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Abstract— This paper presents a UVM testbench for characterizing the design margins of analog/mixed-signal 

(AMS) circuits by finding the worst-case deviation of the circuit’s response across a continuous-valued parameter 

space. The testbench combines a reactive stimulus technique with a Bayesian optimization algorithm to efficiently and 

adaptively explore the parameter space. Using a PCI Express receiver detection circuit as a case study, of which analog 

components are modeled in SystemVerilog with XMODEL primitives, the paper demonstrates how the testbench can 

identify design points that maximize margin and assess their sensitivity to secondary operating conditions. This 

approach enables adaptive, coverage-driven AMS verification, supporting more automated and scalable margin 

analysis in complex mixed-signal systems. 

Keywords—analog/mixed-signal verification; universal verification methodology (UVM); SystemVerilog; XMODEL; 

design margin analysis; Bayesian optimization. 

I.  INTRODUCTION 

Often, the functionality of analog/mixed-signal (AMS) circuits must be verified over a continuous range of 

operating conditions to ensure that the circuit has sufficient design margins and can maintain robust operation even 

when the condition changes. This paper presents a UVM testbench for characterizing the design margins of an 

AMS circuit using reactive stimulus generation and optimization techniques to efficiently explore the condition 

parameter space.  

As a concrete example, we target a PCI-Express (PCIe) receiver detection circuit shown in Figure 1. This circuit 

determines whether a receiver is present or absent on the other end of an AC-coupled channel, and operates by 

forming a relaxation oscillator, measuring its oscillation period in digital counts (Np), and comparing the result 

against a predetermined threshold value (Np,thres). Since the value of Np also changes with the operating conditions 

of the circuit, including the changes in the AC coupling capacitance  (Cc), equivalent channel capacitance (Cch), 

and transmitter/receiver termination resistances (Rterm,tx and Rterm,rx), it is desirable to maximize the separation 

 

Figure 1. A PCI-Express transmitter-receiver configuration with the condition parameters shown: AC 

coupling capacitance (Cc), equivalent channel capacitance (Cch), and transmitter- and receiver-side 

termination resistances (Rterm,TX & Rterm,RX). 
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between the minimum value of Np observed when the receiver is present (min (Np,w/RX)) and the maximum value 

when the receiver is absent (max(Np,w/oRX)), and to choose a threshold value Np,thres that satisfies the inequality 

min(Np,w/RX) > Np,thres > max(Np,w/oRX) across a wide range of other condition parameters, such as the reference 

voltages (VrefL and VrefH). 

This paper presents a UVM testbench for measuring min(Np,w/RX) and max(Np,w/oRX) of a PCIe receiver detection 

circuit modeled in SystemVerilog, across specified ranges of the condition parameters, Cc, Cch, Rterm,tx, and Rterm,rx. 

Instead of exhaustively sweeping over all possible parameter combinations, the testbench leverages a reactive 

stimulus technique in conjunction with a Bayesian optimization algorithm to efficiently locate the point that yields 

the minimum or maximum Np within the defined parameter space. 

 

II. RECEIVER DETECTION CIRCUIT FOR PCI-EXPRESS TRANSMITTER 

A PCIe transmitter must determine whether a receiver is connected before initiating data transmission [1]. 

Figure 1 illustrates a typical configuration, where a PCIe transmitter is connected to a PCIe receiver via an AC-

coupled channel. The transmitter employs a differential current-mode driver, and both the transmitter and receiver 

sides include termination resistors to minimize signal reflections caused by impedance discontinuities. The PCIe 

specification requires that the receiver detection circuit correctly identify the presence or absence of a receiver for 

a range of condition parameters: AC coupling capacitance (Cc) between 76-265 nF, equivalent channel 

capacitance (Cch) up to 3 nF, and transmitter- and receiver-side termination resistances (Rterm,TX and Rterm,RX) each 

ranging within 40-60 Ω. 

One example of the receiver detection circuit operates by transforming the transmitter into a relaxation 

oscillator [2], as illustrated in Figure 2. The circuit turns on the transmitter’s pull-down currents when the 

common-mode voltage (Vcm) of the transmitter outputs exceeds a high reference threshold (Vref,H), and turns them 

     

 
 

Figure 2. Operation of the PCI-Express receiver detection circuit when the receiver is present (top) and 

absent (bottom). 
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off when Vcm falls below a low reference threshold (Vref,L). This produces a periodic waveform of Vcm oscillating 

between Vref,L and Vref,H, and the period of this oscillation can serve as an indicator of receiver presence. When 

the receiver is present, the setting time constant () is longer due to the termination resistors on both ends:   

(Rterm,TX+Rterm,RX)Cc. On the other hand, when the receiver is absent, the time constant is shorter:   (Rterm,TX)Cch.  

