2025

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

OCTOBER 14-15, 2025

A Generic Functional Safety Vector UVC

Siril Roy, Cadence Design System, Bengaluru, India (sirilr@cadence.com)
Raghav Sharma, Cadence Design System, Noida, India (raghavl@cadence.com)

Kilaru Vamsikrishna, Cadence Design System, Bengaluru, India (kilaruv@cadence.com)
Sushrut B Veerapur, Cadence Design System, Bengaluru, India (sushrut@cadence.com)

Abstract—Functional Safety (FuSa) standards are mandatory in modern semiconductor chips since the industry
evolves, and chips are largely used in automotive industry (Automotive FuSa standard — 1S026262). Failure analysis
is required to be completed throughout the RTL design and necessary safety mechanisms needs to be added in the RTL
design. Which means, FuSa begins with the design intellectual properties (IPs). FuSa related RTL must be added for
legacy IPs based on the analysis and new IPs must be architected with FuSa considerations. This paper demonstrates
the methodology to verify FuSa RTL design by using reusable UVC (UVM verification component) in constrained
random UVM TB (Module or IP Level TB)

Keywords—functional safety; UVM; UVC; SystemVerilog; verification; fault/error injection; interrupts; ASIL

. INTRODUCTION

This paper proposes a convenient approach for design verification of semiconductor designs which are
compliant with Functional Safety (FuSa) standards. To ensure FuSa compliance, RTL designs must be capable of
identifying any faults or unintended behavior that occur within the design and ensure design integrity to maintain a
safe state for the system. The detected interrupts are further forwarded to other design layers or other system
components based on the failure integrity. The proposed UVC simplifies the process of stress testing a design's
ability to inject and handle interrupts, also ensuring that fault injection is performed concurrently with functional
design aspects while also verifying compliance with the FuSa standards.

A. Functional Safety (FuSa) Overview

Functional safety refers to the concept that an overall system will remain dependable and function as intended
even in the event of an unplanned or unexpected occurrence. It provides the assurance that the safety-related systems
will offer the necessary risk reduction required to achieve safety for the equipment. FuSa is based on the concept
of risk reduction [1][2][3].

Two types of requirements are necessary to achieve functional safety:
1. Identification of the safety function
2. The safety integrity level — Measure of the risk level

In automotive domain, risk is quantified as ASIL (Automotive Safety Integrity Level). 1SO 26262 classifies the
risk levels from ASIL - A to D based on the most to least stringent safety measures [1].

In 1ISO 26262, SEooC (Safety element out of context) typically applies to items developed by Tier 2 or Tier 3
suppliers, who may not have the complete system information. Semiconductor components can be developed as an
SEooC. SEooC developer makes assumptions how the element will be used and detailed safety requirements are
derived from these assumptions.

The SEooC flow involves a series of activities and deliverables that ensure the component or software element
meets the required safety standards. Some of the key steps in the SEooC flow include:

1. Safety Requirements Specification: Define the safety requirements for the component or software element,
based on the intended use and application.

mailto:sirilr@cadence.com
mailto:raghav1@cadence.com
mailto:kilaruv@cadence.com
mailto:sushrut@cadence.com

2025

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

OCTOBER 14-15, 2025

2. FMEDA (Failure Modes and Effects Analysis): Perform a failure modes and effects analysis to identify
possible failure modes, their causes, and potential consequences.

3. FMEA (Failure Modes and Effects Analysis) validation: Validate the FMEA results by identifying the
critical items that must be controlled to prevent or mitigate failure.

4. Safety Manual: Develop a safety manual that provides detailed information on the safe use and integration
of the component or software element.

5. Assessment and Qualification: Assess the component or software element against the specified safety
requirements and perform qualification activities to ensure compliance with the relevant standards.

B. FuSa compliance RTL Design architecture Overview

Technical safety requirements (TSRs) are developed from the assumed functional safety requirements. Design
microarchitecture includes fault instances, such as Fault Generators or Fault Checkers, associated with each TSR
item. These fault instances serve as protection mechanisms in the event of a fault occurrence. To ensure thorough
testing, it is recommended to implement fault injection support for all safety-critical items. This internal fault
injection interface enables real-time testing, allowing for the detection and analysis of faults [4][5][6].

Some common fault instance designs used is given below.

Data and address parity generators and checkers.

Control and status register (CSR) duplicate error checkers.
Transaction timeout error checkers.

CRC generators and checkers

SRAM protection (single-bit or two-bit ECC error checkers).
FSM integrity (One-hot error) checkers.

oupwdE

Figure 1 is an example of a parity fault checker RTL module. In this module, the data_in and parity_in signals
serve as inputs that carry actual functional information. Conversely, data_in_fault_inj and parity_in_fault_inj are
fault injection signals corresponding to data_in and parity_in, respectively. These two fault injection signals are
utilized for real-time testing purposes [4][5][6]. Notably, the signal width can be controlled using input parameters,
and an output parity_err signal is generated to report detected parity errors.

module parity_checker_example #(parameter DATAPATH_WD =)
(input odd_par,
input [DATAPATH_WD-1:0] data_in,
input [(DATAPATH_WD/8)-1:0] parity_in,
input [DATAPATH_WD-1:0] data_in_fault_inj,
input [(DATAPATH_WD/8)-1:0] parity_in_fault_inj,
output parity_err)

wire [(DATAPATH_WD/8)-1:0] calc_parity;

