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Abstract— The proliferation of Artificial Intelligence and Machine Learning (AI/ML) applications has fueled 

demand for specialised compute accelerators, creating complex design challenges across hardware and software 

domains. Traditional Register-Transfer Level (RTL) simulation approaches face significant limitations due to their 

inherent complexity, slow simulation speeds, and extensive development resource requirements. This paper presents a 

fast, flexible, and timing-accurate performance modeling method for compute accelerators using CorePerfDSL, a 

domain-specific language developed initially for CPU pipeline modeling. We demonstrate the methodology’s 

effectiveness by implementing and validating a comprehensive mini-NPU (Neural Processing Unit) performance model. 

The approach separates functional and timing concerns, enabling rapid architectural exploration while maintaining 

predictive accuracy. Experimental validation using MLPerf Tiny inference benchmarks shows the performance model 

can predict mini-NPU accelerator performance with mean absolute error less than 10% compared to RTL simulation 

for 84% of evaluated layers. The method achieves significantly higher simulation speeds than RTL while providing 

timing-accurate results suitable for design space exploration and early software validation of compute accelerators. 

Keywords— Performance Modeling; Compute Accelerators; Virtual Prototyping; Design Space Exploration; 

CorePerfDSL; Functional Model; Timing Model; Neural Processing Unit. 

I. INTRODUCTION 

ML accelerators and NPUs significantly outperform traditional CPUs for AI/ML workloads. However, their 

design presents significant design-space exploration challenges and requires the timely delivery of complex 

supporting software stacks. Traditional RTL simulation of HDL Designs is unable to meet these developmental 

challenges. Modification and ab-initio implementation are time-consuming, and the simulation speed is too low 

with costly / low-availability RTL emulation systems. 

Virtual prototyping addresses these challenges. Functional models allow early software validation without 

sacrificing simulation speed, while performance models provide critical insights for architectural exploration, 

helping developers make informed design decisions. 

This work demonstrates the applicability and extension of CorePerfDSL for compute accelerator performance 

modeling. The principal contributions include: (1) manual development of a timing-accurate mini-NPU 

performance model incorporating bus contention effects, (2) establishment of a virtual instruction method for 

dataflow-to-pipeline mapping, (3) development of a comprehensible code generation strategy for performance 

models, (4) creation of a custom communication interface for non-standard trace points, and (5) experimental 

validation against RTL using MLPerf Tiny inference benchmarks. 

II. RELATED WORK 

A. Cycle-Accurate and Functional Modeling 

Early CPU-focused frameworks like SMARTS[6] and ESECS[7] employed statistical sampling[8] to accelerate 

simulations, though these required pre-existing cycle-accurate models, limiting novel design exploration. The gem5 

simulator[5] advanced this paradigm by integrating detailed functional models of processor microarchitectures, but 

this level of detail comes at additional development cost and compromises design space exploration flexibility. 
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B. Instruction Set Simulation(ISS) Extensions 

ISS-based approaches[9][10][11] decouple timing models from functional behaviour at the ISA level, enabling 

faster software development. However, these frameworks rely on ad-hoc programming of timing details, making 

design-space exploration difficult. 

C. High-Level Abstraction for Accelerators 

Aladdin[12] pioneered pre-RTL power-performance simulation, enabling rapid design space exploration 

through parametric modeling. While effective for static configurations, it struggles to capture dynamic behaviours 

in modern AI-accelerators. SystemC[14] / TLM expanded transaction-level modeling, but achieving abstraction 

without losing timing accuracy remains challenging. Proprietary HLS-driven solutions (Siemens-EDA[15]) 

improve productivity but suffer from architectural rigidity for design-space exploration. 

D. Domain-Specific Language(DSL) Advancements 

CorePerfDSL[1] marked a paradigm shift by introducing a declarative DSL for CPU pipeline timing. Its syntax 

models data dependencies, resource contention, and latency variations, generating timing-accurate models without 

cycle-level simulation. Extensions[2] have demonstrated scalability to advanced features like out-of-order 

execution, sub-pipelining, etc. 

E. Comparative Analysis and Research Gaps 

While discrete-event frameworks like Sparta[13] provide robust microarchitectural simulation utilities, they 

require significant boilerplate code and lack clear functional/timing separation. 

 

Current AI accelerator virtual prototyping thus suffers from three critical gaps:   

1. Abstraction Limitations: Timing-accurate predictions without cycle-level simulations. 

2. Portability: Tight coupling between timing models and specific ISS environments hinders heterogeneous 

system integration. 

3. Design Space Exploration: Existing frameworks often require extensive parameter tuning and/or detailed 

cycle-accurate modeling for new designs, limiting rapid exploration of architectural alternatives. 

