2025

DESIGN AND VERIFICATION ™

DV

CONFERENCE AND EXHIBITION 1

OCTOBER 14-15, 2025

ChipDesign DevOps — from sometimes
working to almost never broken

Johannes Kosters (koesters@de.ibm.com), Udo Krautz (krautz@de.ibm.com)
IBM Deutschland Research & Development GmbH, Boblingen, Germany
Jeff Brownscheidle (jbrownsc@us.ibm.com), Lou Schmidt (schmidtl@us.ibm.com)
IBM, Austin, United States of America

Abstract—Over the past 5-7 years, our global team at IBM has transformed the chip design process from a
compartmentalized, domain-specific workflow into a holistic, DevOps-driven methodology. What began as a small-
scale automation initiative has now evolved into a standardized CI/CD infrastructure adopted across the entire IBM
infrastructure group. The approach has been applied on the chips that are part of the recently announced Telum
II®[1][2] Processor, its predecessor Telum®[3] as well as the POWER10®[4][5] processor. These chips are custom
processor chips using advanced technology using 500-600 mm? of silicon and running at frequencies between 2.4
GHz and 5.5 GHz.

This transformation spans a multi-hundred-person engineering organization and supports numerous concurrent
projects. We discuss the cultural and technical challenges encountered, the strategies used to overcome them, and
the quantifiable benefits realized. Our approach emphasizes reproducibility, cross-project consistency, and developer
mobility, while integrating industry-standard tools and legacy systems. We conclude with lessons learned and ongoing
efforts to further optimize our infrastructure.

Keywords—hardware design; workflow; devops; developer mobility; productivity;

I. INTRODUCTION

Traditional chip design workflows are often fragmented, with domain-specific silos and manual processes that
hinder collaboration, reproducibility, and efficiency. Recognizing these limitations, we initiated a transformation
to adopt DevOps principles in hardware development. This paper presents our experience in evolving from ad
hoc automation to a standardized, scalable, and developer-friendly CI/CD infrastructure.

II. BACKGROUND AND MOTIVATION

Our initial environment lacked consistent integration checks, reproducibility, and shared infrastructure. Builds
were long, error-prone, and difficult to debug. The higher the level of integration, the more often we experienced
a break. With every iteration on chip level, it took us between one and two weeks to recover to a running state
on chip level. Inspired by DevOps practices in software engineering, we sought to:

o Automate repetitive tasks.

o Standardize the build and test processes.

o Improve collaboration across domains.

« Eliminate disruptions caused by missing dependency.

« Enable reproducibility and traceability.

« Efficient use of available compute and reuse of results.

o Enable high-quality checks also for external components.

« Revision control internal and external tool versions.

o Abstract infrastructure updates.

o Build a system that can target different acceptance criteria based on the domain or scope.
— Unit level (team of 2-20 people), i.e., load-store-unit, dispatch unit, cache, fabric, ...
— Subsystem level (integration of units)
— Chip or System level (full chip integration)



2025

DESIGN AND VERIFICATION ™

DV

CONFERENCE AND EXHIBITION 2

OCTOBER 14-15, 2025

III. METHODOLOGY AND IMPLEMENTATION
A. Infrastructure Foundation

We began with a small core team (1% of developers) to prototype a Jenkins-based automation system. Over
time, this evolved into a company-wide methodology built on:

« Git for version control.

« Jenkins for CI/CD orchestration.

o Make for build automation.

o JFrog Artifactory for artifact storage.

e IBM Spectrum LSF to submit build steps into our compute grid and efficiently manage per job compute
resources (CPUs & Memory)

The entire system is operated by a very small team as we enabled the users to efficiently contribute to the
overall flow by providing education and keeping the tooling restricted to the above standard components.

B. Feature-Based Development

A key enabler was the shift to feature-based development. This allowed for modular integration, better testing,
and clearer ownership of changes. We enabled this by embracing the capabilities of Git, where each feature
can get cleaned up by itself (it passes all defined acceptance criteria) on a branch before it gets merged into
the design that then flows up to other teams.

