

1

A UVM Testbench for Exploring Design Margins

of Analog/Mixed-Signal Circuits: A PCI-Express

Receiver Detection Circuit Example

Jaeha Kim, Seoul National University, Seoul, Korea (jaeha@snu.ac.kr)

Abstract— This paper presents a UVM testbench for characterizing the design margins of analog/mixed-signal

(AMS) circuits by finding the worst-case deviation of the circuit’s response across a continuous-valued parameter

space. The testbench combines a reactive stimulus technique with a Bayesian optimization algorithm to efficiently and

adaptively explore the parameter space. Using a PCI Express receiver detection circuit as a case study, of which analog

components are modeled in SystemVerilog with XMODEL primitives, the paper demonstrates how the testbench can

identify design points that maximize margin and assess their sensitivity to secondary operating conditions. This

approach enables adaptive, coverage-driven AMS verification, supporting more automated and scalable margin

analysis in complex mixed-signal systems.

Keywords—analog/mixed-signal verification; universal verification methodology (UVM); SystemVerilog; XMODEL;

design margin analysis; Bayesian optimization.

I. INTRODUCTION

Often, the functionality of analog/mixed-signal (AMS) circuits must be verified over a continuous range of

operating conditions to ensure that the circuit has sufficient design margins and can maintain robust operation even

when the condition changes. This paper presents a UVM testbench for characterizing the design margins of an

AMS circuit using reactive stimulus generation and optimization techniques to efficiently explore the condition

parameter space.

As a concrete example, we target a PCI-Express (PCIe) receiver detection circuit shown in Figure 1. This circuit

determines whether a receiver is present or absent on the other end of an AC-coupled channel, and operates by

forming a relaxation oscillator, measuring its oscillation period in digital counts (Np), and comparing the result

against a predetermined threshold value (Np,thres). Since the value of Np also changes with the operating conditions

of the circuit, including the changes in the AC coupling capacitance (Cc), equivalent channel capacitance (Cch),

and transmitter/receiver termination resistances (Rterm,tx and Rterm,rx), it is desirable to maximize the separation

Figure 1. A PCI-Express transmitter-receiver configuration with the condition parameters shown: AC

coupling capacitance (Cc), equivalent channel capacitance (Cch), and transmitter- and receiver-side

termination resistances (Rterm,TX & Rterm,RX).

RX Detect

TX RX

Rterm,TX CC

Rterm,RX

Vterm,RX

AC Coupled Channel

Receive-side

Terminations

Vdd

Cch

mailto:jaeha@snu.ac.kr

2

between the minimum value of Np observed when the receiver is present (min (Np,w/RX)) and the maximum value

when the receiver is absent (max(Np,w/oRX)), and to choose a threshold value Np,thres that satisfies the inequality

min(Np,w/RX) > Np,thres > max(Np,w/oRX) across a wide range of other condition parameters, such as the reference

voltages (VrefL and VrefH).

This paper presents a UVM testbench for measuring min(Np,w/RX) and max(Np,w/oRX) of a PCIe receiver detection

circuit modeled in SystemVerilog, across specified ranges of the condition parameters, Cc, Cch, Rterm,tx, and Rterm,rx.

Instead of exhaustively sweeping over all possible parameter combinations, the testbench leverages a reactive

stimulus technique in conjunction with a Bayesian optimization algorithm to efficiently locate the point that yields

the minimum or maximum Np within the defined parameter space.

II. RECEIVER DETECTION CIRCUIT FOR PCI-EXPRESS TRANSMITTER

A PCIe transmitter must determine whether a receiver is connected before initiating data transmission [1].

Figure 1 illustrates a typical configuration, where a PCIe transmitter is connected to a PCIe receiver via an AC-

coupled channel. The transmitter employs a differential current-mode driver, and both the transmitter and receiver

sides include termination resistors to minimize signal reflections caused by impedance discontinuities. The PCIe

specification requires that the receiver detection circuit correctly identify the presence or absence of a receiver for

a range of condition parameters: AC coupling capacitance (Cc) between 76-265 nF, equivalent channel

capacitance (Cch) up to 3 nF, and transmitter- and receiver-side termination resistances (Rterm,TX and Rterm,RX) each

ranging within 40-60 Ω.

