

1

Unified UVM Testbench: Integrating Random,

Directed and Pseudo-Random Verification

Capabilities

 Kilaru Vamsikrishna, Cadence Design System, Bengaluru, India (kilaruv@cadence.com)

 Amitav Mitra, Cadence Design System, Noida, India (amitav@cadence.com)

 Salehabibi Shaikh, Cadence Design System, Bengaluru, India (ssalehab@cadence.com)

 Sushrut B Veerapur, Cadence Design System, Bengaluru, India (sushrut@cadence.com)

Abstract- Most testbench environments use separate setups for random, pseudo-random, and directed verification

strategies, leading to duplicate efforts and limited reusability. This fragmentation results in redundant development,

inconsistent methodologies, and delays in verification cycles. As projects progress—from directed tests early on to

random exploration in the middle and pseudo-random patterns for targeted coverage closure toward the end—

maintaining isolated environments becomes inefficient. The proposed solution is a unified UVM-based testbench that

integrates all verification modes into a single configurable environment. By supporting mode selection through

configuration, dynamic layering of sequences, and utilizing a reusable testbench library, this approach reduces

overhead, enhances reusability from IP to SoC levels, and streamlines test development throughout the verification

lifecycle.

Keywords— Unified UVM Testbench, UVM Random Testbench, UVM Pseudo Random Testbench, UVM Directed

Testbench; UVM; Design Verification

I. INTRODUCTION

As hardware designs grow more complex, verification, particularly in UVM-based testbenches, faces increasing

challenges. Traditionally, verification teams maintain separate testbenches for different phases—directed, random,

and pseudo-random testing—each requiring its own infrastructure. While effective in isolation, this approach leads

to redundant development, increased maintenance, and limited reuse. Furthermore, transitioning between

verification stages becomes cumbersome, and coverage gaps can arise, leaving potential bugs undetected.

To address these issues, we propose a unified UVM-based testbench that integrates directed, random, and pseudo-

random verification modes into a single, configurable environment. This unified architecture supports dynamic

configuration of stimulus modes, modular sequence layering, and a reusable testbench library, streamlining the

transition between verification phases. By reducing overhead, improving resource utilization, and enhancing

reusability across projects and verification stages, this solution accelerates coverage closure and simplifies the

verification process.

II. METHODOLOGY

The verification approach typically evolves across three main phases of the project—starting with simple directed

testing, progressing to random stimulus generation, and ending with a focused mix of pseudo-random and directed

techniques aimed at closing functional and code coverage.

Using separate operation block also produces a rather useful side effect, it isolates operations from each other

reducing interdependencies and thus keeps debugs isolated to each operation block.

Pseudo-Random Testbench methodology: Pick and push operations randomly from the list of available legal

operations. This is controlled via protocol specific constraints based on element positions in the operation queue.

mailto:kilaruv@cadence.com
mailto:amitav@cadence.com
mailto:ssalehab@cadence.com
mailto:sushrut@cadence.com

2

Directed Testbench flow: User specifies what operation to push in the operation queue. This allows the user to

create any and every kind of testcase scenario with the available operations.

Figure 1: Operation queue approach directed/pseudo random

Constraint Randomization flow: Constrained randomization ensures that all valid, legal scenarios are tested

randomly. This approach helps mimic real-world conditions, allowing the design to be stressed under various

unpredictable situations. By generating a wide range of possible input combinations, this technique helps uncover

edge cases that might not be found through traditional deterministic testing.

Figure 2: Fully Random Parallel Sequence Control

Start with directed tests early in the project, use fully random test cases during development, and switch to pseudo-

random or directed test at the end to close FC/CC gaps.

This approach breaks down the testbench functionality into multiple granular blocks of operation independent of

each other as sub-sequences running either sequentially or parallel to each other with the help of a dynamic queueing

mechanism. Unified control architecture used to support directed, random, and pseudo-random test scenarios. At the

core is the Action Routing Sequence, which reads operations from a queue and calls the appropriate protocol scenario

specific APIs. The operation queue can be filled manually (for directed tests), through constrained random generation

(for random tests), or a mix of both (for pseudo-random tests). This design allows a single testbench to handle all

types of verification needs efficiently, while maintaining modularity and protocol-specific behavior.

