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Abstract— Virtualization is a key enabling technology to develop applications in the context of a Software-defined 

Vehicle (SDV). Closed loop applications, e.g.: trunk lift, rely on sensor information (Inputs) and actuator controls 

(Outputs) which are provided by real-time systems like Classic AUTOSAR [1]. The development of real time 

applications for SDV require an early development and validation environment which also provides the target related 

Basic SW (BSW) including the connection to a virtual environment. Such a virtual environment allows a hardware 

independent SW development as well as making the development process more efficient and streamlined. 

The development of a digital twin with the focus on embedded SW testing is quite costly. Due to these costs today's 

virtualization setups for virtual ECU testing and (sub-) system testing of connected ECUs often start with an L3 

virtualization level. And here it again often starts with pure networking test based on the typical communication 

technologies like CAN, ethernet, etc. In such a pure networking virtual ECU setup the functionality is abstracted away, 

and the virtual ECUs are degraded towards traffic generators or consumers on the communication network. While 

this is helpful to validate the overall cars electrical/electronic (EE) architecture, the correct functionality of an 

application / system cannot be validated without a complete model of the ECU. 

In this paper we show our approach to stepwise setup a digital twin for an L3 virtualization which provides an 

embedded SW function related virtual environment with respect to virtual peripherals and wiring up to the virtual 

connector. The innovative aspect of our approach is that we setup the interfaces of the ECU component models to be 

developed in such a way that the same ECU component model can be reused in an L3 as well as in an L4 virtualization 

system thus reducing the need to recreate these models when moving to lower abstraction levels. Together with 

wrappers tailored towards different L3 / L4 simulation tools we enable a high reusability and by that enable a higher 

return on the initial invest to create such a virtual ECU. A key aspect for this is the formal description of the wiring 

that can be automatically processed and allows for an automatic creation of a virtual ECU tailored towards a specific 

simulation tool. 

In the result section we demonstrate how we use our approach to create an L3 and an L4 virtual ECU from the 

same source and give an indication on the accuracy and the real time factor we achieve. 
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I.  MOTIVATION 

The new Electronic and Electrical (E/E) architecture supporting the Software Defined Vehicle concept features 

a centralized design built on high-performance processors for computing centralized vehicle control functions. 

Despite this centralization, access to sensors and actuators remains essential, typically managed through Classic 

AUTOSAR services. The emerging E/E architecture integrates High Performance Computers (HPC) connected via 

high-speed Ethernet links to Zone Control Units (ZCU). While Adaptive AUTOSAR offers flexibility with services 

tailored for Linux and Hypervisor-based HPCs, Classic AUTOSAR continues to be relevant for local control and 

I/O interfaces, ensuring fast and secure vehicle control. 

While virtualization of hardware resource and network is a state-of-the-art technology for server applications, 

it is still evolving for setting up vehicle “Digital Twins” with HPC computers connected to their environment, 

facilitating system development and early validation. These solutions include Ethernet network virtualization, 

enhancing connectivity between HPCs and ZCUs. Various commercial solutions [2, 3, 4] enable the abstraction of 

basic software through the Classic AUTOSAR Microcontroller Abstraction Layer (MCAL). Typically, these 

solutions virtualize the OS and communication services to simulate a ZCU at a functional level. However, MCAL 

abstraction is often 1) vendor-specific, 2) requires specific development for I/O control, and 3) is not suited for 

more accurate simulators. Additionally, OEM requirements and use case driven testing often require the setup of 

different virtualization solutions compatible with different vendors. Combined with the number of peripherals to 

be supported individual solutions for each setup become overwhelming [5]. 
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This is why AUMOVIO implemented a Proof of Concept (PoC) to enable a configurable single virtualized 

concept for different virtualization abstraction levels, including I/O control diversity for Classic AUTOSAR real-

time systems. This setup provides a flexible simulation environment, incorporating ECU-level peripheral 

simulation, various virtualization solutions, and multiple abstraction levels. In this paper, we explain the 

virtualization concept using an extract from I/O based ECU, comparable to a Controller Platform as a ZCU instance 

and demonstrate the performance test use case requirements. 