N

AJ

featureA

Conp o |, S S gy B R —

Fig. 1. Feature branches in Git

We built our entire development process around that, supported by management and technical leads. The term
"feature’ is meant as a change in design, environment, or even flow. Each feature comes with a well-defined
goal and acceptance criteria. The minimum criterion is to pass the CI process that is effective at a given point
in time. A feature will begin with a mindset of anticipating who is affected by the change. Depending on the
answer, either a few people within a team or multiple teams may have to coordinate efforts. Some examples
(ordered by number of affected teams or people):

o A fix for a problem that came up in regression.

o Restructuring of interfaces between units.

o Replacing an entire design component or addition of a new component and its connection on chip level.

o Restructuring the design to address a timing or physical congestion problem that requires RTL changes
and therefore affects design, verification, and physical teams across different hierarchies.

C. CI/CD Pipeline Design
Our CI/CD pipelines evolved from minimal checks to comprehensive validation suites, including:

o Design construction.

o Simulation model and environment builds.

o Smoke and acceptance tests.

o Structural checks such as linting and rule checkers.



2025

DESIGN AND VERIFICATION ™

DVCON

CONFERENCE AND EXHIBITION 3

MUNI SERMANY
OCTOBER 14-15, 2025

o Physical design steps and checks.

As a baseline, we defined a structure in which each team (usually in unit granularity) has its own protected
branch and CI. Each team is responsible for managing their protected branch, that is, the order of merges and
the definition of CI. Our system provides flexibility in these areas. Normally, each team delivers their work
products upstream (the next level of integration) through a pull request to the protected branch of that team.
The acceptance criteria are extended to include the checks defined by the receiving team.

In addition to running CI, our system provides the capability of running extended checks on snapshots of
the respective main branch or by running nightly regressions on a given release of the git repository based on
tags. Once teams choose this option, they sign up for monitoring these extended Cls and take steps to fix the
problems exposed by those runs. This approach is used mostly to balance runtime of a CI vs. more exhaustive
checking, i.e., long-running design rule checks or formal equivalence checks between design transformations.
To reduce compute resources, the build system first checks for prior build artifacts using the following steps:

o Get the input hash of all the inputs defined for a given step, extended by the hashes of all the inputs to
the steps in the dependency cone.

o Calculate a hash of these hashes and look for an artifact in JFrog for that build step with this hash.

o If an artifact is found, download it from Artifactory.

« If no artifact is found, build the step and upload the result to Artifactory using the hash.

The full system allows for checking that no inputs were missing from the specification by checking that no file
gets used from the file system via an audit run. The audit checks are performed as regular pipeline runs with
extended tracing and checking enabled. These checks are performed weekly or nightly.

D. Dependency Management

We use make to build our dependencies between our various build steps. To enable hierarchical approaches,
we define make targets for each of the design units (smallest team in our system). The overall architecture of
our chips defines how units contribute to higher integration levels. Furthermore we defined groups of targets
coming from the different skill domains covering logic design (construction and checking), verification (model
build, environment construction, smoke and accept) as well as physical design (synthesis, timing etc). Each
of the disciplines can then on each hierarchical level define meta targets specifying the checks for CI. These
constructs span a build graph. The meta targets serve as anchor points to run CI on the respective hierarchy.

libA.rtl arrA.rtl arrB.rlt libB.rtl arrA.rlt
\Ak AJ Kk J
unitA.rtl unitB.rtl
unitA.testbench unitA.model chipA.rtl chipA.testbench
—
— Q P

chipA.accept

Fig. 2. Example of a dependency graph



2025

DESIGN AND VERIFICATION ™

DV

CONFERENCE AND EXHIBITION 4

OCTOBER 14-15, 2025

IV. CHALLENGES AND SOLUTIONS
A. Cultural and Organizational Barriers

We encountered common DevOps adoption challenges, many of which are well-documented in software
development literature[6]]:

Resistance to change and skill gaps: Overcome through early wins, strong leadership support, and continuous
education. We put a lot of effort in education and provided class room material and office hours to find help.
This were challenging times as we are operating in a global team that spans the time zones of the world from
India over Europe to the West Coast of the US.