// Parity Generator for comparision

parity_generator(.odd_par(odd_par),
.data(data_in~data_in_fault_inj),
.parity_out(calc_parity));

// Error output
parity_err = |(calc_parity~(parity_in”parity_in_fault_inj));

endmodule

Figure 1: Parity Checker Verilog RTL Module

In complex digital designs, numerous interfaces, Control and Status Registers (CSRs), RAMSs, timeout
conditions, Finite State Machine (FSM) states, and other components are often intertwined. According to the safety
manual, a fault instance (Which helps to move to safe state.) is required for every safety-critical item (TSRS).
Fortunately, most fault instance modules inside the RTL design can be reused and instantiated multiple times with
the required parameters and inputs. For instance, every interface data signal is typically parity-protected, requiring

2025

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

OCTOBER 14-15, 2025

either a parity generator or parity checker within the module, depending on the interface signal direction. The same
parity checker module can be instantiated several times, accepting interface data signals, parity signals as inputs,
and data width and parity width as input parameters.

Usually, registers are available in the design for internal fault injection, and the application layer can program
these registers to inject faults. However, maintaining injection and reporting registers in every part of the design
can be challenging. To address this issue, most microarchitectures incorporate a Fault logger module, through which
internal fault injections can be exercised. This module is then connected to all the fault instances inside the
surrounding modules through wiring.

C. Design Verification for FuSa Certification

In the context of Functional Safety (FuSa) certification, the Verification team plays a crucial role in providing
or helping to create work products that are essential for the certification process.

The three primary verification work products required for FuSa certification are:

1. Verification Plan [4][5].
2. Verification Specification [5][6].
3. Verification Report [5][6].

The Verification team is also involved in creating the Requirements Traceability Matrix (RTM), which ensures
that each safety requirement is linked to its corresponding verification test case and verification result. Tools like
Jama Connect specialize in requirements management and provide a platform for managing RTMs effectively. An
example of RTM is shown in Figure 2. As part of this process, the Verification team must map verification test
cases, verification results, functional coverage, and other relevant data to the applicable Technical Safety
Requirements (TSRs) or Technical Requirements (TRs). This meticulous mapping ensures clarity and
accountability throughout the verification process. Safety items mentioned in the safety manual must be tested by
injecting Transient Faults and Latent Faults. These test cases must demonstrate a connection to the TSRs using the
RTM. Additionally, Single Fault Interruption (SFI) and Double Fault Interruption (DFI) testing is required for all
identified safety items within the Device Under Test (DUT).

ardware Safely Requiremen ardware Safety Requiremen
Hardware Safely Req 1T1 Hardware Safety Requi T
E| External Safety Mechanism Requirement D1 El Assumption of Use D1
Technical Safety Requirement T1
L[] Technical Safety Requirement T1

Top Level Safety R t T1

% Top Level Safety Requirement T1 @ Top Leve! Safety Requiremen
=] Technical Requirement T1
5] Technical Requirement T1 = o Verification Test Gase T1) Verification Test Result T1

Figure 2: Requirements Relationship diagram from TSR to Test result

Testbench for FuSa Design verification must support following items, in addition to other functional verification
methods.

Injection and checking of both latent and transient faults.

Testcases or Functional coverage for every safety-related item.
Unnecessary fault interrupt assertion checks to prevent false triggers.
Injection and checks for SFI and DFI.

Checks to ensure proper fault reporting by the design.

agrwbdE

Fault injection can be performed through two primary methods: the Fault Injection Interface (FIl) or the
functional path. In this document, fault injection via the Fault Injection Interface is referred to as Internal Fault
Injection, whereas injection through the functional path is referred to as External Fault Injection. Examples of
External Fault Injection include sending incorrect parity over an interface, sending an incorrect Cyclic Redundancy
Check (CRC) in a packet, or presenting incorrect Error-Correcting Code (ECC) in the read data of a Random Access
Memory (RAM).

2025

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

OCTOBER 14-15, 2025

Il. DESIGN VERIFICATION OF FUSA RTL DESIGN

A. Existing verification Methodology

Directed Testbench Development: This involves creating a testbench environment to validate specific
Functional Requirements of the Design Under Test (DUT). Directed tests focus on checking specific behavior or
transactions of the design. Testcases written in this stage are designed to function independently, having specific
expectations and checking for those expectations only. Many numbers of FuSa related directed testcases created to
exercise each fault instances and fault logging and interrupt assertions is tested in each test.

Fault Logging Monitors and checkers: In a classic FUSA methodology, the monitor elements are added inside
the Design Under Verification (DUV) only when specific tests are written to capture the signal values required for
the test. The post-simulation results are verified and compared to the expected results manually or with script-based
help. A pin level UVM monitor logic created for monitoring every DUT (Design Under Test) interrupt ports. This
is not a reusable monitor and makes plenty lines of code when interrupt/error pins are more.

Constrained-Random UVM Testbench: The testbench developed with a set of constraints to limit random test
cases to only feasible cases. Constrained-random verification helps in ensuring coverage of specific corner cases,
conditionals, or parameterizable conditions while regulated via constrained directives. Fault injection makes plenty
of issues in the testbench and fault injection handling logic in the testbench leading to a complex testbench. Usually,
fault injection can be done through registers, corrupting interface bus, external fault injection input signals, HDL
forces, etc. For all these cases, a lot of testbench logic require to make the smooth test simulation with proper
checkers, data traffic, FSM state changes, etc. This complexity increases significantly if the design is compliance
to FuSa.