This article is structured as follows: Section II provides an overview for the system set-up and the different 

virtualization levels (L0 to L4). Section III details signal flows and virtualization, by describing signal flow at ECU 

level of the system setup and how this signal flow is modelled at different levels of abstraction. In detail the flow 

is described for a L3 and L4 signal flow virtualization level. Based on these signal flows we outline the gaps in 

existing commercial solutions and the needs for implementing virtual peripherals. Section IV presents the virtual 

peripheral concept setup, with the tool setup, the virtual peripheral architecture, and finally the PoC implementation. 

To wrap up, section V summarizes the conclusion and suggests directions for future works. 

II. STATE OF THE ART 

A. System set-up 

The system setup for the demonstration of the proposed methodology performed as a PoC is based on an 

embedded real-time ECU for automotive applications that typically sense and steer parts of the vehicle. Our 

example is the control of the trunk of a car, where the ECU controls a motor which finally moved the trunk lid as 

depicted below in Figure 1. 

 

Figure 1 System setup 

The ECU is built on the top of Classical AUTOSAR (C-AR) architecture, and the trunk lid is controlled by a 

hardware driver piloting the trunk lid motor. Three sensors are integrated, one for measuring the current of the 

motor and a second and third as information when the trunk is opened / closed. The communication with the 

hardware driver is performed with a serial communication for its configuration. The environment for the 

experiments is based on commercial tools, one for L3 virtualization and another one for L4 virtualization. 

B. Virtualization Levels 

The state-of-the-art industry wide smart System Engineering Prostep IVIP association agreed on different levels 

for virtualization of Electronic Control Units (V-ECU) applicable for interoperability of simulation standards. The 

white paper [6] defines V-ECU simulation levels applicable to AUTOSAR systems that goes from Level 0 aka 

controller model at algorithm level to Level 4 aka target binary to simulate (close to real-time behavior) and 

verify/pre-validate the target binary software with representativity of hardware signals. 

In between Level 1 contains software code application executed in communication simulation level (typically 

RTE for AUTOSAR) to perform integration of application software component for functional verification at 

communication level. The Level 2 simulation BSW provides an environment simulating the BSW services with no 

software driver dependencies to complete functional software verification with abstracted basic software services 

(typical communication or memory abstracted level). The Level 3 Production BSW integrates the Hardware 

Abstraction Layer with simulation of low-level software drivers. Hardware drivers are simulated (e.g. MCAL for 

AUTOSAR) and application can be verified including BSW features (still with Micro Controller hardware 

abstracted). Finally, Level 4 only emulates the hardware. The unmodified and target compiled BSW can directly 

execute on the L4 virtual platform. See Figure 2 for graphical explanation of the levels. 
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Figure 2 Virtualization levels 

The proposed methodology aims to focus on Level 3 and Level 4 V-ECU virtualization levels. The paper 

proposes to design a methodology capable to abstract hardware signal level and propose a configurable 

implementation capable to support both level of simulation. 

III. SIGNAL FLOW AND VIRTUALIZATION 

A. Signal Flow in an ECU 

The driving of the motor is implemented with a HW brick called ‘power output’. This power output gets signals 

/ commands from the ECU and drives the power for the motor accordingly. After the motor is enabled, it consumes 

some current which is read back by the ECU. With the evaluation of the current usage a sticking trunk lid can be 

detected, and reactions can be derived. 

The implementation of the motor and trunk lid simulation, aka. plant model will receive the provided power 

and provide the actual current. If such a plant model shall be reused from a HW in the Loop (HiL) setup in a virtual 

environment, the virtualization must also provide the information of the power and read the used current. Figure 3 

shows the system setup. The power output peripheral is soldered on the PCB and thus also called “PCB soldered 

peripheral”. These kinds of peripherals are described here; they get commands from the ECU, drive a line to an 

external device and read back the used current. 