Our system is also constructed in a way that it is easy to reproduce the results of a CI run locally in your
workspace to debug fails and validate fixes while still benefitting from the advantages of artifactory. Over the
course of the 5 years venture resistance has turned into a culture that people really do not want to miss what
they have now.

Legacy systems: Gradual integration and abstraction layers allowed us to modernize without disrupting
ongoing work. Our tools suite is largely using in house tooling provided by an internal EDA team. That
allowed us to quickly iterate on issues and changes.

Communication gaps: This is actually something which turned out to be good to uncover. The CI system
is helping to expose overlooked dependencies and we see a behavior change in the planning phase. More and
more often we are observing that teams are thinking about their dependencies earlier and thus plan for the steps
to mitigate breakage from the beginning and not as an afterthought.

The constructs for using artifactory also enforce knowing your inputs better.

B. Hardware-Specific Issues

Applying DevOps to hardware development introduced unique complexities. We were expecting the build
times to be much larger than in the software domain and established initial maximum CI execution times. Any
build step that is not fitting into that budget we put into pipelines only running nightly or even less often.
This technique allowed us to manage the expectations of our users better and enabled us to guide their focus
depending on the problem.

The initial budgets we started of with were 5 hours build time on chip level, 2 hours on element level and
15 minutes on unit scope. For most of our environments we were able to achieve these initial goals, in some
cases though only by having parallel runs with the different domain CIs on a single GIT pull request.

Conceptually we were seeing the following problems:
Granularity of tasks: Hardware flows often involve large, interdependent steps that are not easily parallelized.

We managed to mitigate some of that by dividing large build steps into smaller pieces in collaboration with
our EDA team. Combining this effort with the generic artifactory approach allowed for a better user experience
from the beginning as reruns of a given former large step in fail situation often now only have to rerun the
failing portion that is affected by a fix.

Reproducibility: Ensured through strict artifact tracking and deterministic build environments. This was a
reoccuring problem throughout many of our tools. It manifested in several behaviors and aspects:

« Referencing volatile sources (not write protected design sources, l.e. by referencing designs from arbitrary
local paths), which were not closely tracked by git

« We had to change a common practice in our prior tools deployment strategy to use symbolic links to refer to
a ‘prod‘ or ‘latest‘ version of a tool. This practice sneaked its way into script and tools developers practice
using those tags as version information. As these pointers would change in a global fashion projects saw
unexpected breakage ever once in a while.

e Tools themselves not running in a reproducible fashion, i.e. seeing multi thread effects in a synthesis
environment. Some of these we have not fixed even by now especially in the physical design domain.



2025

DESIGN AND VERIFICATION ™

DV

CONFERENCE AND EXHIBITION 5

OCTOBER 14-15, 2025

Most often the tools involved are optimization tools that benefit from some randomness in finding a at
least locally optimum solution.

This leads to the Lack of binary pass/fail criteria: Most of the steps involved in the logic and verification
discipline can define a precise pass/fail criteria in a binary form. Especially some of the physical design steps
are not as easy to handle in that regard. A synthesis run usually requires checking at multiple dimensions like
area, timing, routing congestion, etc. Passing in one dimension may make the other dimension unresolvable.
The final signoff on all dimensions is usually only achieved towards the tail end of the design cycle.

To achieve higher quality in these domains we are defining pass/fail as barriers that must be met. Initially
the barriers are very relaxed but will be tightened up over the course of the project.

V. TECHNICAL INNOVATIONS
A. Unified Build System

We standardized build commands across CI and developer environments, which enables easy reproduction
of CI failures.

The system also simplified onboarding for new developers and allows for a very easy move of engineers
from one project to another (developer mobility). It allows every engineer to concentrate on the specifics of
the design faster instead of having to worry about how to process it.