Formal Verification Checks: Verification engineers created assertion checks for specified functionality.
Significant time and effort required for creating formal checks for all DUT fault instances.

B. Introduction to FuSa Vector UVC

Both creating new FuSa compliance testbenches and enhancing existing testbenches to meet FuSa compliance
requirements involve significant time and effort, requiring multiple debug cycles. The design under test (DUT)
must recover from a fault state through a smooth transition, with each part of the testbench synchronized with the
recovery steps. The complexity of this process increases substantially as the number of safety items, also known as
TSRs, grows.

FuSa compliance RTL modules typically comprise hundreds of fault instances, depending on the complexity of
the DUT. This leads to thousands of fault injection or reporting input/output (1/O) ports, assuming that the error or
fault injecting and logging registers are not part of the DUT module. Usually, the fault logger takes input from
various modules, logs the status inside a register, and provides a few output interrupts.

This paper presents a reusable FuSa Vector UVC (Universal Verification Component) designed to be integrated
into any constraint-random UVM (Universal Verification Methodology) testbench that involves fault injection and
reporting 1/Os.

The primary benefit of this UVC is the simplification of testbench complexity, particularly for FuSa compliant
RTL designs that feature fault injection and fault logging 1/0s. By utilizing the FuSa Vector UVC, users can
generate constraint-random fault injection vectors, which can then be employed to inject faults into any part of the
safety requirements. Furthermore, this UVC streamlines testbench logic related to fault injection and reporting
within scoreboards, sequences, coverage collectors, and other components.

Figure 3 shows UVC interface example with injection and logging signals vectors declared. This signal width
must be decided by the UVC user based on the DUT interface.

2025

DESIGN AND VERIFICATION™

DVLCOIN

CONFERENCE AND EXHIBITION

MUNICH, GERMA

NY

OCTOBER 14-15, 2025

interface fusa_vector_uvc_if (input bit clk, input bit rst_n);

logic [FUSA_VECTOR_UVC_FAULT_INJ_VEC_WD-1 : 9] fault_inj_vector;
logic [FUSA_VECTOR_UVC_FAULT_LOG_VEC_WD-1 : 0] fault_log_vector;

// Monitor clocking block
clocking monitor_cb @(posedge clk);
input fault_inj_vector;
input fault_log_vector;
endclocking

// Clocking block for driver

clocking driver_cb @(posedge clk);
output fault_inj_vector;

endclocking // producer_cb

endinterface

Figure 3: FuSa Vector UVC Interface with fault signals

(

module sample_rtl
#(parameter DATAPATH_WD =

,parameter ADDR_WD =)

input clk

,input rst

,input [ADDR_WD-1:0] addr_ingress

,input [ADDR_WD-1:0] addr_ingress_fault_inj
,input [(ADDR_WD/8)-1:0] addr_ingress_par

,input [(ADDR_WD/8)-1:0] addr_ingress_par_fault_inj
soutput addr_ingress_error_out
,output [ADDR_WD-1:0] addr_egress

,input [ADDR_WD-1:0] addr_egress_fault_inj
s,output [(ADDR_WD/8)-1:0] addr_egress_par

,input [(ADDR_WD/8)-1:0] addr_egress_par_fault_inj
soutput addr_egress_error_out

,input [DATAPATH_WD-1:0] data_ingress

,input [DATAPATH_WD-1:0] data_ingress_fault_inj
,input [(DATAPATH_WD/8)-1:0] data_ingress_par

,input [(DATAPATH_WD/8)-1:0] data_ingress_par_fault_inj
soutput data_ingress_error_out
,output [DATAPATH_WD- data_egress

,input [DATAPATH_WD- data_egress_fault_inj
,output [(DATAPATH_WD/8)-1:0] data_egress_par

,input [(DATAPATH_WD/8)-1:0] data_egress_par_fault_inj
soutput data_egress_error_out

:0]
:0]

//-- Other I/Os for the functionality

// RTL Functional logic

// Fault instance : Parity Chekers instance for ingress address
parity_checker_example #(.DATAPATH_WD(DATAPATH_WD)) checker_addr_ingress

(.odd_par ()
,.data_in (addr_ingress)
,.parity_in (addr_ingress_par)
,.data_in_fault_inj (addr_ingress_fault_inj)
,.parity_in_fault_inj (parity_in_fault_inj)
,.parity_err (addr_ingress_error_out));

// Similar connections for other signals

parity_checker_example #(.DATAPATH_WD(DATAPATH_WD)) checker_addr_egress(//*port connections*//);
parity_checker_example #(.DATAPATH_WD(DATAPATH_WD)) checker_data_ingress(//*port connections*//);
parity_checker_example #(.DATAPATH_WD(DATAPATH_WD)) checker_data_engress(//*port connections*//);

endmodule

Figure 4: DUT with some fault instances

2025

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

OCTOBER 14-15, 2025

The integration and verification of FuSa Vector UVC are elucidated through example design and testbench
codes. Figure 4 illustrates an example DUT that incorporates four parity checker instances to perform parity
checking on interface input data. The parity checker instance module is depicted in Figure 1. Each checker has
input injection vectors for fault injection and a corresponding output wire for fault reporting, facilitating
comprehensive fault analysis and detection.

