of engineers. For example, a simulation run in a failure
state can be shared with a team of engineers. All engineers can now in parallel debug the failure in a fully
interactive, yet independent environment.

When a checkpoint is taken, the state of the running application, e.g., the state of the simulator including
the simulated model and the testbench state, are written to disk. This checkpoint can be restored at a later time
on the same machine or on another machine. The application will then resume its computation as if nothing
happened. Over the years, multiple checkpointing mechanisms have been developed.

B. Related work

Many applications such as our in-house simulator have supported checkpoints for a long time through custom
code that writes all relevant data structures to disk and restores them as needed. However, with the growing
complexity of chip design environments, we are looking for checkpointing solutions that go beyond a single
application (or process) and checkpoint all (relevant) running processes, including their libraries, open files, etc.

A commonly used, mature solution is DMTCP [10]. DMTCP is able to capture the full state, as stored in
memory, of a set of running applications without the need to modify the application(s). It operates in user-space
and relies on a preloaded library that intercepts certain system calls. DMTCP incurs a small runtime overhead
(typically below 10 percent [11, 12]). The filesystem changes made by the application (such as log files written)
are not part of the checkpoint created by DMTCP, but can be included manually.

A level below DMTCP operates Checkpoint/Restore In Userspace (CRIU) [13]. Despite the name, it relies
heavily on Linux kernel functionality to capture the state of a running application. It has been part of Linux for
over a decade now3, and is hence available by default even in enterprise distributions like Red Hat Enterprise
Linux 8. With kernel support CRIU promises to be more robust than DMTCP. Just like DMTCP, CRIU only
concerns itself with checkpointing the memory state.

Container checkpointing combines CRIU to checkpoint the in-memory application state with filesystem
snapshots, as they are readily available in the way filesystem layering works in containers. Both Docker [14]
and Podman [15] have their own implementations of container checkpointing, as does Kubernetes [16]. Even
though the checkpointing implementations of Docker and Podman look similar at first glance, they differ widely.
In contrast to DMTCP, root permissions are required to create checkpoints in both Docker and Podman (due
to the way CRIU operates).

3CRIU requires a Linux kernel in version 3.11 (or newer), which was first released in September 2013.
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C. Container checkpointing for functional verification

We have implemented container checkpointing for our functional verification environment. Our implementa-
tion consists of three parts:

• A simulation for functional verification running in a container. The container contains the source code
and all tools to run the simulation. We use an in-house simulator and a testbench written in C++, but the
approach is not limited to this setup.

• Podman.
• A custom “checkpoint service” daemon (discussed below).

The creation of a checkpoint can either be initiated on the host (host-triggered checkpoints), or by the
application in the container itself (application-triggered checkpoints). Application-triggered checkpoints are
interesting because in many cases, the testbench knows best when a good moment for a checkpoint has
come: after the initialization sequence is done, after 1000 cycles of simulated time have elapsed, when a
data miscompare is observed, etc.

Our checkpoint service bridges the gap between the verification environment running in the container, and the
container engine (Docker or Podman). It supports both modes of operation. For host-triggered checkpoints, the
checkpoint service can be instructed to create a checkpoint through a command-line interface. For application-
triggered checkpoints the checkpoint service provides a HTTP-based REST API, exposed over a Unix socket
mounted into the container. (This method of communication matches the way Docker communicates between
its server and client components.) The application inside the container can then connect to this socket to talk
to the checkpoint service and issue requests.

Upon receiving a checkpoint request, the checkpoint service calls podman container checkpoint,
which causes Podman to create a checkpoint and write it to file.

After an application requests a checkpoint, it goes into to a polling loop. Soon after that, Podman suspends
the execution of the application. When the container is then restored later, it still finds itself in the polling loop.
The checkpoint service can then instruct the application to make certain changes (e.g., enable more verbose
debug output, or reseed the testbench) before it resumes running.

D. Checkpointing performance

We found container checkpoints to work very well for our functional simulation setup. Both the time to
create and restore a checkpoint, as well as the file size of the resulting checkpoint, are a linear function of the
working set in memory and on disk.

In our testing4, the time to create a checkpoint increased linearly from around 1 second for a 200 MiB
working set to around 10 seconds for a 4 GiB working set when compressing them with the default zstandard
compression. Without compression, checkpoint times were very similar. Restore times with zstandard com-
pression were between 1 and 11 seconds, closely matching the time required to take a checkpoint. Without
compression, restores were twice as fast. Even for hard-to-compress fully random data the checkpoint file size
did not exceed the size of the working set plus a fixed overhead of around 200 KiB.

E. We prefer Podman for checkpointing

Even though the checkpointing functionality in Docker and Podman look similar at first glance, they differ
greatly. In Docker, checkpointing is marked experimental and needs to be enabled explicitly. The checkpoint
only contains the memory state; the filesystem state has to be obtained separately (e.g., by committing the
container to an image). In our testing, we have observed multiple cases where Docker was not able to create
a checkpoint or restore it. (We did not debug those fully.)

In contrast, the checkpointing functionality in Podman was very reliable in our testing.5 Additionally, Podman
offers attractive features over Docker: checkpoints cover both the filesystem and the memory state, the ability
to write an OCI image of a checkpoint, and much more, as documented at [17].

4Measurements taken on an Intel Core i9-13900H laptop with 32 GiB memory and an SSD.
5We tested various versions of Podman over the last year, currently we are running Podman 5.5.2.
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V. SUMMARY AND OUTLOOK

In our search for a more productive chip development environment at IBM, we found containerization
helpful. After only three months of being offered, around 30 percent of our front-end engineers in a large
chip project have moved from a remote desktop environment to using VS Code Dev Containers as their day-
to-day development environment, because they feel it makes them more productive. Container checkpointing is
a technology we are currently exploring to speed up simulations in functional verification by skipping repeated
initialization steps. Initial results are very promising, and we are now looking at ways to deploy this approach
more widely in our compute clusters. One thing is for sure: our journey into containerization won’t stop here
– the productivity wins are just too promising.
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