One example of the receiver detection circuit operates by transforming the transmitter into a relaxation

oscillator [2], as illustrated in Figure 2. The circuit turns on the transmitter’s pull-down currents when the

common-mode voltage (Vcm) of the transmitter outputs exceeds a high reference threshold (Vref,H), and turns them

Figure 2. Operation of the PCI-Express receiver detection circuit when the receiver is present (top) and

absent (bottom).

CC

VrefHVrefL

Cch

Vcm

ctrl Rterm,RX

Rterm,TX

VrefH

RX Present

Tp

Idn

VrefL

CC

VrefHVrefL

Cch

Vcm

ctrl

Rterm,TX

VrefH

VrefL

RX Absent

Tp

Idn

3

off when Vcm falls below a low reference threshold (Vref,L). This produces a periodic waveform of Vcm oscillating

between Vref,L and Vref,H, and the period of this oscillation can serve as an indicator of receiver presence. When

the receiver is present, the setting time constant () is longer due to the termination resistors on both ends:  

(Rterm,TX+Rterm,RX)Cc. On the other hand, when the receiver is absent, the time constant is shorter:   (Rterm,TX)Cch.

Figure 3 illustrates one possible implementation of this receiver detection circuit. The design forms a mixed-

signal feedback loop consisting of an output common-mode (Vcm) sensor, a 3-level quantizer, a digital controller,

and a pull-down current (Idn) driver. The pull-down currents drawn from the transmitter’s outputs are controlled

by the 2-bit digital output of the 3-level quantizer (comp[1:0]), which compares their common-mode voltage Vcm

against two reference voltages, Vref,H and Vref,L. Specifically, the pull-down currents are enabled when Vcm rises

above Vref,H and disabled when Vcm falls below Vref,L. This is basically the operation of a relaxation oscillator,

producing periodic oscillations in both the analog voltages (e.g. Vcm) and the digital outputs (e.g. comp[1:0]). The

digital controller counts the oscillation period (Np) using a 100MHz external clock and compares the result against

a pre-defined threshold (Np,thres) to determine the receiver’s presence.

Achieving robust operation of this receiver detection circuit requires careful tuning of the threshold values

(Vref,H, Vref,L, and Np,thres). It is because the measured value of Np depends not only on the presence or absence of

the receiver, but also on the values of Cc, Cch, Rterm,tx, and Rterm,rx. To ensure reliable detection, it is desirable to

maximize the separation between the minimum value of Np observed when the receiver is present (min (Np,w/RX))

and the maximum value when the receiver is absent (max(Np,w/oRX)), and to choose a threshold value Np,thres that

satisfies the inequality min(Np,w/RX) > Np,thres > max(Np,w/oRX) against possible variations in Vref,H and Vref,L.

The analog components of the receiver detection circuit are modeled in SystemVerilog using primitives

provided by XMODEL from Scientific Analog [3]. XMODEL enables the modeling of analog behavior with

efficient, event-driven simulation semantics, fully integrated within the SystemVerilog environment. It supports

both signal-flow modeling (e.g., using compare, transition, and and_xbit primitives) and conservative-system

modeling (e.g., using isource and switch primitives).

Figure 4 lists the models for the output common-mode sensor (sens_vcm), 3-level quantizer (comp_lev3), and

pull-down current driver (drv_icm). Although these models may appear straightforward, their simplicity is a key

advantage of XMODEL. In contrast, describing the same circuit using Real-Number Model (RNM) would be

significantly more complex, primarily as the circuit draws currents from the transmitter output nodes, which are

shared between the main PCIe transmitter circuit and the receiver detection circuit. Capturing this behavior in

RNM requires the use of user-defined nets and resolution functions, whereas XMODEL handles it naturally and

efficiently.

Figure 3. The block diagram of the PCI-Express receiver detection circuit modeled with XMODEL

primitives.