Consistent artifact structures and naming conventions, which enables standardized tooling immediately de-
ployable in all of our projects. It simplifies extending the flows and overall tooling. We also paired this with
providing means to instantiate external dependencies to further tooling or design sources into the work tree of
our git checkout upon make execution. This feature provides a consistent holistic view to all sources leading
to the final product instead of having to search through different file system locations or databases.

B. Artifact Management

Artifacts are versioned and fetched automatically based on Git hashes. This reduces duplication and increases
reuse across teams. It also ensures traceability and reproducibility and enables future extensions like running
portions of the build on special compute resources either in the cloud or on special hardware (I.e emulation
engines) without having to rebuild or download the full stack.

C. Integration with Vendor Tools

We integrated third-party EDA tools (e.g., Cadence, Synopsys). A central system for build is easier to manage
from a Licensing and compute requirements perspective than individual users running on their own as we can
throttle builds or benefit from artifactory and thus safe licences.

We are facing some new challenges in this domain. It seems to us that vendor tools are often optimized
for interactive execution. This manifests for instance in some tools defaulting to a debug shell instead of just
returning with an error and a non-zero return code. As much as this is certainly supporting users that do
interactive debug it hampers batch execution and it is tedious to find settings for all the involved tools to
prevent such behavior. Even returning a non-zero return code upon an error in the execution of the tool is not
always given. We found that some tools require parsing a log file for certain markers to figure out whether it
passed or failed.

VI. QUANTIFIABLE BENEFITS

While exact metrics vary by project, we observed:

Reduced build breakages: At this point in time we almost never see integration breakage anymore on chip
or element level. This is a very important achievement for our higher integration levels as their deliveries are
usually on the critical path for every chip design project. Detecting problems early and close to the time a



2025

DESIGN AND VERIFICATION ™

DV

CONFERENCE AND EXHIBITION 6

OCTOBER 14-15, 2025

particular change was made is paying off. In case we detect flaws in the system we continuously improve our
checking and extend the reliability of our system.

Faster integration cycles: The availability of a CI/CD system and the culture change in our organization
turned out to have a positive effect on our teams ability to handle a couple of concurrent features in parallel.
By having clear branch naming conventions in Git, paired with appropriate checking and communication the
ability of the team to switch between features, iterate on them fast and still eventually converge without the
fear of loosing work results greatly improved.

Improved developer mobility: As the fundamental directory and file structure of each project in our
organization is following the same principals and is paired with identical build system constructs and CI
requirements and setup our engineers can become productive in a sibling project very fast. They can concentrate
on what matters to their work in regards of domain knowledge and micro architecture. They do not have to
re-learn how to cope with the design from a build perspective at all

Higher reuse of artifacts and configurations: By enabling users to use artifacts as a standard piece of their
day-to-day work, we have reduced the cost of individual rebuilds and also established traceable sources for
subsequent steps. Our organization gets less and less dependent on centrally stored data. We have established
means to generate caches of such artifacts on top of the simplistic approach of only locally storing the data.
In any case we have a much better understanding about how data flows through our workflows by now.

VII. SUMMARY AND OUTLOOK
A. Ongoing Work and Future Directions
We continue to refine and evolve our system in several areas:

e CI content and PR execution times: Balancing speed and coverage.

o Pipeline modularity and flexibility: Supporting diverse project needs.

« Integration of containerization: For portability and environment consistency.

o Metrics collection: To better understand pipeline performance and developer productivity.

B. Organizational Scale and Adoption

The DevOps transformation described in this paper is not confined to a single team or pilot project—it has
been adopted across the entire IBM infrastructure group responsible for chip design. This group comprises
several hundred engineers distributed globally, working on a diverse portfolio of chip design projects. Each
project has its own technical nuances, but all now share a unified CI/CD methodology and infrastructure.

This scale of adoption required more than just technical innovation. It demanded:

o Cross-functional alignment between RTL, verification, physical design, and software integration teams.
« Robust governance structures to ensure consistency and compliance across projects.

« Scalable infrastructure capable of handling large compute and memory requirements.

« Comprehensive training programs to onboard engineers with varying levels of DevOps familiarity.

« Standardized tooling and workflows to enable seamless project transitions and reduce onboarding time.