Figure 3 illustrates one possible implementation of this receiver detection circuit. The design forms a mixed-

signal feedback loop consisting of an output common-mode (Vcm) sensor, a 3-level quantizer, a digital controller, 

and a pull-down current (Idn) driver. The pull-down currents drawn from the transmitter’s outputs are controlled 

by the 2-bit digital output of the 3-level quantizer (comp[1:0]), which compares their common-mode voltage Vcm 

against two reference voltages, Vref,H and Vref,L. Specifically, the pull-down currents are enabled when Vcm rises 

above Vref,H and disabled when Vcm falls below Vref,L. This is basically the operation of a relaxation oscillator, 

producing periodic oscillations in both the analog voltages (e.g. Vcm) and the digital outputs (e.g. comp[1:0]). The 

digital controller counts the oscillation period (Np) using a 100MHz external clock and compares the result against 

a pre-defined threshold (Np,thres) to determine the receiver’s presence. 

Achieving robust operation of this receiver detection circuit requires careful tuning of the threshold values 

(Vref,H, Vref,L, and Np,thres). It is because the measured value of Np depends not only on the presence or absence of 

the receiver, but also on the values of Cc, Cch, Rterm,tx, and Rterm,rx. To ensure reliable detection, it is desirable to 

maximize the separation between the minimum value of Np observed when the receiver is present (min (Np,w/RX)) 

and the maximum value when the receiver is absent (max(Np,w/oRX)), and to choose a threshold value Np,thres that 

satisfies the inequality min(Np,w/RX) > Np,thres > max(Np,w/oRX) against possible variations in Vref,H and Vref,L.  

The analog components of the receiver detection circuit are modeled in SystemVerilog using primitives 

provided by XMODEL from Scientific Analog [3]. XMODEL enables the modeling of analog behavior with 

efficient, event-driven simulation semantics, fully integrated within the SystemVerilog environment. It supports 

both signal-flow modeling (e.g., using compare, transition, and and_xbit primitives) and conservative-system 

modeling (e.g., using isource and switch primitives). 

Figure 4 lists the models for the output common-mode sensor (sens_vcm), 3-level quantizer (comp_lev3), and 

pull-down current driver (drv_icm). Although these models may appear straightforward, their simplicity is a key 

advantage of XMODEL. In contrast, describing the same circuit using Real-Number Model (RNM) would be 

significantly more complex, primarily as the circuit draws currents from the transmitter output nodes, which are 

shared between the main PCIe transmitter circuit and the receiver detection circuit. Capturing this behavior in 

RNM requires the use of user-defined nets and resolution functions, whereas XMODEL handles it naturally and 

efficiently. 

 

      

 
 

Figure 3. The block diagram of the PCI-Express receiver detection circuit modeled with XMODEL 

primitives. 
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Figure 4. SystemVerilog models of the PCIe receiver detection circuit’s analog components using XMODEL 

primitives: the output common-mode sensor (sens_vcm), 3-level quantizer (comp_lev3), and pull-down current 

driver (drv_icm). 

 

III. UVM TESTBENCH FOR DESIGN MARGIN ANALYSIS 

Our objective is to develop a UVM testbench that verifies whether the circuit functions correctly over the full 

specification space of Cc, Cch, Rterm,TX, and Rterm,RX and assess its sensitivity to the variations in Vref,H, Vref,L, and 

Np,thres. 

Figure 5 shows the organization of the proposed UVM testbench. Building on the approaches described in [4]–

[6], the testbench encapsulates all the analog-specific details in a fixture module, enabling the rest of the testbench 

to be constructed using standard UVM components. The fixture module includes the full setup for evaluating the 

receiver detection circuit: transmitter drivers, AC-coupled channels, and configurations with and without receiver-

side terminations. All the condition parameters (Cc, Cch, Rterm,TX, and Rterm,RX) are implemented as signals, not as 

parameters in SystemVerilog, so that their values can vary during the course of simulation. 