4

Figure 4. SystemVerilog models of the PCIe receiver detection circuit’s analog components using XMODEL

primitives: the output common-mode sensor (sens_vcm), 3-level quantizer (comp_lev3), and pull-down current

driver (drv_icm).

III. UVM TESTBENCH FOR DESIGN MARGIN ANALYSIS

Our objective is to develop a UVM testbench that verifies whether the circuit functions correctly over the full

specification space of Cc, Cch, Rterm,TX, and Rterm,RX and assess its sensitivity to the variations in Vref,H, Vref,L, and

Np,thres.

Figure 5 shows the organization of the proposed UVM testbench. Building on the approaches described in [4]–

[6], the testbench encapsulates all the analog-specific details in a fixture module, enabling the rest of the testbench

to be constructed using standard UVM components. The fixture module includes the full setup for evaluating the

receiver detection circuit: transmitter drivers, AC-coupled channels, and configurations with and without receiver-

side terminations. All the condition parameters (Cc, Cch, Rterm,TX, and Rterm,RX) are implemented as signals, not as

parameters in SystemVerilog, so that their values can vary during the course of simulation.

The proposed UVM testbench follows a similar organization to the one described in [5], where the driver agent

also serves as a monitor agent by employing a reactive stimulus technique [7]—selecting the next stimulus based

on prior outcomes. Instead of exhaustively sweeping through a fixed set of condition parameter values, the

testbench adaptively searches for parameter combinations that either maximize or minimize the oscillation period

count (Np), leveraging a Bayesian optimization algorithm [8]-[9]. A Bayesian optimizer constructs a surrogate

model using the results of Np obtained from previously evaluated parameter points. It then uses this surrogate model

to predict the expected value of Np and the associated confidence level at unexplored points in the parameter space.

module sens_vcm (
 output xreal out,
 input xreal in_p, in_n,
 input xbit en

);

xreal p0, n0;
switch #(.R0(`INFINITY), .R1(10.0e3)) SW1 (.pos(p0), .neg(out), .ctrl(en));
switch #(.R0(`INFINITY), .R1(10.0e3)) SW2 (.pos(n0), .neg(out), .ctrl(en));

endmodule // sens_vcm

module comp_lev3 #(
 parameter real VrefH = 1.75,
 parameter real VrefL = 1.35
)(
 output xbit [1:0] out,
 input xreal in,
 input xbit clk
);

xreal vref_H, vref_L;
compare #(.threshold(VrefL)) COMP0 (.out(out[0]), .in(in), .in_ref(`ground), .trig(clk),);
compare #(.threshold(VrefH)) COMP1 (.out(out[1]), .in(in), .in_ref(`ground), .trig(clk),);

endmodule // comp_lev3

module drv_icm #(
 parameter real Idn = 0.0125
)(
 output xreal out_p, out_n,
 input xbit in, en
);

xbit ctrl;
and_xbit U0 (.out(ctrl), .in({in,en}));
transition #(.value0(0.0), .value1(Idn)) U1 (.out(i_dn), .in(ctrl));
isource #(.mode("in")) IP (.pos(out_p), .neg(`ground), .in(i_dn));
isource #(.mode("in")) IN (.pos(out_n), .neg(`ground), .in(i_dn));

endmodule // drv_icm

5

Based on these predictions, the optimizer suggests the next parameter point to evaluate, thereby increasing the

likelihood of discovering the maximum or minimum Np within the specified ranges. As previously discussed, the

measured minimum value of Np observed when the receiver is present (min (Np,w/RX)) and maximum value when

the receiver is absent (max(Np,w/oRX)) can be used to assess the design margin of the receiver detection circuit as

well as its sensitivity to the variations in Vref,H and Vref,L.

The following subsections provide detailed descriptions of each component within this UVM testbench.

A. Sequencer Component

The sequencer component is the key element in this UVM testbench, as it performs the iterative search to

find the minimum Np with receiver present, min(Np,w/RX), and the maximum Np with receiver absent,

max(Np,w/oRX), using the reactive stimulus [7] and Bayesian optimization techniques [8]. Figure 6 lists the

simplified code of the sequencer component.

