2025

DESIGN AND VERIFICATION ™

DV

CONFERENCE AND EXHIBITION

OCTOBER 14-15, 2025

Unified UVM Testbench: Integrating Random,
Directed and Pseudo-Random Verification
Capabilities

Kilaru Vamsikrishna, Cadence Design System, Bengaluru, India (kilaruv@cadence.com)

Amitav Mitra, Cadence Design System, Noida, India (amitav@cadence.com)

Salehabibi Shaikh, Cadence Design System, Bengaluru, India (ssalehab@cadence.com)

Sushrut B Veerapur, Cadence Design System, Bengaluru, India (sushrut@cadence.com)

Abstract- Most testbench environments use separate setups for random, pseudo-random, and directed verification
strategies, leading to duplicate efforts and limited reusability. This fragmentation results in redundant development,
inconsistent methodologies, and delays in verification cycles. As projects progress—from directed tests early on to
random exploration in the middle and pseudo-random patterns for targeted coverage closure toward the end—
maintaining isolated environments becomes inefficient. The proposed solution is a unified UVM-based testbench that
integrates all verification modes into a single configurable environment. By supporting mode selection through
configuration, dynamic layering of sequences, and utilizing a reusable testbench library, this approach reduces
overhead, enhances reusability from IP to SoC levels, and streamlines test development throughout the verification
lifecycle.

Keywords— Unified UVM Testbench, UVM Random Testbench, UVM Pseudo Random Testbench, UVM Directed
Testbench; UVM; Design Verification

. INTRODUCTION

As hardware designs grow more complex, verification, particularly in UVM-based testbenches, faces increasing
challenges. Traditionally, verification teams maintain separate testbenches for different phases—directed, random,
and pseudo-random testing—each requiring its own infrastructure. While effective in isolation, this approach leads
to redundant development, increased maintenance, and limited reuse. Furthermore, transitioning between
verification stages becomes cumbersome, and coverage gaps can arise, leaving potential bugs undetected.

To address these issues, we propose a unified UVM-based testbench that integrates directed, random, and pseudo-
random verification modes into a single, configurable environment. This unified architecture supports dynamic
configuration of stimulus modes, modular sequence layering, and a reusable testbench library, streamlining the
transition between verification phases. By reducing overhead, improving resource utilization, and enhancing
reusability across projects and verification stages, this solution accelerates coverage closure and simplifies the
verification process.

1. METHODOLOGY

The verification approach typically evolves across three main phases of the project—starting with simple directed
testing, progressing to random stimulus generation, and ending with a focused mix of pseudo-random and directed
techniques aimed at closing functional and code coverage.

Using separate operation block also produces a rather useful side effect, it isolates operations from each other
reducing interdependencies and thus keeps debugs isolated to each operation block.

Pseudo-Random Testbench methodology: Pick and push operations randomly from the list of available legal
operations. This is controlled via protocol specific constraints based on element positions in the operation queue.
1

mailto:kilaruv@cadence.com
mailto:amitav@cadence.com
mailto:ssalehab@cadence.com
mailto:sushrut@cadence.com

2025

DESIGN AND VERIFICATION ™

DVCOIN

CONFERENCE AND EXHIBITION

MUNICH, GERMANY
DCTOBER 14-15, 2025

Directed Testbench flow: User specifies what operation to push in the operation queue. This allows the user to
create any and every kind of testcase scenario with the available operations.

i - d
C_/”“k State Transition \ o Error Injection Queue populated manually or via the
- APls 6 : APls internal random operation resolver
(.
~ _ Y p
— . B "
i 5 Send a
Action Routi
s::“e':::;“ﬂ POP element: Move to Send 10 register hﬂ::z ;3;
ACTIVE packets access slate
packet
- . \
Register Access C Traffic Control
APIs - APIs Y
(»
I -

Figure 1: Operation queue approach directed/pseudo random

Constraint Randomization flow: Constrained randomization ensures that all valid, legal scenarios are tested
randomly. This approach helps mimic real-world conditions, allowing the design to be stressed under various
unpredictable situations. By generating a wide range of possible input combinations, this technique helps uncover
edge cases that might not be found through traditional deterministic testing.