 

CorePerfDSL[1] uniquely addresses these through declarative modeling and microarchitectural separation, 

providing a foundation that can extend to accelerator-specific scenarios. By adapting Kunzelmanns’s parallel 

functional unit and sub-pipelining mechanisms[2], we establish a framework for dataflow accelerator Modeling 

that preserves simulation speed while capturing dynamic scheduling effects. 

III. METHODOLOGY 

A. mini-NPU Architecture 

The mini-NPU is a specialised Neural Processing 

Unit designed for inference workloads on resource-

constrained devices with low power requirements. 

The accelerator is optimised to execute common 

neural network operations efficiently while 

maintaining a small footprint and power envelope 

suitable for edge deployments. 

The mini-NPU architecture consists of several 

key components organised in a dataflow-oriented 

design. The Arithmetic Logic Unit (ALU) is at the 

core, which performs primary computational 

operations. The architecture features a Bus Master 

and a Bus Slave for communication with the host 

system and employs a series of streamers to move 

data through the processing pipeline efficiently. 
Figure 1: mini-NPU Architecture 
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The mini-NPU implements a data processing pipeline optimised for neural network inference with several 

stages: Input stage features three primary data streamers responsible for fetching input, weight and bias (or scale) 

data from memory; Pre-scalar stage prepares data for processing in the ALU; ALU stage processed data then passes 

through an output pipeline consisting of stages: pre-activation scaling, activation function unit, post-activation 

scaling, offset addition, clipping, output packing, and memory write-back. 

 

Figure 2: mini-NPU Data Processing Pipeline 

A notable feature is the mini-NPU’s sparsity-aware hardware design, allowing efficient processing of sparse 

neural networks by skipping unnecessary computations when encountering zero values in weights or activations. 

The Control Block manages execution flow, handling interrupts and triggers from the host system, while 

Configuration Registers allow the host to set up the accelerator for specific neural network topologies. 

B. Performance Modeling Method 

 
Figure 3: Performance Modeling Method 

The proposed performance modeling method provides a comprehensive framework for accurately predicting 

and analysing mini-NPU accelerator behaviour. This method follows a two-phase approach: Build-up and 

Execution, with design space exploration as an iterative feedback mechanism. 

The Build-up phase focuses on creating the necessary components for performance simulation. This includes: 

(1) Microarchitectural model using CorePerfDSL to formally describe the mini-NPU architecture, capturing 

pipeline, stage arrangements, hardware components, interconnections, and operational characteristics, (2) 
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Instruction Mapping establishing detailed mapping of neural network operations to the mini-NPU virtual 

instruction set, (3) Code Generator processing both micro-architectural description and instruction mapping to 

produce scheduling functions and pipeline models, and (4) External Models capturing dynamic microarchitectural 

aspects not directly represented in CorePerfDSL, e.g. timing models for external memories and buses. 

The Execution phase implements actual performance simulation and analysis. The mini-NPU Functional 

Model includes a Virtual Instruction Trace Generator, creating instruction sequences that would be executed by 

actual hardware when running target neural network workloads. A Monitor hooks to the functional model, 

capturing and supplying instruction traces to the performance model. The mini-NPU Performance Model accepts 

instruction traces as input and generates comprehensive timing traces. 

A key strength is the method’s support for iterative design space exploration. Performance results from the 

Execution phase inform potential architectural modifications, parameter adjustments, or instruction set 

refinements. These refinements are incorporated back into Build-up phase components, allowing designers to 

rapidly evaluate trade-offs and optimise the mini-NPU architecture for specific performance targets, power 

constraints, or application requirements. 

CorePerfDSL is an open-source project that provides a domain-specific language for CPU core performance 

modeling. A complete workspace setup, including CorePerfDSL descriptions for different CPU architectures, a 

code generator, and CPU benchmarks to run on the generated performance models, along with the ETISS[4] 

simulator, is available on GitHub[19].  

C. mini-NPU Performance Model Implementation 

The mini-NPU performance model implementation breaks down into two main parts: virtual instruction 

creation in the functional model and manual CorePerfDSL performance model implementation. Developing an 

effective performance model requires creating a well-defined virtual instruction set that accurately represents the 

accelerator’s operations while maintaining appropriate abstraction levels. 

Virtual instruction development involved breaking down neural network operations into fundamental tasks, 

aligning with the mini-NPU’s data processing pipeline. Based on functional decomposition and the pipeline 

structure consisting of Fetch, ALU, and Output stages, virtual instructions were categorized into logical groups: 

Configuration (setup operations), Data Transfer (load/store operations), Computation (core arithmetic operations), 

Activation Functions (non-linear operations), and Scaling & Clipping (data conditioning operations). 