A set of SystemVerilog DPI functions performing each step of the Bayesian optimization are defined using

the BayesOpt library [8]:

• BAYESOPT_initialize(num_vars, lower_bounds, upper_bounds)

: initializes a BayesOpt data model with the number of variables and their lower/upper bounds.

• BAYESOPT_selectNext(opt_data, var_values)

: select the next trial point of variables in search of the minimum value.

• BAYESOPT_updateModel(opt_data, var_values, result)

: updates the BayesOpt data model with the result obtained for a given trial point.

• BAYESOPT_getOptimum(opt_data, var_values)

: estimates the optimum point of variables using the BayesOpt t data model.

Using these DPI functions, the sequencer component initiates a sequence of Np measurement tests, first to

determine the minimum Np with the receiver present and second to determine the maximum Np with the receiver

absent. In each iteration, the sequencer calls BAYESOPT_selectNext() function to select the next set of condition

parameters to explore. These parameter values are then sent to the fixture module through the driver component

Driver

Sequencer

Scoreboard

Fixture

Environment

UVM Test

AP0

AP1

AP2

PCIe Receiver

Detection Circuit

Apply Conditions
(Cc, Cch, Rterm,TX, Rterm,RX)

Check & Measure

Margins (Np-Np,th)

IFVIF

Driver Agent

Figure 5. Overview of the UVM testbench that uses reactive stimulus and Bayesian optimization techniques

to verify circuits over a continuous space of condition parameters and measure design margins.

6

using the standard UVM methods: start_item() and finish_item(). The sequencer subsequently waits for a response

from the fixture module via the driver, using the get_response() method. Upon receiving the response packet RSP

containing the measured Np corresponding to the condition parameters, it updates the surrogate data model by

calling the BAYESOPT_updateModel() function. After completing a predefined number of iterations (e.g. 200),

the BAYESOPT_getOptimum() function is used to predict the set of condition parameter values that is most likely

to yield the optimum result.

Figure 6. The sequencer component searching for the minimum or maximum Np across the parameter space

using reactive stimulus and Bayesian optimization techniques.

B. Fixture Module

The fixture module instantiates the PCIe receiver detection circuit model and contains the necessary test setup

for measuring the oscillation period count Np with or without the receiver present for a given set of condition

parameters. Figure 7 lists the code of the fixture module. Note that it is the only module that contains the XMODEL

primitives.

class SEQ_MARGIN extends uvm_sequence #(PACKET);
 `uvm_object_utils(SEQ_MARGIN)

 // ... some details omitted for brevity ...

 int num_iter = 200; // number of iterations
 PACKET PKT, RSP; // packets exchanged with fixture module

 task body();
 PKT = PACKET::type_id::create("PKT");
 lower_bounds = '{75e-9, 0.0, 40, 40};
 upper_bounds = '{265e-9, 3e-9, 60, 60};
 opt_data = BAYESOPT_initialize(4, lower_bounds, upper_bounds);

 // receiver present
 PKT.RX_present = 1;
 for (int i=0; i<=num_iter; i++) begin:LOOP1
 if (i < num_iter) BAYESOPT_selectNext(opt_data, var_value);
 else BAYESOPT_getOptimum(opt_data, var_value);
 PKT.Cc = var_value[0];
 PKT.Cch = var_value[1];
 PKT.Rterm_tx = var_value[2];
 PKT.Rterm_rx = var_value[3];

 start_item(PKT);
 finish_item(PKT);
 get_response(RSP);

 // find minimum Np when receiver is present
 BAYESOPT_updateModel(opt_data, var_value, RSP.Np);
 end: LOOP1

 // receiver absent
 PKT.RX_present = 0;
 for (int i=0; i<num_iter; i++) begin:LOOP2
 if (i < num_iter) BAYESOPT_selectNext(opt_data, var_value);
 else BAYESOPT_getOptimum(opt_data, var_value);
 PKT.Cc = var_value[0];
 PKT.Cch = var_value[1];
 PKT.Rterm_tx = var_value[2];
 PKT.Rterm_rx = var_value[3];

 start_item(PKT);
 finish_item(PKT);
 get_response(RSP);