Fully Random Tesicase

Each sequence starl is Sequence A

controled by & "scenario” : 3

wanable

Sequence B

>

Sequence C Graceful
Start Test - »Sequence(s) » End Test
End

Sequence D >
Sequence E

»

Figure 2: Fully Random Parallel Sequence Control

Start with directed tests early in the project, use fully random test cases during development, and switch to pseudo-
random or directed test at the end to close FC/CC gaps.

This approach breaks down the testbench functionality into multiple granular blocks of operation independent of
each other as sub-sequences running either sequentially or parallel to each other with the help of a dynamic queueing
mechanism. Unified control architecture used to support directed, random, and pseudo-random test scenarios. At the
core is the Action Routing Sequence, which reads operations from a queue and calls the appropriate protocol scenario
specific APIs. The operation queue can be filled manually (for directed tests), through constrained random generation
(for random tests), or a mix of both (for pseudo-random tests). This design allows a single testbench to handle all
types of verification needs efficiently, while maintaining modularity and protocol-specific behavior.

2025

DESIGN AND VERIFICATION ™

DVCOIN

CONFERENCE AND EXHIBITION

MUNICH, GERMANY
OCTOBER 14-15, 2025

constraint test_mode_select_c {

if (test_mode inside {"DIRECTED", "PSEUDOD_RANDOM"})} {
soft continue random_test == 8;

¥

if (test_mode == "FULL_RANDOM™) {
continue_random_test == 1;
}
h

Figure 3: Constraint for allowing Radom testbench mode to be enabled or disabled

Each block of operation corresponds to a dedicated sequence in the testbench’s sequence library. For forming a
testcase, encodings with respect to each required block of operation are then pushed into a global queue. Expanding
functionality in terms of adding more operation in cases where new features are added is as simple as creating a sub
sequence type API and defining it in the operation list.

I, WORKING MODEL

Directed Testing: Directed testing is the first step in the verification process, where known input patterns are used
to exercise specific DUT features or bring up the environment. This approach uses fixed stimulus and predictable
responses to validate basic functionality and ensure that the testbench infrastructure is correctly set up. It is especially
useful in the early stages of the project when both the DUT and the environment are still stabilizing

The primary goal is environment bring-up and basic DUT validation. Here, simple directed testcases are employed
to verify known, deterministic behavior.

e Smoke/Sanity tests are used to confirm end-to-end connectivity.

e The scenario queue is made non-random and all the constraints which are applied on the scenario queue are
disabled. This ensures a completely directed behavior with no randomness involved.

e This phase ensures that the testbench components (drivers, monitors, scoreboard, sequencers) are correctly
implemented and that the DUT responds to basic transactions

e Although the scenario queue is declared as random to support later test phases, in directed testing we disable
its rand_mode and turn off all related constraints. This ensures the queue is filled manually with fixed
operations, providing fully deterministic behavior. It helps maintain strict control during environment
bring-up and makes debugging easier in early project stages.

virtual function vold randomize_scenariof);
int is rp = 1;

top_scenario.scenario_@.test_mode = "DIRECTED";

if (!(randomize(top_scenario) with

top_scenaric.scenario_@.target_protocol == (DN_UCIE_XDI_PROTOCOL_STREAMING;
top_scenario.scenario_@.target_flit_format == CDM_UCIE_XDI_PROTOCOL_FLITFMT_1;
top_scenaric.scenario_B.is_rp == is_rp;
1)) begin

“uvm_fatal{get_type name(), "Could not randomize scenario_@")

end

.scenario_queue.rand_mode{@);

rand_scenaric _queue_operation_c.constraint_mode(d);
scenario_queue. push_back{ENTER_ACTIVE_S@);
scenario_gueue.push_back(ENTER_PM_L1_S8);
.scenario_queue.push_back{ENTER_ACTIVE_S@);
scenaric_gueue. push_back{SEND_ BOX_REQUEST_D2D_REG);

CK CYCLES):

scenario_queue. push_back{(WAIT_1 CLOCK_CYCLES);

(]

top_scenario.
top_scenario.
top_scenario.
top_scenario.
top_scenario.
top_scenario.
top_scenario.
top_scenario.