The result is a cohesive development environment where engineers can move between projects with minimal
friction, share artifacts and knowledge more effectively, and contribute to a continuously improving ecosys-
tem. This organizational convergence has not only improved technical outcomes but also fostered a stronger
engineering culture centered around collaboration, automation, and quality.

VIII. ACKNOWLEDGMENTS

The authors thank all IBM engineers who have contributed their experience and knowledge to improve the
environment. We especially thank them for their openness to adopt to new techniques and methods and their
continued feedback allowing further improvements.



2025

DESIGN AND VERIFICATION ™

DV

CONFERENCE AND EXHIBITION 7

OCTOBER 14-15, 2025

REFERENCES

New Telum II Processor and IBM Spyre™ Accelerator: Expanding Al on IBM Z and IBM LinuxONE.
URL: https://www.ibm.com/new/announcements/telum-ii/ (visited on 08/26/2024).

Hot Chips 2024: IBM Telum® II processor and IBM Spyre™ Accelerator chip for Al. URL: https://hc2024.
hotchips.org/assets/program/conference/day 1/04_HC2024.IBM.CBerry.final.pdf| (visited on 08/26/2024).
Hot Chips 2021: Real-time Al for Enterprise Workloads: the IBM Telum® Processor. URL: https://hc33.
hotchips.org/assets/program/conference/day 1/HC2021.C1.3%20IBM %20Cristian %20Jacobi %20Final. pdf
(visited on 08/26/2024).

IBM Reveals Next-Generation IBM POWERIO Processor. URL: https://newsroom.ibm.com/2020-08-17-
IBM-Reveals-Next-Generation-IBM-POWER10-Processor (visited on 08/17/2020).

HotChips 2021: IBM’s POWERIO Processor. URL: https://hc32.hotchips.org/assets/program/conference/
day 1/HotChips2020_Server_Processors_IBM_Starke_ POWER10_v33.pdf (visited on 08/17/2020).
Nasreen Azad. “DevOps Challenges and Risk Mitigation Strategies by DevOps Professionals Teams”. In:
International Conference on Software Business (ICSOB). Vol. 500. Lecture Notes in Business Information
Processing. Springer, 2024, pp. 369-385. DOI: 10.1007/978-3-031-53227-6_26.


https://www.ibm.com/new/announcements/telum-ii
https://hc2024.hotchips.org/assets/program/conference/day1/04_HC2024.IBM.CBerry.final.pdf
https://hc2024.hotchips.org/assets/program/conference/day1/04_HC2024.IBM.CBerry.final.pdf
https://hc33.hotchips.org/assets/program/conference/day1/HC2021.C1.3%20IBM%20Cristian%20Jacobi%20Final.pdf
https://hc33.hotchips.org/assets/program/conference/day1/HC2021.C1.3%20IBM%20Cristian%20Jacobi%20Final.pdf
https://newsroom.ibm.com/2020-08-17-IBM-Reveals-Next-Generation-IBM-POWER10-Processor
https://newsroom.ibm.com/2020-08-17-IBM-Reveals-Next-Generation-IBM-POWER10-Processor
https://hc32.hotchips.org/assets/program/conference/day1/HotChips2020_Server_Processors_IBM_Starke_POWER10_v33.pdf
https://hc32.hotchips.org/assets/program/conference/day1/HotChips2020_Server_Processors_IBM_Starke_POWER10_v33.pdf
https://doi.org/10.1007/978-3-031-53227-6_26

	Introduction
	BACKGROUND AND MOTIVATION
	METHODOLOGY AND IMPLEMENTATION
	Infrastructure Foundation
	Feature-Based Development
	CI/CD Pipeline Design
	Dependency Management

	Challenges and Solutions
	Cultural and Organizational Barriers
	Hardware-Specific Issues

	Technical Innovations
	Unified Build System
	Artifact Management
	Integration with Vendor Tools

	Quantifiable Benefits
	Summary and outlook
	Ongoing Work and Future Directions
	Organizational Scale and Adoption

	Acknowledgments