 // find maximum Np when receiver is absent
 BAYESOPT_updateModel(opt_data, var_value, -RSP.Np);
 end: LOOP2
 endtask: body

endclass: SEQ_MARGIN

7

The fixture module communicates with the driver component via a handshake protocol using START and DONE

signals, enabling multiple Np measurements within a single simulation run. When the driver intends to initiate a

new Np measurement for a set of Cc, Cch, Rterm,tx, and Rterm,rx values, it asserts START to 1. In response, the fixture

module executes the test by configuring the simulation environment with the specified parameter values, applying

them to the coupling capacitors, equivalent channel capacitors, and transmitter/receiver termination resistors. It also

supplies a 100MHz clock (CK) and a 1.8V supply voltage (vdd). The fixture module initially waits for a period of

time prescribed by t_init before enabling the receiver detection circuit. It then allows for the Np measurement to

proceed, subject to a time-out window specified by t_meas. Upon completion, the fixture module sends the

measured Np value back to the driver and asserts DONE to 1 to indicate the completion.

Figure 7. The fixture module including the DUT model of the receiver detection circuit and the test setup for

setting the condition parameters (Cc, Cch, Rterm,tx, and Rterm,rx) and measuring the oscillation period count (Np).

module FIXTURE (IF_t IF);
 // ... parameter definitions and signal declarations omitted for brevity ...

 // DUT model for the PCIe receiver detection circuit
 rxdetect #(.VrefH(VrefH), .VrefL(VrefL), .Np_thres(1024))
 RXDET (.CK(CK), .TX_P(TX_P), .TX_N(TX_N), .EN(EN), .RXDETECT(RXDETECT));

 // transmitter and AC-coupled channels
 tx_pcie TX (.out_p(TX_P), .out_n(TX_N), .vdd(VDD), .Rterm(Rterm_tx), .Cp(Cp_tx));
 channel CHN_P (.port_1(CH_P), .port_2(RX_P), .Cch(Cch));
 channel CHN_N (.port_1(CH_N), .port_2(RX_N), .Cch(Cch));
 cap_sw CP (.pos(TX_P), .neg(CH_P), .C(Cc));
 cap_sw CN (.pos(TX_N), .neg(CH_N), .C(Cc));

 // add receiver depending on RX_present
 bit_to_xbit RX_CONN (.in(RX_present), .out(RX_EN));
 switch SW0 (.pos(RX_P), .neg(RX_P0), .ctrl(RX_EN))
 switch SW1 (.pos(RX_N), .neg(RX_N0), .ctrl(RX_EN))
 rx_pcie RX (.in_p(RX_P0), .in_n(RX_N0), .Rterm(Rterm_rx), .Cp(Cp_rx));

 // sources feeding clock and supply voltage
 clk_gen #(.freq(f_clk)) XP0 (.out(CK0));
 xbit_to_bit CK_CONN (.in(CK0), .out(CK));
 dc_gen #(.value(vdd_val)) XP1 (.out(VDD));

 // interface handshaking
 always begin: LOOP
 @(posedge IF.START);
 IF.DONE = 0;
 RX_present = IF.RX_present;
 Cc = IF.Cc;
 Cch = IF.Cch;
 Rterm_tx = IF.Rterm_tx;
 Rterm_rx = IF.Rterm_rx;

 EN = 0;
 #(t_init);
 EN = 1;
 fork
 @(posedge RXDET.CTRL.DONE);
 #(t_meas);
 join_any
 disable fork;

 IF.Np = (RXDET.CTRL.DONE) ? RXDET.CTRL.Np_val : -1;
 IF.DONE = 1;
 end: LOOP
endmodule: FIXTURE

interface IF_t (input bit RST);
 bit START, DONE; // handshaking signals
 bit RX_present; // configuration parameter
 real Cc, Cch, Rterm_tx, Rterm_rx; // condition parameters
 int Np; // measurement result
endinterface: IF_t

8

C. Scoreboard Component

The scoreboard component receives all the Np measurement results broadcast by the driver agent and tracks the

minimum value of Np with the receiver present, min(Np,w/RX), and the maximum value of Np with the receiver absent

max(Np,w/oRX). At the end of the simulation, the scoreboard reports these values for the design margin analysis.