 

 
Figure 4: Virtual Instruction Mapping to Pipeline Stages 

The virtual instructions were mapped to the mini-NPU’s three primary pipeline stages. The Fetch Stage 

involves three parallel streamer units preparing data for computation, with instructions including configuration 

setups and data loading operations. The ALU Stage performs core computational operations (e.g. MAC, element-

wise addition, subtraction, etc.). The Output Stage encompasses post-processing computed data before memory 

write-back, including sub-stages for pre-activation rescaling, activation functions, post-activation rescaling, 

clipping, and write operations. 

The key challenge in designing this virtual instruction set was finding optimal abstraction levels. The 

instruction set avoids creating separate instructions for each state in the finite state machine, which would result 

in unmanageable complexity. Conversely, overly abstract instructions would fail to capture critical micro-

architectural details necessary for accurate performance modeling. The virtual instruction set represents the outer 

loop of the modeled FSM in the functional model, providing sufficient detail to capture performance-critical 

behaviors while maintaining manageability. 

The CorePerfDSL implementation incorporates advanced constructs, including sub-pipelining, sub-stages, and 

parallel functional units. The micro-architectural description follows a hierarchical structure: Pipeline consisting 

of three stages (Fetch, ALU, Output), Stages subpipelines or microactions arranged linearly or in parallel. 

Microactions are fundamental building blocks representing individual operations associated with resource models 

defining behaviour and timing characteristics. 
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Mini-NPU employs a shared bus for multiple streamers that facilitates data transfers between memory and the 

(pre)fetch buffer. Since CorePerfDSL does not natively support bus modeling, the external resource models must 

address this. The external bus model is responsible for arbitrating access to the shared bus, ensuring that only one 

streamer can utilise the bus at any given time, and managing contention to optimise bus utilisation. The 

implemented bus model only models bus contention and not bus arbitration due to a single instruction scheduling 

window. Although this approach may introduce minor inaccuracies in the relative timing of individual stages, it 

effectively captures the overall impact of bus contention in the performance model. Additionally, because this 

mechanism is implemented in the external model, it allows for the inclusion of bus arbitration penalties as needed. 

To model bus contention, two key modifications were made to the external resource model API of 

CorePerfDSL, (1) The start or request time is now passed to the external resource model API. This enables the 

bus contention model to determine when bus access is initiated, assessing potential contention. (2) The external 

resource model API was updated from Time getDelay() to Time getCompletionTime(const Time& start_time) to 

reflect the need for latency calculations based on the specific request time. 

D. Performance Model Scheduler -  Design and Derivation 

Currently, the instruction scheduling element of the mini-NPU performance model is implemented manually 

to demonstrate the applicability of CorePerfDSL for accelerator modelling. However, future work envisions 

leveraging an automated code generator to produce executable performance models directly from CorePerfDSL 

descriptions. 

The code generated by existing tools is not easily comprehensible and straightforward to debug. The generated 

code lacks a clear structure, established C++ best practices, and is insufficiently documented in relation to the 

original CorePerfDSL description. This lack of clarity complicates the process of understanding and correlating 

the generated code with its high-level specification. The general strategy for implementing a microaction 

execution is as follows: 

1. The microaction start time is determined as the maximum of (a) the exit cycle of the current or previous 

pipeline stage, (b) the availability time of required data or resources, as indicated by the connector reads. 

2. The microaction completion time is computed by adding the resource delay to the start time. 

3. After completion, connectors are updated to reflect resource release or new data availability. 

4. The stage exit time is determined as the maximum of (a) the completion time of all the microactions, (b) 

any back pressure from the subsequent pipeline stage. 

5. The stage exit time is updated, and relevant timing information is logged for analysis. 

In cases where a stage is bypassed (i.e., no microaction is executed for a particular instruction), the start time 

for the next active stage is set to the last exit time of that stage.  

E. Communication Interface between Functional Model and Performance Model 

CPU performance models use standardised ISA registers for communication with functional models, but mini-

NPU lacks such standards, requiring custom communication interfaces. Two approaches facilitate 

communication: (1) Virtual Instructions that communicate functional behaviour of operations, triggering 

corresponding microactions in the performance model, (2) State Variables that pass state information from the 

functional model needed for dynamic timing calculations in external models, data fetch address exemplifies this 

need, as latency depends on memory hierarchy and data value count. 