The FuSa Vector UVC is a comprehensive verification component that consists of a UVM sequencer, driver,
and monitor, all encapsulated within a UVM agent.

The sequence item is designed to incorporate two primary vector variables: fault injection and fault detection.
The size of these vectors is parameterized, allowing for flexibility and scalability in various verification
environments. At the time of integration, the UVC user must define this parameter to adapt the UVC to specific
module requirements. Additionally, the sequence item can be extended to include customized control variables
based on unique verification needs, providing further flexibility in test scenario development. To accommodate
specific requirements, users can extend the FuSa Vector UVC sequence item class to create a custom class and
override the parent class as needed. Furthermore, the interface of this UVC is designed to maintain consistency by
incorporating the same parameterized vectors, ensuring alignment between the sequence item and the interface.

// Parameters are user defined
class fusa_vector_uvc_seq_item #(int INJ_VECTOR_SIZE = , int LOG_VECTOR_SIZE =) extends
uvm_sequence_item;

// Variable : Vector for Fault Injection,
rand logic [INJ_VECTOR_SIZE-1:0] fault_inj_array;

// Variable : Vector for Fault Reporting
rand logic [LOG_VECTOR_SIZE-1:0] fault_log_array;

function new (string name = "fusa_vector_uvc_seq_item");
super.new(name);
endfunction

// Tasks and functions to be performed over transcation

endclass

Figure 5: FuSa Vector UVC Transaction item

forever begin
// Create a new monitor object
monitor_trans = fusa_vector_uvc_seq_item::type_id::create("monitor_trans”, this);

// Indicate the start of a monitor transaction
void' (begin_tr(monitor_trans));

monitor_trans.fault_inj_array
monitor_trans.fault_log_array

= vif.monitor_cb.fault_inj_vector;
= vif.monitor_cb.fault_log_vector;
// Indicate the end of a monitor transaction & trigger callback
void' (end_tr(monitor_trans));

monitor_ap.write(monitor_trans);

// Wait until a transaction has started.

do begin
@(vif.monitor_cb);
end while ((monitor_trans.fault_inj_array === vif.monitor_cb.fault_inj_vector) &&
(monitor_trans.fault_log_array === vif.monitor_cb.fault_log_vector));
end

Figure 6: FuSa Vector UVC Monitor Sampling logic

This UVC monitor is designed such that any toggling of injection or reporting vectors will create a transaction
item and send it into the analysis port. Users can then take the transaction item and perform the required processing
based on the values. Figure 6 illustrates an example of the monitor's run phase logic.

2025

DESIGN AND VERIFICATION™

DVLCOIN

CONFERENCE AND EXHIBITION

MUNICH, GERMANY
DOCTOBER 14-15, 2025

C. Integration of FuSa Vector UVC in to the Testbench

Figure 7 illustrates an example Testbench architecture diagram with an integrated FuSa Vector UVC. The FuSa
Vector UVC initiates fault vector transactions using a virtual sequencer. Monitored transactions are sent to a fault
scoreboard and other necessary components through an analysis port, depicted by the green line. When a fault is
detected, monitored transaction item is shared across the Testbench components via the red line. Some sequences
wait for the reported fault, which can be accessed through the p_sequencer handle (shown as red dotted line).

Data transactions

far
l scoreboarding l

Virtual
Sequences

T N UVC Wrappers
. Data integrity

B SHmarTEn Functional UVCs/

V\r‘tualSd‘R‘“ ViPs
ConfigObj 7 [REE—. - [l I
SSN

= TB FUSA T
Monitor
Coverage FUSA Vector UVC m
- -
Collectors
v
Other TB Control Fault
compenents Scoreboard

——————————— Fault Reporting vector
—————————————— » Fault Reporting vector through p_sequencer
————— Fault Injecting vector

Figure 7. Testbench architecture diagram

//-- Fault Injection packed Struct
typedef struct packed {
logic [ADDR_WD-1:0] addr_ingress_fault_inj

3
logic [(ADDR_WD/8)-1:0] addr_ingress_par_fault_inj ;
logic [ADDR_WD-1:0] addr_egress_fault_inj H
logic [(ADDR_WD/8)-1:0] addr_egress_par_fault_inj H
logic [DATAPATH_WD-1:0] data_ingress_fault_inj H
logic [(DATAPATH_WD/8)-1:0] data_ingress_par_fault_inj ;
logic [DATAPATH_WD-1:0] data_egress_fault_inj H
logic [(DATAPATH_WD/8)-1:0] data_egress_par_fault_inj H

} fault_inj_t;

//-- Fault Log packed Struct
typedef struct packed {

logic addr_ingress_error_out H
logic addr_egress_error_out H
logic data_ingress_error_out H
logic data_egress_error_out H

} fault_log t;

//-- 2 addr signals, 2 addr_par signals, 2 data signals, 2 data_par signals
parameter FUSA VECTOR_UVC_FAULT_INJ_VEC_WD = (ADDR_WD + (ADDR_WD/2) + DATAPATH WD +
(DATAPATH_WD/8)) * 2;

//-- 4 report signals
parameter FUSA_VECTOR_UVC_FAULT_LOG_VEC_WD = 4;

Figure 8: FuSa Vector UVC related Structures and Parameters

It is highly recommended to create a fault injection structure that includes all the input signals of the DUT where
faults can be injected, as well as a fault logging structure that comprises all the output signals of the DUT that
require monitoring and reporting. Additionally, it is essential to calculate the fault injection vector size and fault

2025

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

OCTOBER 14-15, 2025

logging vector size parameters. Figure 8 illustrates an example of how these structures can be created and the
corresponding parameter calculations can be performed.