The proposed UVM testbench follows a similar organization to the one described in [5], where the driver agent 

also serves as a monitor agent by employing a reactive stimulus technique [7]—selecting the next stimulus based 

on prior outcomes. Instead of exhaustively sweeping through a fixed set of condition parameter values, the 

testbench adaptively searches for parameter combinations that either maximize or minimize the oscillation period 

count (Np), leveraging a Bayesian optimization algorithm [8]-[9]. A Bayesian optimizer constructs a surrogate 

model using the results of Np obtained from previously evaluated parameter points. It then uses this surrogate model 

to predict the expected value of Np and the associated confidence level at unexplored points in the parameter space. 

module sens_vcm ( 
   output xreal out, 
 input xreal in_p, in_n, 
 input xbit en 

); 
 
xreal p0, n0; 
switch  #(.R0(`INFINITY), .R1(10.0e3)) SW1 (.pos(p0), .neg(out), .ctrl(en)); 
switch     #(.R0(`INFINITY), .R1(10.0e3)) SW2 (.pos(n0), .neg(out), .ctrl(en)); 
 
endmodule // sens_vcm 
 
 
module comp_lev3 #( 
    parameter real VrefH = 1.75, 
    parameter real VrefL = 1.35 
)( 
    output xbit [1:0] out, 
    input xreal in, 
    input xbit clk 
); 
 
xreal vref_H, vref_L; 
compare  #(.threshold(VrefL)) COMP0 (.out(out[0]), .in(in), .in_ref(`ground), .trig(clk),); 
compare  #(.threshold(VrefH)) COMP1 (.out(out[1]), .in(in), .in_ref(`ground), .trig(clk),); 
 
endmodule // comp_lev3 
 
 
module drv_icm #( 
    parameter real Idn = 0.0125 
)( 
    output xreal out_p, out_n, 
    input xbit in, en 
); 
 
xbit ctrl; 
and_xbit    U0 (.out(ctrl), .in({in,en})); 
transition  #(.value0(0.0), .value1(Idn)) U1 (.out(i_dn), .in(ctrl)); 
isource     #(.mode("in")) IP (.pos(out_p), .neg(`ground), .in(i_dn)); 
isource     #(.mode("in")) IN (.pos(out_n), .neg(`ground), .in(i_dn)); 
 
endmodule // drv_icm 
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Based on these predictions, the optimizer suggests the next parameter point to evaluate, thereby increasing the 

likelihood of discovering the maximum or minimum Np within the specified ranges. As previously discussed, the 

measured minimum value of Np observed when the receiver is present (min (Np,w/RX)) and maximum value when 

the receiver is absent (max(Np,w/oRX)) can be used to assess the design margin of the receiver detection circuit as 

well as its sensitivity to the variations in Vref,H and Vref,L. 

The following subsections provide detailed descriptions of each component within this UVM testbench. 

A. Sequencer Component 

The sequencer component is the key element in this UVM testbench, as it performs the iterative search to 

find the minimum Np with receiver present, min(Np,w/RX), and the maximum Np with receiver absent, 

max(Np,w/oRX), using the reactive stimulus [7] and Bayesian optimization techniques [8]. Figure 6 lists the 

simplified code of the sequencer component.  

A set of SystemVerilog DPI functions performing each step of the Bayesian optimization are defined using 

the BayesOpt library [8]: 

• BAYESOPT_initialize(num_vars, lower_bounds, upper_bounds) 

: initializes a BayesOpt data model with the number of variables and their lower/upper bounds. 

• BAYESOPT_selectNext(opt_data, var_values) 

: select the next trial point of variables in search of the minimum value. 

• BAYESOPT_updateModel(opt_data, var_values, result) 

: updates the BayesOpt data model with the result obtained for a given trial point. 

• BAYESOPT_getOptimum(opt_data, var_values) 

: estimates the optimum point of variables using the BayesOpt t data model. 

Using these DPI functions, the sequencer component initiates a sequence of Np measurement tests, first to 

determine the minimum Np with the receiver present and second to determine the maximum Np with the receiver 

absent. In each iteration, the sequencer calls BAYESOPT_selectNext() function to select the next set of condition 

parameters to explore. These parameter values are then sent to the fixture module through the driver component 
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Figure 5. Overview of the UVM testbench that uses reactive stimulus and Bayesian optimization techniques 

to verify circuits over a continuous space of condition parameters and measure design margins. 
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using the standard UVM methods: start_item() and finish_item(). The sequencer subsequently waits for a response 

from the fixture module via the driver, using the get_response() method. Upon receiving the response packet RSP 

containing the measured Np corresponding to the condition parameters, it updates the surrogate data model by 

calling the BAYESOPT_updateModel() function. After completing a predefined number of iterations (e.g. 200), 

the BAYESOPT_getOptimum() function is used to predict the set of condition parameter values that is most likely 

to yield the optimum result. 