The naive and fast way to pass state variable data between the functional and performance models is to use 

read-only pointers. The limitation of this approach is that (1) the performance model cannot run independently of 

the functional model, limiting testing capabilities, and (2) adding new functional model features requires 

boilerplate code for pointer passing. 

The better approach is to use state variables as attributes to virtual instruction with benefits (1) Direct 

performance model access to state variables from virtual instructions, (2) Independent performance model 

operation from functional model, (3) Loose coupling allowing separate thread/process execution (4) Support for 

manual/artificial virtual instruction traces. This approach provides better modularity and testing flexibility while 

maintaining necessary communication between models. 

IV. RESULTS 

The performance model validation was conducted using four MLPerf Tiny benchmarks[16]: (1) Anomaly 

Detection, (2) Image Classification, (3) Keyword Spotting, and (4) Visual Wake Words, which represent 

standardised inference workloads for edge AI applications. The experimental methodology involved several key 

steps to compare the CorePerfDSL-based performance model and RTL simulation results accurately. 
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 All MLPerf Tiny benchmark models required conversion to Infineon’s packed tensor format, optimising 

memory efficiency through custom weight tensor representations. Comprehensive configuration files were 

generated for each neural network layer within the benchmark models, containing all necessary parameters, 

including layer dimensions, memory addresses, and operational parameters. RTL simulation results serve as ground 

truth for performance comparison, providing cycle-accurate execution timing for each layer under identical 

configuration conditions. 

A. Aggregate Performance Analysis 

The comprehensive evaluation across 82 layers from four diverse neural network workloads reveals strong 

overall accuracy for the CorePerfDSL-based mini-NPU performance model. Analysis shows that 84% of all 

evaluated layers achieve prediction errors within ±10% compared to RTL simulation, with more than half of the 

layers (58%) achieving errors below ±5%. This level of accuracy represents substantial improvement over 

analytical models while maintaining simulation speeds that are orders of magnitude faster than cycle-accurate 

RTL verification. 

 
                                                                                                                 Figure 5: Absolute Errors vs Layers 

B. Performance Model Accuracy by Operation Type 

Operation type analysis reveals distinct performance characteristics aligning with underlying hardware 

implementation complexity. Fully connected operations achieve the highest accuracy with a mean absolute error 

of only 2.44%, validating the CorePerfDSL model’s effectiveness for dense matrix multiplication operations. 

Depthwise convolution operations demonstrate exceptional accuracy with mean error of 3.47% and remarkably 

low variability, indicating robust modeling of this critical mobile neural network primitive. 

 
Table 2: Error Analysis by Operation Type 

Operation Type Layer Count Mean Absolute Error (%) Standard Deviation (%) Max Error (%) 

FullyConnected 13 2.44 2.25 8.74 

Conv2D 28 6.67 4.93 20.68 

DWConv2D 17 3.47 1.63 7.14 

Add 3 14.23 0.03 14.26 

AvgPool2D 3 5.52 5.42 13.17 

Softmax Components 18 13.38 22.22 79.55 

 

Standard 2D convolutions show moderate accuracy with higher variability (mean = 6.67%), reflecting diverse 

geometric configurations and memory access patterns across different kernel sizes and channel depths. Element-

wise addition operations consistently overestimate execution time with approximately 14% error across all 

instances, indicating systematic modeling error for data-movement-intensive operations.  

Average pooling operations show moderate accuracy (mean = 5.52%) with notable variability, reflecting outlier 

behaviour (with error of 13.17%) that indicates that while the model captures general timing trends, specific 

pooling configurations may require more detailed modeling or calibrating to achieve higher accuracy. 

Softmax operations exhibit the highest errors and variability (mean = 13.38%), particularly for exponential 

components, achieving maximum errors up to 79.55%. This reflects the complexity of modeling specialised 

hardware units implementing non-linear mathematical functions, where precise timing depends on algorithmic 

implementation details not fully captured in the current CorePerfDSL description. 

 
Table 1: Error Rates 

 

Absolute Error Layers % of Total Layers 

≤ 2% 10 -12% 

≤ 5% 48 -58% 

≤ 10% 69 -84% 

> 10% 12 -14% 



 

7 

 

V. ANALYSIS AND LIMITATIONS 

Although the proposed performance modelling methodology produced good overall results for the mini-NPU 

case study, simple instruction-by-instruction scheduling of pipeline state microactions in the generated scheduler 

limits the precision with which arbitration of resource conflicts between microactions is performed.  

A. Bus Arbitration Modeling 

The scheduler derived from the CorePerfDSL microarchitecture description schedules microactions of each 

virtual instruction based only on the scheduling of its immediate predecessor. This means that external resource 

timing models (e.g. for memory accesses) can only account for resource contention, not arbitration. In effect, the 

performance model hardwires in an assumption that arbitration of resource contention prioritises microactions 

from earlier instructions (later pipeline stages) over those from later instructions. 