=]
2
i

|
(]

=]
2
[

=
2
[
@

5
[

|
[

=

LTI~ T =T TR~ V1]
2

e fde e e B b e e

L= = [= R = R = N = N = I = |
@

=]
2
[
=]

=
2
[
@

scenaric_gueue.push_back{SEND_MAILBOX_REQUEST_DVSEC_REG);

WO 1A 1A

AR AR B R =B a]
W M M M b b D
=l

=1
2
[
(5]

endfunction

Figure 4: configure TB to from the test to run in “DIRECTED” mode

2025

DESIGN AND VERIFICATION ™

DV

CONFERENCE AND EXHIBITION

OCTOBER 14-15, 2025

Constrained-Random Testing: Once the environment is stable and the testbench components are fully functional
the goal shifts from basic validation to exploring the entire design space by generating a wide range of valid input
scenarios. Randomization is guided by protocol-aware constraints, enabling effective coverage of both typical and
corner-case behaviors. It enables all the constraints and scenario class is fully randomized. This approach is essential

for uncovering issues that may not be visible during directed testing. The key aspects of constrained-random testing
include:

e Broad coverage of legal input combinations.
e Verification of corner cases and uncommon state transitions.
e Identification of issues not easily captured through directed testing.

By combining intelligent constraint definition with functional coverage feedback, constrained-random testing helps
accelerate coverage closure and ensures a deeper, more robust verification process.

~tual function void randomize_scenario();

int is_rp = 1;

top_scenario.scenario_@.test_mode = "FULL_RANDOM";
if (!(randomize(top_scenario) with

top_scenario.scenario_0.target_protocol ==
top_scenario.scenario_@.target_f1lit_format ==

top_scenario.scenario_@.is_rp == is_rp;
)} begin
“uvm_fatal(get_type_name(), "Could not randomize scenarioc_8")
end
endfunction

Figure 5: configure TB to from the test to run in “DIRECTED” mode

Dynamic Sequence Management Using Scenario Control in UVM: With using a modular and runtime-
configurable UVM testbench using a centralized scenario control knob (Figure 6: do_mailbox_access). This
architecture supports seamless integration of directed, random, and pseudo-random test modes.

1. Sequence Initiation with Scenario Control

Sequences are enabled conditionally using scenario control flags (scenario.<knob>).

The type and number of sequences are protocol-specific or requirement-driven.

In our implementation, we illustrate this using the UCIE protocol.

All sequences are launched inside a fork...join_none block, they run as parallel background threads.
Allows runtime selection of test behavior without modifying test code.

2. Graceful Termination of Parallel Sequences

Each sequence uses a “*_done” (eg: mailbox_seq_done) flag for lifecycle control.
Flag is set to 0 at start and updated to 1 upon completion.

Main control waits for all “*_done” signals before completing the top-level sequence.
Ensures deterministic test completion and avoids premature exits.

Prevents interleaved or inconsistent behavior in complex protocols like UCIE.

3. Synchronization Across Threads

e Certain threads need coordination, e.g., pause traffic when state machine transitions to
linkdown/reset.

e Achieved using uvm_event for inter-thread signaling.
e Enables clean and modular synchronization between parallel sequences without tight coupling.

2025

DESIGN AND VERIFICATION ™

DV

CONFERENCE AND EXHIBITION

OCTOBER 14-15, 2025

if (p_sequencer.scenaric.scenario_gueue.size() != @) begin
action_routing seq = n_ucie strm_base_action_routing_seq::type_id::create("action_routing_seq”);
action_routing_seq.start{p_sequencer);
walt(p_seguencer.action_routing_seq_done);

end

if (p_seguencer.scenario.continue_random_test) begin

fork
“uvm_do_on{ strm_config_seq, p_sequencer)
begin
rand_lsm seq = cdn_ucie_strm_random_lsm_seq::type_id::create("rand_lsm seg™);
rand_lsm_seg.start{p_sequencer};
end