3

Figure 3: Constraint for allowing Radom testbench mode to be enabled or disabled

Each block of operation corresponds to a dedicated sequence in the testbench’s sequence library. For forming a

testcase, encodings with respect to each required block of operation are then pushed into a global queue. Expanding

functionality in terms of adding more operation in cases where new features are added is as simple as creating a sub

sequence type API and defining it in the operation list.

III. WORKING MODEL

Directed Testing: Directed testing is the first step in the verification process, where known input patterns are used

to exercise specific DUT features or bring up the environment. This approach uses fixed stimulus and predictable

responses to validate basic functionality and ensure that the testbench infrastructure is correctly set up. It is especially

useful in the early stages of the project when both the DUT and the environment are still stabilizing

 The primary goal is environment bring-up and basic DUT validation. Here, simple directed testcases are employed

to verify known, deterministic behavior.

• Smoke/Sanity tests are used to confirm end-to-end connectivity.

• The scenario queue is made non-random and all the constraints which are applied on the scenario queue are

disabled. This ensures a completely directed behavior with no randomness involved.

• This phase ensures that the testbench components (drivers, monitors, scoreboard, sequencers) are correctly

implemented and that the DUT responds to basic transactions

• Although the scenario queue is declared as random to support later test phases, in directed testing we disable

its rand_mode and turn off all related constraints. This ensures the queue is filled manually with fixed

operations, providing fully deterministic behavior. It helps maintain strict control during environment

bring-up and makes debugging easier in early project stages.

Figure 4: configure TB to from the test to run in “DIRECTED” mode

4

Constrained-Random Testing: Once the environment is stable and the testbench components are fully functional

the goal shifts from basic validation to exploring the entire design space by generating a wide range of valid input

scenarios. Randomization is guided by protocol-aware constraints, enabling effective coverage of both typical and

corner-case behaviors. It enables all the constraints and scenario class is fully randomized. This approach is essential

for uncovering issues that may not be visible during directed testing. The key aspects of constrained-random testing

include:

• Broad coverage of legal input combinations.

• Verification of corner cases and uncommon state transitions.

• Identification of issues not easily captured through directed testing.

By combining intelligent constraint definition with functional coverage feedback, constrained-random testing helps

accelerate coverage closure and ensures a deeper, more robust verification process.

Figure 5: configure TB to from the test to run in “DIRECTED” mode

Dynamic Sequence Management Using Scenario Control in UVM: With using a modular and runtime-

configurable UVM testbench using a centralized scenario control knob (Figure 6: do_mailbox_access). This

architecture supports seamless integration of directed, random, and pseudo-random test modes.

1. Sequence Initiation with Scenario Control

• Sequences are enabled conditionally using scenario control flags (scenario.<knob>).

• The type and number of sequences are protocol-specific or requirement-driven.

• In our implementation, we illustrate this using the UCIE protocol.

• All sequences are launched inside a fork...join_none block, they run as parallel background threads.

• Allows runtime selection of test behavior without modifying test code.

2. Graceful Termination of Parallel Sequences

• Each sequence uses a “*_done” (eg: mailbox_seq_done) flag for lifecycle control.

• Flag is set to 0 at start and updated to 1 upon completion.

• Main control waits for all “*_done” signals before completing the top-level sequence.

• Ensures deterministic test completion and avoids premature exits.

• Prevents interleaved or inconsistent behavior in complex protocols like UCIE.

3. Synchronization Across Threads

• Certain threads need coordination, e.g., pause traffic when state machine transitions to

linkdown/reset.

• Achieved using uvm_event for inter-thread signaling.

• Enables clean and modular synchronization between parallel sequences without tight coupling.

5

Figure 6: Parallel Sequence Operation for random testing

Pseudo-Random and Directed Testing for Coverage Closure: In the final phase of the verification cycle, the

primary focus shifts to closing remaining Functional Coverage (FC) and Code Coverage (CC) gaps. At this stage,

pseudo-random testcases are crafted by tightening constraints or applying bias to guide the stimulus toward

uncovered or hard-to-hit scenarios. In parallel, directed tests are reused or newly added to specifically target

uncovered bins or logic paths that constrained-random tests may have missed. This targeted approach improves

regression efficiency and ensures that even rare or corner-case conditions are fully validated. Key aspects of this

phase include:

• Pseudo-random stimulus is generated by tightening constraints or adding bias to existing random

sequences.