Figure 8 lists the code of this scoreboard component.

Figure 8. The scoreboard component keeping track of the minimum Np with receiver present and maximum Np

with receiver absent.

IV. EXPERIMENTAL RESULTS

The described UVM testbench for the PCIe receiver detection circuit is run with Cadence Xcelium and

Scientific Analog XMODEL. Figure 9 shows an example of the final simulation log generated by UVM, listing

the results of the minimum Np with the receiver present (min(Np,w/RX)) and the maximum Np with the receiver

absent (max(Np,w/oRX)). On a 64-bit RHEL7 operating system being emulated on a computer equipped with Apple

M4 Pro processor and 48-GB memory, it required a total of 91 seconds to complete 400 iterations—200 iterations

for minimizing Np with the receiver present and 200 for maximizing Np with the receiver absent.

With the comparator thresholds set to Vref,H=1.75V and Vref,L=1.35V, the minimum Np with the receiver was

2,507 and the maximum Np without the receiver was 223. This yields a substantial separation of 2,507 – 223 =

2,284. Using an Np,thres value of 1,365, the corresponding design margins, defined as min(Np,w/RX) - Np,thres and

Np,thres - max(Np,w/oRX) can each reach up to 1,142 counts, indicating robust detection behavior.

Figure 9. The UVM simulation log listing the minimum Np with the receiver present and maximum Np with the

receiver absent with Vref,H=1.75V and Vref,L=1.35V.

class SCOREBOARD extends uvm_scoreboard;
 `uvm_component_utils(SCOREBOARD)

 uvm_table_printer printer;
 int Np_wRX; // minimum Np with RX present
 int Np_woRX; // maximum Np with RX absent

 task run_phase(uvm_phase phase);
 Np_wRX = 0;
 Np_woRX = 0;

 forever begin: SCORING
 FIFO.get(PKT);
 if (PKT.RX_present == 1) begin
 if (PKT.Np == -1 || Np_wRX == -1) Np_wRX = -1;
 else if (Np_wRX == 0 || PKT.Np < Np_wRX) Np_wRX = PKT.Np;
 end
 else begin
 if (PKT.Np == -1 || Np_woRX == -1) Np_woRX = -1;
 else if (Np_woRX == 0 || PKT.Np > Np_woRX) Np_woRX = PKT.Np;
 end
 end: SCORING
 endtask: run_phase

 function void report_phase(uvm_phase phase);
 printer.print_generic("", "", 0, {48{"-"}});
 printer.print_generic("", "", 0, $sformatf("Min Np with RX present = %0d", Np_wRX);
 printer.print_generic("", "", 0, $sformatf("Max Np with RX absent = %0d", Np_woRX);
 printer.print_generic("", "", 0, {48{"-"}});
 endfunction: report_phase

endclass: SCOREBOARD

 --
 Min Np with RX present = 2507
 Max Np with RX absent = 223
 --

9

Table I lists the design margins and simulated min(Np,w/RX) and max(Np,w/oRX) values for various settings of

Vref,L and Vref,H. The design margin is calculated as (min(Np,w/RX) - max(Np,w/oRX)) / 2, assuming that the

threshold Np,thres is placed at the midpoint of (min(Np,w/RX) + max(Np,w/oRX)) / 2. The receiver detection circuit is

considered operational only when min(Np,w/RX) exceeds max(Np,w/oRX). In the table, only the cases highlighted in

light green satisfy this condition.

It is important to note that this receiver detection circuit exhibits significant sensitivity to the variations in

Vref,L and Vref,H. Even small changes—on the order of tens of millivolts—can cause the margin to shrink

dramatically or even disappear entirely, leading to circuit failure in edge cases. This sensitivity underscores the

need for careful threshold tuning to ensure reliable operation across process, voltage, and temperature (PVT)

variations.