 

Figure 3 System setup of an ECU with a connected plant model 

In the example the trunk lid control application SW component controls the trunk lid plant model. To open the 

trunk by driving the move of the motor with 50% speed a trigger is generated on interface (1) as shown in Figure 

4. The power output driver, located in C-AR Basic Software (BSW) as Complex Device Driver (CDD), converts 

this functional request at interface (2) with a Pulse-Width Modulation (PWM) control, driven by a hardware driver 

part of the Micro Controller Abstraction Layer (MCAL). This module configures the Micro Controller (µC) PWM 

peripheral to toggle a digital output pin of the µC at the requested frequency – see interface (3). 

 

Figure 4 ECU based system with main interface references 

This µC output pin acting on related voltage level, 0…3.3V or 0…5V, controls the power output input pin of 

the peripheral. The power output peripheral switches the 12 V motor command at the requested frequency. If the 

SWC requests 50% of the maximal speed, the external line is switched for 50% to on and 50% to off. This leads to 

a theoretical power output of 6V and the motor runs with only 50% of the maximal speed. 
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While the motor is running its current consumption is measured. The measurement is implemented in or next 

to the peripheral. This circuit setup converts the consumed current (in Ampere) into a voltage value image of the 

current. The conversion is performed several times during trunk movement to provide e.g. anti-pinch protection. 

The additional sensors report the opened / closed position of the trunk lid. This information is digitalized by the 

µC ADC and routed to the application SW component to switch off the motor. 

B. Signal flow in a L3 & L4 Virtualization 

L3 and L4 virtualization is used for functional and integration testing with a wide range of test capabilities from 

basic communication and diagnosis tests up to closed loop testing. The test cases must be executed with minimum 

impacts on the virtualized solution and the embedded SW must not be adapted to virtualization needs – except 

mentioned differences in virtualization levels. To enable closed loop tests in a L3 and L4 virtualization the signal 

flow as on a real hardware must be respected. Otherwise changes in embedded SW are mandatory and lead to the 

need of an implementation of virtual peripherals for L3 and L4 virtualization. 

IV. REQUIREMENTS ON VIRTUAL PERIPHERAL IMPLEMENTATION  

A. Virtual peripheral needs 

Virtual peripherals are the connector between the physical interface of the ECU and the µController in- and 

outputs. There are different peripheral types used in real time projects. A categorization can be done as follows: 

• Less complex like (de-)multiplexer or simple logical AND/OR gates, Inverter  

• Medium complex, like H-Bridges, High Side Drivers (HSD), Low Side Drivers (LSD), eFuses. 

• Highly complex, like ethernet switches RF antenna, Bluetooth, … 

For each of the peripheral categories different hardware features must be managed like the communication 

between µController and peripheral (DIO, SPI, …) and the supported voltages and currents. A mid-range ECU 

project embeds around 60 peripherals and around 20 different categories and kinds. 

To be able to efficiently handle these peripherals while achieving a good simulation performance the impact on 

the embedded SW needs to be analyzed for each peripheral with the functional test objective in mind. Most ECU 

soldered peripherals have no direct impact on the embedded SW and can thus be ignored. Other components offer 

registers that are directly accessed by the SW but are not connected to the plant model (e.g. temperature sensor or 

PMIC) and can be represented by a simple register stub. Most interesting in the context of this presentation are the 

remaining peripherals that require a functional model. Especially for these the functional requirements of the model 

need to be analyzed e.g. the communication interface to the MCU is for both L3 and L4 level models often 

established for performance reason not at a pin level but at an API level and e.g. missing retry mechanisms. Still 

the effort to implement such peripherals is high and it cannot be afforded to reimplement these peripherals for 

different abstraction levels or simulation tool vendors. The next section presents our approach to cover several tools 

at both L3 and L4 level with the same peripheral model. Please note that for these peripherals the functional 

requirements to the model are besides the communication interface to the MCU model / MCAL model equivalent 

for both L3 and L4 level simulations thus that usually the L4 simulation benefits from the higher speed of reusing 

an L3 model. 