 

Figure 6. The sequencer component searching for the minimum or maximum Np across the parameter space 

using reactive stimulus and Bayesian optimization techniques. 

B. Fixture Module 

The fixture module instantiates the PCIe receiver detection circuit model and contains the necessary test setup 

for measuring the oscillation period count Np with or without the receiver present for a given set of condition 

parameters. Figure 7 lists the code of the fixture module. Note that it is the only module that contains the XMODEL 

primitives. 

class SEQ_MARGIN extends uvm_sequence #(PACKET); 
    `uvm_object_utils(SEQ_MARGIN) 
 
    // ... some details omitted for brevity ... 
 
    int num_iter = 200;         // number of iterations 
    PACKET PKT, RSP;     // packets exchanged with fixture module 
 
    task body(); 
        PKT = PACKET::type_id::create("PKT"); 
        lower_bounds = '{75e-9, 0.0, 40, 40}; 
        upper_bounds = '{265e-9, 3e-9, 60, 60}; 
        opt_data = BAYESOPT_initialize(4, lower_bounds, upper_bounds); 
 
        // receiver present 
        PKT.RX_present = 1; 
        for (int i=0; i<=num_iter; i++) begin:LOOP1 
            if (i < num_iter) BAYESOPT_selectNext(opt_data, var_value); 
            else BAYESOPT_getOptimum(opt_data, var_value); 
            PKT.Cc = var_value[0]; 
            PKT.Cch = var_value[1]; 
            PKT.Rterm_tx = var_value[2]; 
            PKT.Rterm_rx = var_value[3]; 
 
            start_item(PKT); 
            finish_item(PKT); 
            get_response(RSP); 
 
            // find minimum Np when receiver is present 
            BAYESOPT_updateModel(opt_data, var_value, RSP.Np); 
        end: LOOP1 
 
        // receiver absent 
        PKT.RX_present = 0; 
        for (int i=0; i<num_iter; i++) begin:LOOP2 
            if (i < num_iter) BAYESOPT_selectNext(opt_data, var_value); 
            else BAYESOPT_getOptimum(opt_data, var_value); 
            PKT.Cc = var_value[0]; 
            PKT.Cch = var_value[1]; 
            PKT.Rterm_tx = var_value[2]; 
            PKT.Rterm_rx = var_value[3]; 
 
            start_item(PKT); 
            finish_item(PKT); 
            get_response(RSP); 

            // find maximum Np when receiver is absent 
            BAYESOPT_updateModel(opt_data, var_value, -RSP.Np); 
        end: LOOP2 
    endtask: body 
 
endclass: SEQ_MARGIN 
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The fixture module communicates with the driver component via a handshake protocol using START and DONE 

signals, enabling multiple Np measurements within a single simulation run. When the driver intends to initiate a 

new Np measurement for a set of Cc, Cch, Rterm,tx, and Rterm,rx values, it asserts START to 1. In response, the fixture 

module executes the test by configuring the simulation environment with the specified parameter values, applying 

them to the coupling capacitors, equivalent channel capacitors, and transmitter/receiver termination resistors. It also 

supplies a 100MHz clock (CK) and a 1.8V supply voltage (vdd). The fixture module initially waits for a period of 

time prescribed by t_init before enabling the receiver detection circuit. It then allows for the Np measurement to 

proceed, subject to a time-out window specified by t_meas. Upon completion, the fixture module sends the 

measured Np value back to the driver and asserts DONE to 1 to indicate the completion. 

 

Figure 7. The fixture module including the DUT model of the receiver detection circuit and the test setup for 

setting the condition parameters (Cc, Cch, Rterm,tx, and Rterm,rx) and measuring the oscillation period count (Np). 

module FIXTURE (IF_t IF); 
    // ... parameter definitions and signal declarations omitted for brevity ... 
 