Table I. Design margins and simulated min(Np,w/RX) and max(Np,w/oRX) values for various combinations of Vref,L

and Vref,H. Each cell lists the computed design margin, followed by the corresponding (min(Np,w/RX),

max(Np,w/oRX)) pair. The entries with negative margins indicate failed detection conditions where min(Np,w/RX) <

max(Np,w/oRX), and the entries with ‘--’ represent cases where periodic oscillation could not be observed under

some operating conditions.

 VrefH

VrefL
1.700 1.725 1.750 1.775

1.400 -68 (15, 151) -73 (29, 175) -74 (55, 203) 466 (1187, 255)

1.375 -76 (15, 167) -73 (36, 183) 224 (663, 215) 1766 (3791, 259)

1.350 -76 (27, 179) 125 (449, 199) 1142 (2507, 223) 1912 (4095, 271)

1.325 64 (335, 207) 868 (1959, 223) 1802 (3851, 247) 1906 (4095, 283)

1.300 -- (- , -) -- (- , -) -- (- , -) -- (- , -)

V. CONCLUSION

This work demonstrates that a UVM testbench can be effectively extended to verify the functionality of

analog/mixed-signal (AMS) circuits across a continuous-valued parameter space. To efficiently and adaptively

explore this space, the testbench combines a reactive stimulus technique with a Bayesian optimization algorithm

to identify worst-case deviations in the circuit’s response. These measured response bounds can then be used to

determine the design margins of the circuit and assess their sensitivity to the secondary parameter variations.

Using a PCI Express (PCIe) receiver detection circuit as a case study, the testbench evaluates the range of the

circuit’s output—specifically, the oscillation period (Np)—to assess whether the circuit operates correctly across

the full range of specified condition parameters. The approach not only identifies the worst-case operating

conditions, but also determines optimal design parameter settings—such as the oscillation period threshold and

comparator reference levels—that maximize robustness.

The testbench encapsulates all the analog behaviors in its fixture module built using XMODEL primitives, while

standard UVM components handle sequencing, communication, and result analysis. Overall, this work

demonstrates that AMS verification can be made both adaptive and coverage-driven, supporting more automated

and scalable margin analysis in complex mixed-signal systems.

VI. ACKNOWLEDGMENT

The EDA tools used in this work were supported by the IC Design Education Center (IDEC), Korea and

Scientific Analog, Inc, Palo Alto, CA, U.S.A.

VII. REFERENCES

[1] R. Budruk, D. Anderson, and T. Shanley, "PCI Express System Architecture", MindShare, Inc., 2008.

[2] C. Guo and F. Yang, "Method and Apparatus for Receiver Detection on a PCI-Express Bus", US Patent US7222290B2.

10

[3] Scientific Analog, Inc. XMODEL. [Online]. Available at: https://www.scianalog.com/xmodel.

[4] C. Dancak, "A UVM SystemVerilog Testbench for Analog/Mixed-Signal Verification: A Digitally-Programmable Analog Filter

Example," Design and Verification Conference and Exhibition (DVCON) U.S., Mar. 2021.

[5] J. Kim, "A UVM Reactive Testbench for Jitter Tolerance Measurement of High-Speed Wireline Receivers," Design and Verification

Conference and Exhibition (DVCON) U.S., Mar. 2023.

[6] J. Kim, "A UVM Testbench for Checking the Global Convergence of Analog/Mixed-Signal Systems: An Adaptive Decision-Feedback

Equalizer Example," Design and Verification Conference and Exhibition (DVCON) Europe, Nov. 2024.

[7] C. E. Cummings, et al., “UVM Reactive Stimulus Techniques,” Design and Verification Conference and Exhibition (DVCON) U.S.,

Mar. 2020.

[8] R. Martinez-Cantin, "BayesOpt: A Bayesian Optimization Library for Nonlinear Optimization, Experimental Design and Bandits," J.

of Machine Learning Research, Nov. 2014.

[9] T. Kim, et al., "Verifying Start-up Failures in Coupled Ring Oscillators in Presence of Variability using Predictive Global Optimization,"

Int’l Conf. on Computer-Aided Design, Nov. 2013.