D. Random Fault generation and fault checks using FuSa Vector UVC

Random fault injection data is driven to the virtual interface by the UVC driver, enabling dynamic and realistic
fault simulation. This provides a robust methodology for testing the reliability and fault tolerance of the design. To
connect the interface signals to the DUT, DUT-specific fault signal structures explained in the Figure 8 is used.
This enables the verification environment to mimic real-world scenarios and test the DUT's response to faults.
Figure 9 illustrates an example of DUT instantiation in the TB top-level module and demonstrates the connection
method between the FuSa vector UVC interface and DUT inputs/outputs.

module fusa_top_tb_example()

//--- FuSa UVC Interface handle ---
fusa_vector_uvc_if uvc_if (intf_wrapper.clk, intf_wrapper.rst);

//--- Structure with Fault Injection Information ---
fault_inj_t fault_inj;

//--- Structure with Faults Logged Information ---
fault_log_t fault_log;

//--- Connections between FuSa Vector and UVC interface ---
assign fault_inj = uvc_if.fault_inj_vector;
assign uvc_if.fault_log_vector = fault_log;

//--- Controller Interface ---
tb_intf_wrapper intf_wrapper();

//--- RTL Instance ---
sample_rtl #(.DATAPATH_WD()) DUT

(.clk (intf_wrapper.clk)
,.Pst (intf_wrapper.rst)
,.addr_ingress (intf_wrapper.addr_ingress)
,.addr_ingress_fault_inj (fault_inj.addr_ingress_fault_inj)
,.addr_ingress_par (intf_wrapper.addr_ingress_par)
,.addr_ingress_par_fault_inj (fault_inj.addr_ingress_par_fault_inj)
,.addr_ingress_error_out (fault_log.addr_ingress_error_out)
,.addr_egress (intf_wrapper.addr_egress)
,.addr_egress_fault_inj (fault_inj.addr_egress_fault_inj)
,.addr_egress_par (intf_wrapper.addr_egress_par)
,.addr_egress_par_fault_inj (fault_inj.addr_egress_par_fault_inj)
, -addr_egress_error_out (fault_log.addr_egress_error_out)
,.data_ingress (intf_wrapper.data_ingress)
,.data_ingress_fault_inj (fault_inj.data_ingress_fault_inj)
,.data_ingress_par (intf_wrapper.data_ingress_par)
,.data_ingress_par_fault_inj (fault_inj.data_ingress_par_fault_inj)
, .data_ingress_error_out (fault_log.data_ingress_error_out)
,.data_egress (intf_wrapper.data_egress)
,.data_egress_fault_inj (fault_inj.data_egress_fault_inj)
, .data_egress_par (intf_wrapper.data_egress_par)
, .data_egress_par_fault_inj (fault_inj.data_egress_par_fault_inj)
, .data_egress_error_out (fault_log.data_egress_error_out)
—);
endmodule

Figure 9: Interconnections between DUT and FuSa Vector UVC inside TB top

This UVC designed for FuSa applications allows sequences to randomize FuSa Vector sequence items and
generate constrained random fault vectors. Additionally, transaction items from the monitor can be utilized to verify
fault assertions in various functional (External) fault injection scenarios, including parity fault injection over
interface data, cyclic redundancy check (CRC) fault injection, error-correcting code (ECC) fault injection, finite
state machine (FSM) one-hot fault injection and Timeout fault injection scenarios. This UVC provides monitored

2025

DESIGN AND VERIFICATION™

DVLCOIN

CONFERENCE AND EXHIBITION

MU

ICH, GERMANY

DOCTOBER 14-15, 2025

vectors through an analysis port, enabling testbenches to leverage these transaction items for scoreboarding,
coverage analysis, testbench control, and other purposes.

Figure 10 shows an example of fault vector generation based on an example constraint. Some tasks also shown
in the figure related to pre fault injection configurations and post fault detection checks.

class fusa_vector_uvc_seq extends uvm_sequence;
rand fault_inj_t err_inj_array;

// Testbench config object for creating test scenarios
fusa_tb_scenario tb_sceanrio;

// Variable declarations for other sequence control

“uvm_object_utils(fusa_vector_uvc_seq)
“uvm_declare_p_sequencer(vsequencer)

// Constraint to control Fault Injection Types and Scenarios
constraint addr_egress_par_fault_inj_c {
if(tb_sceanrio.addr_egress_corruption_en) {
$countones({err_inj_array.addr_egress_par_fault_inj,
err_inj_array.addr_egress_fault_inj} > 0) ;
}

}
// Constructor other methods
// Task: body
virtual task body();
fusa_vector_uvc_seq_item #(INJ_VECTOR_SIZE, LOG_VECTOR_SIZE) fusa_uvc_seq;

// Create Fusa_fault_uvc sequence item //TODO add parameters
“uvm_create_on(fusa_uvc_seq(), p_sequencer.fusa_vector_uvc_sqr)