• Testcases are tuned to target hard-to-reach protocol behaviors or corner-case conditions.

• Directed testcases are reused or created to explicitly hit specific functional coverage points or unexercised

code paths.

• Helps reduce regression runtime by avoiding broad random testing where focused effort is more effective.

• Ensures thorough coverage closure by combining the precision of directed tests with the reach of

controlled randomness.

 This hybrid strategy ensures that both common and rare use-cases are validated thoroughly, maximizing coverage

efficiency in the final stages of verification. Setting test_mode = "PSEUDO_RANDOM" within the scenario

object is a key configuration that informs the testbench which verification mode is being used. This value acts as a

flag to enable pseudo-random test generation logic throughout the environment. Based on this mode, the testbench

selectively activates constraints, biases, or custom sequences tailored to pseudo-random behavior. This allows the

same testbench infrastructure to adapt dynamically to different verification phases such as directed, random, or

pseudo-random, without requiring structural changes.

6

Figure 7: Configure TB from test to run in “PSEUDO_RANDOM” mode

The constraints shown in the code are protocol- or specification-specific, tailored here for the UCIE protocol.

These rules guide how operations are allowed to sequence based on valid link and power state behaviors.

However, they are designed in a modular way, allowing users to modify or extend them easily. Depending on the

protocol being verified, users can plug and play their own constraint logic into the same structure-making the

testbench flexible, reusable, and adaptable across various designs.

Figure 8: Constraints for pseudo-random testing

This operation list acts as a unified execution layer that maps abstract operations from the scenario queue to

specific testbench tasks or APls. Pseudo-random tests apply guided constraints to influence which operations get

pushed. Once the scenario is resolved, this file ensures all modes invoke the exact same behavior for any given

operation, maintaining consistency and modularity across the verification flow.

Figure 9: Operation list

Operation Execution Using Action Routing Sequence: To support a unified testbench that can handle directed,

random, and pseudo-random tests, we use a centralized control sequence called

cdn_ucie_strm_base_action_routing_seq(Figure 10). This sequence is responsible for reading the operations from

a scenario queue and executing them one by one or in parallel.

7

1. Reading and Executing the Scenario Queue:

• The body() task is the main entry point of this sequence.

• It reads the scenario_queue from the sequencer.

• This queue contains a list of operations that need to be performed.

• The queue can be filled by any type of test—directed, random, or pseudo-random—depending on the

verification phase.

• The sequence keeps processing operations from the queue until it is empty, using the

launch_operations() task.

2. Launching Operations:

• The launch_operations() task goes through each operation in the queue.

• It calls the perform_operation() task to execute each one.

• All operations are started inside a fork...join_none block so that they can run in parallel if needed.

• After launching all threads, a wait fork is used to wait until all operations are completed. This helps in

running multiple tasks at the same time when required and ensures proper test behavior.

3. Performing the Operation:

• The perform_operation() task takes a single operation and performs the required action.

• The actual list of supported operations is defined in a separate include file (operation_list.h) using a

case statement.

• This makes the code easy to maintain—new operations can be added without modifying the main

sequence.

4. Completion Signal:

• After completing all operations in the queue, the sequence sets a flag action_routing_seq_done = 1,

this will be set when all the background threads explained above is completed.

Figure 10: To take the operation from the scenario queue

8

IV. CONCLUSION

The proposed unified UVM testbench methodology consolidates directed, random, and pseudo-random testing into

a single, adaptable framework. This integration not only reduces the need for multiple testbenches, thereby

conserving engineering resources, but also simplifies maintenance and enhances scalability. By dynamically

adjusting to various verification needs, the methodology facilitates the creation of directed test cases while also

addressing challenging corner cases that are often difficult to cover. This approach significantly accelerates coverage

closure, leading to a more efficient and thorough verification process. Ultimately, it streamlines the verification

workflow, improves resource utilization, and enhances the overall quality of the design. This reduces debug effort

when compared to a fully random testbench which runs interdependent layered sequences which leads to a lot of

unwanted debug effort. Addition of this random and pseudo random is straight forward which re-use existing APIs

which will save execution and coding time.