(posedge p_seguencer.start_traffic[@]
vseq, p_sequencer)

start_fdi_sideband_seq();
end

begin
start_ram_error_seq();
end

begin
if (p_sequencer.scenaric.do_mailbox_access
mailbox_seq = cdn_ucie_strm mailbox_seq:
forever posedge p_sequencer.si
mailbox_seq.start(p sequencer);
end
end
end

= 1)} begin
pe_id: :create("mailbox_seq™);

Figure 6: Parallel Sequence Operation for random testing

Pseudo-Random and Directed Testing for Coverage Closure: In the final phase of the verification cycle, the
primary focus shifts to closing remaining Functional Coverage (FC) and Code Coverage (CC) gaps. At this stage,
pseudo-random testcases are crafted by tightening constraints or applying bias to guide the stimulus toward
uncovered or hard-to-hit scenarios. In parallel, directed tests are reused or newly added to specifically target
uncovered bins or logic paths that constrained-random tests may have missed. This targeted approach improves
regression efficiency and ensures that even rare or corner-case conditions are fully validated. Key aspects of this
phase include:

e Pseudo-random stimulus is generated by tightening constraints or adding bias to existing random
sequences.

e Testcases are tuned to target hard-to-reach protocol behaviors or corner-case conditions.

o Directed testcases are reused or created to explicitly hit specific functional coverage points or unexercised
code paths.

e Helps reduce regression runtime by avoiding broad random testing where focused effort is more effective.

e Ensures thorough coverage closure by combining the precision of directed tests with the reach of
controlled randomness.

This hybrid strategy ensures that both common and rare use-cases are validated thoroughly, maximizing coverage
efficiency in the final stages of verification. Setting test_ mode = "PSEUDO_RANDOM" within the scenario
object is a key configuration that informs the testbench which verification mode is being used. This value acts as a
flag to enable pseudo-random test generation logic throughout the environment. Based on this mode, the testbench
selectively activates constraints, biases, or custom sequences tailored to pseudo-random behavior. This allows the
same testbench infrastructure to adapt dynamically to different verification phases such as directed, random, or
pseudo-random, without requiring structural changes.

2025

DESIGN AND VERIFICATION ™

DVCOIN

CONFERENCE AND EXHIBITION

MUNICH, GERMANY
DCTOBER 14-15, 2025

virtual function woid randomize_scenario();
int is_rp = 1;

top_scenario.scenario_@.test_mode = "PSEUDO_RAMDOM";
if (!(randomize(top_scenario) with

top_scenario.scenario_@.target protocol == CDN_UCIE_XDI_PROTOCOL_STREAMING;

top_scenario.scenario_@.target flit format == CDM UCIE_XDI_PROTOCOL_FLITFMT_1;
top_scenario.scenario _@.is_rp == is_rp;
¥} begin

“uvm_fatal(get type_name(), "Could not randomize scenaric_8"}

end

endfunction

Figure 7: Configure TB from test to run in “PSEUDO_RANDOM” mode

The constraints shown in the code are protocol- or specification-specific, tailored here for the UCIE protocol.
These rules guide how operations are allowed to sequence based on valid link and power state behaviors.
However, they are designed in a modular way, allowing users to modify or extend them easily. Depending on the
protocol being verified, users can plug and play their own constraint logic into the same structure-making the
testbench flexible, reusable, and adaptable across various designs.

constraint rand_scenario_gqueue_operation_c {
2 < scenario_gueue.size();
scenaric_queue.size{) <= max_operations_per_test;
scenario_queue[@] == ENTER_ACTIVE_Sa;
foreach (scenario_gueue[i]} {

if (scenario_gueue[i] inside {ENTER_PM_L2_S@, ENTER_DISABLED_S@, ENTER_LINKRESET_S@, ENTER_LINKERROR_S@}) {
scenario_queue[i+1] != {ENTER_RETRAIN_S8%};

queue[i] inside {ENTER_RETRAIN 5@, ENTER RETRAIN DUAL STACK}) {
veue[i+1] inside {ENTER_PM_L1 S8, ENTER_PM_L2_58});

if (scenario

! (scenario_g

Figure 8: Constraints for pseudo-random testing

This operation list acts as a unified execution layer that maps abstract operations from the scenario queue to
specific testbench tasks or APIls. Pseudo-random tests apply guided constraints to influence which operations get
pushed. Once the scenario is resolved, this file ensures all modes invoke the exact same behavior for any given
operation, maintaining consistency and modularity across the verification flow.