// Pre-Error injection process (Register Configurations(Mask, Severity, Control etc.))
pre_err_inj_config();

// Sequence start
“uvm_rand_send_with(fusa_uvc_seq, { fault_inj_array == local::err_inj_array; })

// wait for the Interrupt log vector from Fusa vector UVC monitor
wait_for_interrupt();

// Post-Error detection process (Interrupt checks and CSR Checks)
post_err_inj_config();

endtask // body

endclass // fusa_vector_uvc_seq

Figure 10: FuSa Vector UVC Sequence Staring and Handling interrupts

The testbench (TB) with integrated fusa Vector UVC can generate an expected transaction item based on the
fault injection and further compare the actual fault from the DUT with the expected transaction item. These fault
queues can further be used to perform end of simulation checks to make sure all intended fault injections happened
successfully and no unintended faults were detected by the DUT.

This UVC can also be integrated at various levels such as sub-system, System-on-Chip (SOC), and top-level
testbenches as a passive agent for monitoring the faults. For clarity on internal fault and external fault scoreboarding,
example code is available for illustration, such as in figure 11 and figure 12, which distinguish between these two
types of faults.

2025

DESIGN AND VERIFICATION™

DVLCOIN

CONFERENCE AND EXHIBITION

MUNICH, GERMANY
OCTOBER 14-15, 2025

virtual function void write_exp_fusa_uvc (fusa_vector_uvc_seq_item trans);
fault_inj_t fault_inj_vector;
fault_log_t fault_log_vector;

if(!$cast(fault_inj_vector, trans.fault_inj_array))
“uvm_error(get_name(), "Dynamic casting failed")

// -- Predicting the log vector based on injection

if ($countones(trans.fault_inj_array) > ©) begin
fault_log_vector = generic_fault_prediction(fault_inj_vector);
exp_fault_log_array_q.push_back(fault_log_vector);

end

//-- Other function codes --

endfunction

//-- Predicting err reporting vector based on error inj vector
virtual function fault_log_t generic_fault_prediction(input fault_inj_t err_inj);
fault_log t err_log;

err_log.addr_ingress_error_out (|{err_inj.addr_ingress_fault_inj,

err_inj.addr_ingress_par_fault_inj}) ? : H
err_log.addr_egress_error_out = (|{err_inj.addr_egress_fault_inj ,
err_inj.addr_egress_par_fault_inj }) ? : H
err_log.data_ingress_error_out = (|{err_inj.data_ingress_fault_inj,
err_inj.data_ingress_par_fault_inj}) ? : H
err_log.data_egress_error_out = (|{err_inj.data_egress_fault_inj ,
err_inj.data_egress_par_fault_inj }) ? : H

return err_log;
endfunction

Figure 11: Scoreboarding approach for Internal fault injection

virtual function void write_dut_ingress_trans (dut_trans_item trans);
dut_trans_item pred_trans;
fault_log t fault_log_vector;

//-- created pred_trans. then updating the parity based on rcvd addr signal
pred_trans.addr_ingress_par = calc_parity(trans.addr);

//-- Example External error prediction

fault_log vector.addr_ingress_error_out = (trans.addr_ingress_par !=
pred_trans.addr_ingress_par) ? : H

//-- Other fault vector predictions

//-- Sending the item to the expected Q after all predictions

if ($countones(fault_log vector) > ©) begin

exp_fault_log_array_q.push_back(fault_log vector);
end

//-- Other function codes --

endfunction

Figure 12: Scoreboarding approach for External fault injection

I1l. RESULTS

The FuSa vector UVC has been successfully integrated into multiple testbenches at both the module and top-
level TB and efficiently handling thousands of fault injection vectors and reporting vectors. Due to its modular and
scalable architecture, the FuSa vector UVC has been effectively utilized for dynamic fault injection, comprehensive
checker coverage, and monitoring purposes across various use cases.

The presented approach has been successfully used in UCle (Universal Chiplet Interconnect Express) Controller
IP (FuSa certified IP) project, which is a highly configurable and complex design. FuSa vector UVC reused across
five module level testbenches as an active component and it is utilized as a passive component for various interfaces

10

2025

DESIGN AND VERIFICATION™

DVLCOIN

CONFERENCE AND EXHIBITION

MUNICH, GERMANY
OCTOBER 14-15, 2025

within the top-level testbench. The stability and effectiveness of this UVC have been thoroughly verified, yielding
successful outcomes across all testbenches involved in the project.

Please find the testbench simulation snapshot of UCle Adapter Module testbench where random fault injection
across different safety points along with the data traffic. A wave diagram of fault injection along with traffic to few
UCle adapter mainband safety points is illustrates in Figure 13. Output fault assertion and data traffic signals also
highlighted in the Figure.

@ Baseline=0

| £F Cursor-Baseline ¥ = 61,6441 Baseline = 0

Name @~ Cursor @ L

Figure 13: Simulation Result representing multiple fault injections and fault reporting along with UCle mainband traffic

Considering the criticality of FuSa verification, a separate code coverage analysis was performed with an auditor
for all FuSa safety points. This was achieved in a remarkably short timeframe. Below are a few examples of the
results obtained for the UCle Adapter mainband FSM one-hot RTL instance's Code Coverage (CC).