B. Comparison of virtual peripheral implementation for L3 and L4 

When modeling ECU (Electronic Control Unit) peripherals in the context of ProSTEP IVIP simulation levels, 

the level of detail and realism in how these peripherals behave and interact with the rest of the system varies 

significantly between Level 3 (L3) and Level 4 (L4). The following sections primarily focus on the software 

intended to run on the virtual ECU and the interaction between microcontroller and external peripherals on the 

PCB. We do not focus on the actual implementation of the virtual microcontroller and do thus not compare the 

internal implementation for e.g. registers, on-chip interconnect, caches, etc.  

In a Level 3 simulator, ECU peripherals are typically functionally modeled without incorporating timing 

behavior. This means the simulation focuses on the logical correctness of the software interacting with the 

peripherals but does not account for how long operations take or how they are scheduled in real time. The models 
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are abstract and simplified, which allows for faster simulation and early-stage software testing but limits the ability 

to detect timing-related issues. 

In contrast, a Level 4 simulator introduces a more detailed and loosely time-accurate representation of ECU 

peripherals. While it still does not simulate exact hardware timing, it includes approximate timing behavior to better 

reflect real-world execution. This is often achieved using Transaction-Level Modeling (TLM), which abstracts 

communication between components at a higher level than signal-level simulation, enabling faster execution while 

still capturing essential timing characteristics. This allows for more realistic integration testing, including the 

detection of potential race conditions or scheduling conflicts. A comparison between the characteristics of L3 and 

L4 is captured in Table I. 

Table I. Comparison of L3 and L4 

Aspect Level 3 (L3) Level 4 (L4) 

Simulation Fidelity High fidelity; close to real ECU behavior, 

excluding hardware-dependent drivers 

Very high fidelity; includes hardware abstraction and 

near-complete ECU behavior 

Software Integration Includes all basic software above hardware drivers Includes full software stack including hardware 

abstraction layers. Binary compatible. 

Timing Behavior 

Simulation 

Capable of simulating timing with real-time OS 

integration 

Simulates precise timing and scheduling, suitable for 

virtual hardware-in-the-loop (vHiL) 

Use Cases Software-in-the-loop (SiL), early integration testing vHiL, final validation, safety-critical testing 

HW Dependency Minimal; excludes hardware-specific drivers Abstracted; simulates hardware interfaces 

Complexity Moderate to high Very high 

Toolchain 

Requirements 

Requires real-time OS and simulation environment Requires full simulation stack and possibly co-

simulation tools 

Validation Scope Functional and timing validation Full system validation including fault injection and 

robustness testing 

In a typical ECU development flow, both Level 3 (L3) and Level 4 (L4) simulators are essential because they 

serve complementary purposes at different stages of the development and validation process. L3 simulators are 

used early in the development cycle for functional testing and software integration, offering fast simulation speeds 

and enabling developers to validate logic without being constrained by hardware or timing. L4 simulators, on the 

other hand, are used later for system-level validation, where timing behavior, hardware abstraction, and integration 

with real-time systems become critical. As L4 simulators are still an abstract representation especially of the timing 

the final system-level validation always needs to be done hand-in-hand with real hardware. The binary compatibility 

here allows a transition between L4 simulator and real hardware. 

However, these simulators are rarely reusable across levels due to several key challenges: 

• Tool Incompatibilities: L3 and L4 simulators are often developed using different toolchains or 

simulation environments, which are optimized for different abstraction levels. This makes direct reuse 

technically difficult or even impossible without significant adaptation. 