et

: move_to_state(CDN_UCIE_XI

: move_to_state(COl
: generate_mailbox_reques

: begin
seq traffic_seq;
mb_traffic_seq::type_id::create("traffic_seq");

(traffic_seq,p_sequencer)

EhELRESvmuon s wne

Figure 9: Operation list

Operation Execution Using Action Routing Sequence: To support a unified testbench that can handle directed,
random, and pseudo-random tests, we use a centralized control sequence called
cdn_ucie_strm_base_action_routing_seq(Figure 10). This sequence is responsible for reading the operations from
a scenario queue and executing them one by one or in parallel.

2025

DESIGN AND VERIFICATION ™

DVCOIN

CONFERENCE AND EXHIBITION

MUNICH, GERMANY
OCTOBER 14-15, 2025

1. Reading and Executing the Scenario Queue:

The body() task is the main entry point of this sequence.

It reads the scenario_queue from the sequencer.

This queue contains a list of operations that need to be performed.

The queue can be filled by any type of test—directed, random, or pseudo-random—depending on the
verification phase.

e The sequence keeps processing operations from the queue until it is empty, using the
launch_operations() task.

2. Launching Operations:

The launch_operations() task goes through each operation in the queue.

It calls the perform_operation() task to execute each one.

All operations are started inside a fork...join_none block so that they can run in parallel if needed.

e After launching all threads, a wait fork is used to wait until all operations are completed. This helps in
running multiple tasks at the same time when required and ensures proper test behavior.

3. Performing the Operation:

e The perform_operation() task takes a single operation and performs the required action.
e The actual list of supported operations is defined in a separate include file (operation_list.h) using a
case statement.

e This makes the code easy to maintain—new operations can be added without modifying the main
sequence.

4.Completion Signal:

e After completing all operations in the queue, the sequence sets a flag action_routing_seq_done =1,
this will be set when all the background threads explained above is completed.

_ucie_strm_base_action_routing seq");

outing seq] s

ario_gueue = %@p"

get_name(),$psprintf(”[ba
Launch_operations(operation_queue);
end

action_routing seq] operations left to perform = %ep", operation_gueus),UVM_LOW)

“uvm_info(get_name(),$psprintf ([
p_seq ion_routing seq_done -

tion_routing seq] base_action_routing seq done"),UVH_LOk)

[i]) begin

perform_operation{operations.pop_front()};

_info(get_name(),$psprintf("[base_sction_routing_se = #Bp", p_sequencer.scenaric.scenario_queue),UVM_LOW)
one
i
sk perform_operation(ope: type_e operation);
t_name(),Spsprint(tion_routing_seq] operation_to_perform = %9s", operation.name()),UVH_LOW

case (op
*include "commonfoperation_list.h”
endcase
enctask

Figure 10: To take the operation from the scenario queue
7

2025

DESIGN AND VERIFICATION ™

DV

CONFERENCE AND EXHIBITION

OCTOBER 14-15, 2025

IV. CONCLUSION

The proposed unified UVM testbench methodology consolidates directed, random, and pseudo-random testing into
a single, adaptable framework. This integration not only reduces the need for multiple testbenches, thereby
conserving engineering resources, but also simplifies maintenance and enhances scalability. By dynamically
adjusting to various verification needs, the methodology facilitates the creation of directed test cases while also
addressing challenging corner cases that are often difficult to cover. This approach significantly accelerates coverage
closure, leading to a more efficient and thorough verification process. Ultimately, it streamlines the verification
workflow, improves resource utilization, and enhances the overall quality of the design. This reduces debug effort
when compared to a fully random testbench which runs interdependent layered sequences which leads to a lot of
unwanted debug effort. Addition of this random and pseudo random is straight forward which re-use existing APIs
which will save execution and coding time.