Name Combined Cov
u_dut.gen_ucie_cxsi_ucie_cxsi_ucie_fdi_sm.one_hot_stall_state 23 /23 (100%)
u_dut.i_ucie_adapter_top.i_ucie_adapter_corei_ucie_adapter_mainband.i_s0_fdi_arbmux.ob_fdi_arbiter fdi_protocol_select mb_ob_ctrl_sm_one_hot_err_detect 43/ 43 (100%)
u_duti_ucie_adapter_top.i_ucie_adapter_core i ucie_adapter_mainbandi_s0_fdi_arbmux ob_fdi_arbiter fdi_protocol_select.raw_fdi_sm_one_hot_err_detect 31/31 (100%)
u_duti_ucie_adapter_top.1_ucie_adapter_core.1_ucte_adapter_mamband.ob_stack arb_retry.stack_arb_mux_ctrl stgl.stack_arb_sm_one hot_err_detect 38 /38 (100%)
u_dut.i_ucie_adapter_top.1_ucie_adapter_core.i_ucte_adapter_mamband.ob_stack_arb_retry.stack_arb_mux_ctrl_stgl.stack_arb_nop_idle_count_sm_one_hot_err_detect 33 /33 (100%)
u_dut.i_ucie_adapter_top.i_ucie_adapter_core.i_ucie_adapter_mainband.ob_stack_arb_retry.replay_cmd_genacknak seq num_chgdet_sm_one_hot_err_detect 33 /33 (100%)
u_duti_ucie_adapter_top.i_ucie_adapter_corei_ucie_adapter_mainband.ob_stack_arb_retry.seq num_sync_sm.sync_sm_state_one_hot_err_detect 33 /33 (100%)
u_dut.i_ucie_adapter_top.i_ucie_adapter_core.i_ucie_adapter_mainband.ob_rdi_flit_packerob_flit pack_crcgen_DP3512B_256B_128B.i_ob_{lit_pack cregencregen_sm_one_hot_err_detect 86/ 86 (100%)
u_duti_ucie_adapter_topi_ucie_adapter_corei_ucie_adapter_mainband ob_rdi_flit packerob_flit_pack pds 68b.ob_flit_pack pds_68b packer_ofvl ctrl_sm_one_hot_err_detect 31/31 (100%)
u_dut.1_ucie_adapter_top.1_ucie_adapter_core.1_ucte_adapter_mamband.ob_rdi_flit packerob flit_pack pds 68b.ob_flit_pack pds 68b.irdy mactive_det sm_one_hot err_detect 31/31 (100%)
u_duti_ucie_adapter top.i_ucie_adapter core.i_ucie_adapter mainband.i mb_misc.i s0_stall fdi trdy req ack sm.stall fdi trdy req ack sm one_hot err detect 39 /39 (100%)
u_duti_ucie_adapter_top.i_ucie_adapter_core.i_ucie_adapter_mainband.i_mb_misc.rdi_stall req ack_sm_one_hot_err_detect 38 /38 (100%)
u_dut.i_ucie_adapter_top.i_ucie_adapter_core.i_ucie_adapter_mainband.i_ib_rdi_flit_unpack ib_flit unpack _pds 68b.i_ib_flit_unpack pds_68b.unpacker_hreg_ctrl sm_one_hot_err_detect 35/35 (100%)

u_dut.i_ucie_adapter_topi_ucie_adapter_core i ucie_adapter_mainband i_ib_rdi_flit_unpack ib_flit_unpack_crc_check_DP3512B_DP2356B_DP128B.i_ib_flit_unpack_crc_check ib_sf fifo_rd_sm_one_hot_err_detect 37 / 37 (100%)
u_duti_ucie_adapter_top.1_ucie_adapter_core.1i_ucte_adapter_mamband.i_1b rdi_flit_unpack.ib_flit_unpack_cre_check DP512B_DP256B_DP128B.1_ib_flit_unpack crc_check.crecheck sm_one_hot_err_detect 90/90 (100%)

u_dut.i_ucie_adapter_top.1_ucie_adapter_core.i_ucte_adapter_mamband.i_ib replay_decode_stack_demux.i ib_fhdr_replay_decede.replay no_acknak timeout sm_one_hot_err_detect 33 /33 (100%)

Figure 14: Example Code Coverage Results for UCle Adapter FSM fault instances

Hundred percent functional coverage (FC) for all safety items (TSRs), is required to be presented for verification
completeness. Notably, this UVC supports direct conversion of monitored fault-reported vectors with TSR interface
signals using the Verilog structures. As a result, we were able to sample all FC elements related to TSRs
immediately after receiving the transaction item from the FuSa vector UVC monitor. This approach enables us to
achieve and report 100% FC in the FuSa verification report work product.

To create and manage the FC plan, we utilize Cadence vPlan (Verification Plan) within the vManager tool. This
plan is then seamlessly mapped to Jama Connect using REST APIs, thereby establishing a connection between
verification results and corresponding TSRs in a remarkably short timeframe. FC closeness metric is illustrating

11

2025

DESIGN AND VERIFICATION™

DVLCOIN

CONFERENCE AND EXHIBITION

MUNICH, GERMANY
DCTOBER 14-15, 2025

verification test results as a pass in Jama Connect, indicating that the test suite has achieved a satisfactory level of
functional coverage.