    // DUT model for the PCIe receiver detection circuit 
    rxdetect    #(.VrefH(VrefH), .VrefL(VrefL), .Np_thres(1024)) 
                RXDET (.CK(CK), .TX_P(TX_P), .TX_N(TX_N), .EN(EN), .RXDETECT(RXDETECT)); 
 
    // transmitter and AC-coupled channels 
    tx_pcie     TX (.out_p(TX_P), .out_n(TX_N), .vdd(VDD), .Rterm(Rterm_tx), .Cp(Cp_tx)); 
    channel     CHN_P (.port_1(CH_P), .port_2(RX_P), .Cch(Cch)); 
    channel     CHN_N (.port_1(CH_N), .port_2(RX_N), .Cch(Cch)); 
    cap_sw      CP (.pos(TX_P), .neg(CH_P), .C(Cc)); 
    cap_sw      CN (.pos(TX_N), .neg(CH_N), .C(Cc)); 
 
    // add receiver depending on RX_present 
    bit_to_xbit RX_CONN (.in(RX_present), .out(RX_EN)); 
    switch      SW0 (.pos(RX_P), .neg(RX_P0), .ctrl(RX_EN)) 
    switch      SW1 (.pos(RX_N), .neg(RX_N0), .ctrl(RX_EN)) 
    rx_pcie     RX (.in_p(RX_P0), .in_n(RX_N0), .Rterm(Rterm_rx), .Cp(Cp_rx)); 
 
    // sources feeding clock and supply voltage 
    clk_gen     #(.freq(f_clk)) XP0 (.out(CK0)); 
    xbit_to_bit CK_CONN (.in(CK0), .out(CK)); 
    dc_gen      #(.value(vdd_val)) XP1 (.out(VDD)); 
 
    // interface handshaking 
    always begin: LOOP 
        @(posedge IF.START); 
        IF.DONE = 0; 
        RX_present = IF.RX_present; 
        Cc = IF.Cc; 
        Cch = IF.Cch; 
        Rterm_tx = IF.Rterm_tx; 
        Rterm_rx = IF.Rterm_rx; 
 
        EN = 0; 
        #(t_init); 
        EN = 1; 
        fork 
            @(posedge RXDET.CTRL.DONE); 
            #(t_meas); 
        join_any 
        disable fork; 
 
        IF.Np = (RXDET.CTRL.DONE) ? RXDET.CTRL.Np_val : -1; 
        IF.DONE = 1; 
    end: LOOP 
endmodule: FIXTURE 

 

interface IF_t (input bit RST); 
    bit START, DONE;   // handshaking signals 
    bit RX_present;   // configuration parameter 
    real Cc, Cch, Rterm_tx, Rterm_rx;  // condition parameters 
    int Np;    // measurement result 
endinterface: IF_t 
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C. Scoreboard Component 

The scoreboard component receives all the Np measurement results broadcast by the driver agent and tracks the 

minimum value of Np with the receiver present, min(Np,w/RX), and the maximum value of Np with the receiver absent 

max(Np,w/oRX). At the end of the simulation, the scoreboard reports these values for the design margin analysis. 

Figure 8 lists the code of this scoreboard component. 

 

Figure 8. The scoreboard component keeping track of the minimum Np with receiver present and maximum Np 

with receiver absent. 

IV. EXPERIMENTAL RESULTS 

The described UVM testbench for the PCIe receiver detection circuit is run with Cadence Xcelium and 

Scientific Analog XMODEL. Figure 9 shows an example of the final simulation log generated by UVM, listing 

the results of the minimum Np with the receiver present (min(Np,w/RX)) and the maximum Np with the receiver 

absent (max(Np,w/oRX)). On a 64-bit RHEL7 operating system being emulated on a computer equipped with Apple 

M4 Pro processor and 48-GB memory, it required a total of 91 seconds to complete 400 iterations—200 iterations 

for minimizing Np with the receiver present and 200 for maximizing Np with the receiver absent. 

With the comparator thresholds set to Vref,H=1.75V and Vref,L=1.35V, the minimum Np with the receiver was 

2,507 and the maximum Np without the receiver was 223. This yields a substantial separation of 2,507 – 223 = 

2,284. Using an Np,thres value of 1,365, the corresponding design margins, defined as min(Np,w/RX) - Np,thres and 

Np,thres - max(Np,w/oRX) can each reach up to 1,142 counts, indicating robust detection behavior.  