Our performance model nonetheless produced good results for the mini-NPU use-case because, for most 

operations, the available memory bandwidth is saturated without significant backpressure in the pipeline.  The 

overall delay introduced by memory contention is thus largely insensitive to the prioritisation applied: prioritising 

a later instruction rather than an earlier one simply results in a still-later instruction being delayed due to contention 

with the earlier instruction. In scenarios with lower memory bandwidth utilisation (e.g. Softmax), the inaccurate 

resolution of contention was a significant contributor to the observed timing inaccuracies. 

B. Prefetcth and Prefetch Cancellation Modeling 

The simple single instruction scheduling implementation also prevents accurate modelling of speculative 

prefetching with cancellation and similar mechanisms. Prefetching and cancellation are readily modeled as a 

microaction triggering fetches/prefetch sequences. Given a suitable external timing model (e.g. a model of buffer 

occupancy over time, with models of arbitration and memory access timing), accurate timing for memory traffic 

and the delivery of (pre)fetched data can be computed. However, the effects of prefetch cancellation are extremely 

sensitive to the precise scheduling of the cancelling microaction. Unlike memory contention, inaccuracies from 

inaccurate modeling of arbitration change the overall volume of (modeled) memory traffic.  The resulting 

cumulative timing error is noticeable in overall timing, even with high memory bandwidth demand. This effect 

appears to be the cause of high-error “outliers” in the timing predictions for convolution operations. 

VI. CONCLUSION AND FUTURE WORK 

This research successfully demonstrates the applicability and effectiveness of CorePerfDSL for performance 

modeling of compute accelerators, specifically through developing and validating a comprehensive mini-NPU 

performance model. The experimental evaluation across four diverse MLPerf Tiny benchmarks reveals that the 

CorePerfDSL-based approach achieves a mean absolute error below 10% for 84% of evaluated layers compared 

to RTL simulation, while providing substantially faster simulation speeds. 

The method effectively separates functional and timing concerns, enabling rapid architectural exploration 

without sacrificing predictive accuracy for critical design decisions. The systematic evaluation across different 

neural network architectures validates the generalizability and robustness of the approach for realistic edge AI 

workloads.  

Engineers can quickly evaluate the effects of different memory hierarchies, compute unit configurations, and 

pipeline organisations, enabling informed design decisions early in the development process. The model allows 

accurate timing analysis in design space exploration, helping answer critical “what-if” questions, including 

identifying optimal parameters for specific workloads, pinpointing performance bottlenecks, and determining best 

trade-offs between memory and performance. 

Future research directions should focus on addressing identified limitations while expanding the methodology’s 

scope and automation capabilities.   

A. Multi-Instruction Scheduler  

We aim to address the limitations by replacing our current simple single instruction scheduling model with a 

model maintaining a rolling “window” of partially scheduled instructions whose timing depends on unresolved 

resource contention. By maintaining and updating earliest-possible scheduling times for microactions in this 

window, contention can be accurately identified and resolved: 

1. Each instruction in the operation sequence is scheduled and appended to the window based on the 

scheduling of its predecessor.    

2. Where a final scheduling of a microaction cannot be computed due to unresolved resource contention or 

dependencies on other microactions, the earliest possible scheduling is computed instead.  
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3. Let t be the earliest possible start time of the earliest microaction(s) for which resource contention has 

yet to be resolved. 

4. If the earliest microaction in the latest instruction is scheduled to start after or at time t: 

a) Resource contention at time t is resolved based on all potentially contending operations with 

earliest-possible start times t.   

b) After resource contention at time t is resolved, the schedules of the operations for which 

contention has been resolved are updated and made final, and later microactions are rescheduled 

to reflect these new final schedules.   

c) Instructions, all of whose micro-actions are fully scheduled, are identified, and all but the latest 

are removed from the scheduling window.  

The multi-instruction scheduling model will eliminate the underlying causes of worst-case inaccuracies 

observed for the mini-NPU use case and provide a robust basis for use on a wider class of accelerator designs. 

B. Performance Model Code-generation 

Enhancing automated code generation capabilities would significantly improve the methodology’s accessibility 

and reduce design space exploration effort. Applying the CorePerfDSL approach to other accelerator domains, 

such as cryptographic processors, would demonstrate the framework’s generalizability beyond neural network 

accelerators. Advanced features like dynamic power estimation integration and support for multi-accelerator 

system modeling, would enhance the framework’s utility for complex system-level design optimisation. 
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