A total of bugs related to Cadence UCle Controller Functional Safety (FuSa) RTL design were detected within
a 6-month timeframe. A significant 75% of these bugs were identified in less than 3 months. The graph illustrating
this trend is derived from data extracted from Jira software, specifically filtered to focus on bugs associated with
the Cadence UCle Controller FuSa functionality.

|ssues

Figure 15: Graph representing UCle Controller monthly ASF RTL bug rate

Cadence UCle controller got 1ISO26262 ASIL B certification after submitting FuSa work products on November
2024. Verification report created with the 100% regression and coverage metrics. All the safety points verified with
internal and external fault injection and mapped all these metrics to Jama Software for review.

A. Other Benefits of using FuSa Vector UVC

This UVC integration into the testbench required less effort and enabled simulation of the design within a
two-man-week timeframe.

This approach helps simplify all types of fault injection and checking methods (both external and internal
faults) by enabling predictions for fault reporting signals after fault injections within the scoreboards by
analyzing the monitored transactions.

Most of the RTL safety mechanisms (E.g. Parity Generator or checker modules, ECC generators and
checkers, Duplication fault checkers) for TSR’s are reused across the design modules. These RTL instances
are differed only with respect to 1/0 connection and parameters passed. All the parameter (E.g. Signal width,
odd or even parity, etc.) issues, I/O connection issues identified easily and in quick time.

Fault injection testing with and without traffic is not a complex task since fault injection transactions are
send from this UVC sequence in parallel to other traffic sequences.

Most of the fault injection testcases controlling the testbench (E.g. Pause and resume of traffic, moving to
different states, applying the reset, Flushing the scoreboards, etc.) is a complex task. By using FuSa Vector
UVC, testbench could wait for transactions from this UVC monitor and then took necessary action based
on the transaction item field values.

This approach helped to reduce significant amount of time for closing the Code Coverage (CC) analysis.
Achieving 100% CC for all safety instances will reduce the risk for FuSa verification. There are 100+ safety
instances in the design and a total of 200+ 1/Os for fault injection and reporting considering all the safety
instances. This is contributing around 10,000+ elements in the toggle coverage only because of signals
widths. 100% CC easily achieved by adding distribution constraints in the FuSa vector UVC transaction
randomization.

12

2025

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

OCTOBER 14-15, 2025

(1]
[2]
(3]
(4]
[5]

(6]

[7]

The RTM work product necessitates a verification result that illustrates a 'PASS' for I1SO 26262 ASIL (A-
D) certification. Transaction items from FuSa Vector UVC monitor are utilized for sampling TSR related
cover groups by differentiating between internal and external fault injection. This FC (vPlan using
vManager) is directly mapped to the Jama Connect tool (Example of RTM) via REST (Representational
State of Resource) APIs. Ultimately, achieving 100% FC results demonstrates a 'PASS' for each RTM
verification result connected to the TSRs.

This UVC is used as a passive component at the top-level testbench (TB), which facilitates the identification
of unexpected assertions related to module errors or fault signals. These issues often arise when a module
receives incorrect input values from other modules or TB interfaces. Furthermore, the passive component is
instrumental in fault logging and fault injection path verification.

During fault injection testing, whether internally or externally simulated, the safety item instances may
experience fault propagation leading to another type of fault detection. However, this can impact the
testbench's smooth operation. Fortunately, the UVC's monitored transaction item allows the testbench to
take the necessary actions upon detecting fault injection or propagation, ensuring the system's robustness.

IV. CONCLUSION

The FuSa Vector UVC significantly simplifies the development of testbenches and reduces verification time
for RTL designs targeting Functional Safety (FuSa) compliance. Due to its reusability and seamless integration into
both existing and new testbenches, we highly recommend this UVC. It can be applied across various levels,
including module, sub-system, and SOC-level testbenches, within any UVM testbench environment. The UVC
facilitates the swift identification of design bugs and offers easy synchronization techniques following fault
injection, making it a more viable option for efficient verification. Notably, this UVC is completely independent of
the DUT, indicating that the testbench itself should be adaptable for each FuSa verification test case.

REFERENCES

I1SO 26262. Road vehicles - Functional safety. (2018-12). International Organization for Standardization.

IEC 61508 Ed. 2.0 2010-04 Functional safety of electrical/electronic/programmable electronic safety-related systems

IEC 61709 Edition 3.0 2017 Electric components — Reliability — Reference conditions for failure rates and stress models for conversion
I1SO 26262. Road vehicles - Functional safety. Part 11: Guidelines on Application of ISO 26262 to Semiconductors. Paragraph 5.1.9.

(2018-12). International Organization for Standardization.

ISO 26262. Road vehicles - Functional safety. Part 5: Product Development at the Hardware Level. Paragraph 7.4.4. (2018-12).
International Organization for Standardization.

ISO 26262. Road vehicles - Functional safety. Part 8: Supporting Processes. Paragraphs (9.4.1.1.a.,9.4.1.1.b., 94.1.1.c., 94.1.1.d.,

94.11e.,9411f ,94119.,94.11h.,94.11i.,9412a ,94.12b.,9.4.1.2.d.) (2018-12). International Organization for
Standardization.

I1SO 26262. Road vehicles - Functional safety. Part 8: Supporting Processes. Paragraphs (9.4.2.1.b. , 9.4.2.1.c,9.4.2.2.a.,9.4.2.2.b. ,

13