 

 

Figure 9. The UVM simulation log listing the minimum Np with the receiver present and maximum Np with the 

receiver absent with Vref,H=1.75V and Vref,L=1.35V. 

class SCOREBOARD extends uvm_scoreboard; 
    `uvm_component_utils(SCOREBOARD) 
 
    uvm_table_printer printer; 
    int Np_wRX;  // minimum Np with RX present 
    int Np_woRX;   // maximum Np with RX absent 
 
    task run_phase(uvm_phase phase); 
        Np_wRX = 0; 
        Np_woRX = 0; 
 
        forever begin: SCORING 
            FIFO.get(PKT); 
            if (PKT.RX_present == 1) begin 
                if (PKT.Np == -1 || Np_wRX == -1) Np_wRX = -1; 
                else if (Np_wRX == 0 || PKT.Np < Np_wRX) Np_wRX = PKT.Np; 
            end 
            else begin 
                if (PKT.Np == -1 || Np_woRX == -1) Np_woRX = -1; 
                else if (Np_woRX == 0 || PKT.Np > Np_woRX) Np_woRX = PKT.Np; 
            end 
        end: SCORING 
    endtask: run_phase 
 
    function void report_phase(uvm_phase phase); 
        printer.print_generic("", "", 0, {48{"-"}}); 
        printer.print_generic("", "", 0, $sformatf("Min Np with RX present = %0d", Np_wRX); 
        printer.print_generic("", "", 0, $sformatf("Max Np with RX absent  = %0d", Np_woRX); 
        printer.print_generic("", "", 0, {48{"-"}}); 
    endfunction: report_phase 
 
endclass: SCOREBOARD 

  ------------------------------------------------ 
  Min Np with RX present = 2507 
  Max Np with RX absent  = 223 
  ------------------------------------------------ 
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Table I lists the design margins and simulated min(Np,w/RX) and max(Np,w/oRX) values for various settings of 

Vref,L and Vref,H. The design margin is calculated as (min(Np,w/RX) - max(Np,w/oRX)) / 2, assuming that the 

threshold Np,thres is placed at the midpoint of (min(Np,w/RX) + max(Np,w/oRX)) / 2. The receiver detection circuit is 

considered operational only when min(Np,w/RX) exceeds max(Np,w/oRX). In the table, only the cases highlighted in 

light green satisfy this condition.  

It is important to note that this receiver detection circuit exhibits significant sensitivity to the variations in 

Vref,L and Vref,H. Even small changes—on the order of tens of millivolts—can cause the margin to shrink 

dramatically or even disappear entirely, leading to circuit failure in edge cases. This sensitivity underscores the 

need for careful threshold tuning to ensure reliable operation across process, voltage, and temperature (PVT) 

variations. 

Table I. Design margins and simulated min(Np,w/RX) and max(Np,w/oRX) values for various combinations of Vref,L 

and Vref,H. Each cell lists the computed design margin, followed by the corresponding (min(Np,w/RX), 

max(Np,w/oRX)) pair. The entries with negative margins indicate failed detection conditions where min(Np,w/RX) < 

max(Np,w/oRX), and the entries with ‘--’ represent cases where periodic oscillation could not be observed under 

some operating conditions. 

                   VrefH 

VrefL 
1.700 1.725 1.750 1.775 

1.400 -68  (15, 151) -73  (29, 175) -74  (55, 203) 466  (1187, 255) 

1.375 -76  (15, 167) -73  (36, 183) 224  (663, 215) 1766  (3791, 259) 

1.350 -76  (27, 179) 125  (449, 199) 1142  (2507, 223) 1912  (4095, 271) 

1.325 64  (335, 207) 868  (1959, 223) 1802  (3851, 247) 1906  (4095, 283) 

1.300 --        ( - , - ) --        ( - , - ) --        ( - , - ) --        ( - , - ) 

 

V. CONCLUSION 

This work demonstrates that a UVM testbench can be effectively extended to verify the functionality of 

analog/mixed-signal (AMS) circuits across a continuous-valued parameter space. To efficiently and adaptively 

explore this space, the testbench combines a reactive stimulus technique with a Bayesian optimization algorithm 

to identify worst-case deviations in the circuit’s response. These measured response bounds can then be used to 

determine the design margins of the circuit and assess their sensitivity to the secondary parameter variations. 

Using a PCI Express (PCIe) receiver detection circuit as a case study, the testbench evaluates the range of the 

circuit’s output—specifically, the oscillation period (Np)—to assess whether the circuit operates correctly across 

the full range of specified condition parameters. The approach not only identifies the worst-case operating 

conditions, but also determines optimal design parameter settings—such as the oscillation period threshold and 

comparator reference levels—that maximize robustness. 

The testbench encapsulates all the analog behaviors in its fixture module built using XMODEL primitives, while 

standard UVM components handle sequencing, communication, and result analysis. Overall, this work 

demonstrates that AMS verification can be made both adaptive and coverage-driven, supporting more automated 

and scalable margin analysis in complex mixed-signal systems. 
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