• Lack of Standardization: There is no universally adopted standard for model interfaces or timing 

semantics across simulation levels, leads to inconsistencies in how models are structured and executed. 

• Different Modeling Objectives: L3 simulators prioritize speed and functional correctness, while L4 

simulators emphasize timing accuracy and hardware interaction. As a result, the internal architecture 

and assumptions of the models differ significantly. 

• Performance Trade-offs: L4 simulators often use Transaction-Level Modeling (TLM) and include 

loosely timed behavior, which adds complexity and overhead not needed in L3. Reusing an L4 

simulator in an L3 context would unnecessarily slow down simulation, while using an L3 simulator in 

an L4 context would lack the required fidelity. 

Because of these differences, development teams typically maintain separate simulator versions for L3 and L4, 

each tailored to its specific role in the development pipeline [7, 8, 9]. Adding different tool suppliers at each level 

that all need to be supported due to different customer requests we get a huge zoo of different flavors that need to 

be supported by the different peripheral models that are part of our simulators. Opening the question on how far we 

can combine these different models. 
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C. Unique implementation of virtual peripherals for L3 and L4 

While L3 and L4 simulators are often developed independently due to toolchain and fidelity differences, reuse 

of individual L3 peripheral models at L4 is not categorically impossible — it largely depends on the required fidelity 

and simulation objectives. In scenarios where the goal is to execute unmodified software on an L4 virtual ECU 

without validating full ECU functionality, a compromise on fidelity is acceptable. This is particularly relevant for 

control-oriented software, such as our example of the trunk window lifter, where the interaction with PCB 

peripherals is the primary concern. Since this interaction is central to the software’s behavior, models of these 

peripherals are required at both L3 and L4 simulator levels.  

The main distinction between L3 and L4 simulation flows lies in the presence or absence of timing annotations. 

While both levels can simulate the same software logic, their treatment of timing and peripheral interaction differs 

significantly. The impact of the peripheral timing on the actual simulation depends on who is the initiator of a 

transaction. Table 2 shows a comparison for the L3 and L4 features for transactions initiated by the MCU. While 

Table 3 presents the behavior if a peripheral is the source of a transaction. 

Table 2 Transactions Initiated by Software (MCU → Peripheral) 

Aspect Level 3 (L3) Level 4 (L4) 

Timing No timing information is modeled. TLM allows attaching timestamps to transactions, enabling 

loosely timed behavior. 

Peripheral 

Behavior 

Assumes static, passive behavior. Immediate 

response expected. 

Also assumes static behavior but allows modeling of response 

delays. 

Use Case Fit Sufficient for validating control logic (e.g., 

trunk/window lifter). 

Adds realism for integration testing, but not strictly necessary if 

timing is not critical. 

Insight: Since PCB peripherals (e.g., switches, sensors) are typically passive and their behavior doesn’t change 

dynamically, L3 is often sufficient for validating software logic. L4 adds timing realism but may not be essential 

unless integration with other timed systems is required. 

Table 3 Transactions Initiated by Peripherals (Peripheral → MCU) 

Aspect Level 3 (L3) Level 4 (L4) 

Peripheral 

Activity 

Peripherals cannot actively initiate transactions. No 

interrupts. 

Peripherals can initiate transactions and raise 

interrupts. 

Event Handling External events (e.g., from plant model) are polled or 

triggered via callbacks. 

Interrupts can be raised and handled by the 

simulated MCU core. 

Use Case Fit Acceptable for most control SW, as polling is the dominant 

pattern. 

Necessary for testing interrupt-driven behavior or 

fault injection. 

Insight: In most real-world ECU applications, polling is preferred over interrupts for safety and determinism. 

Interrupts are mainly used for fault management, which in simulation is often script-controlled and directly injected 

into the MCU model – making L3 sufficient in many cases. 

D. Known limitations of the selected approach 

While the selected approach – reusing L3 models in L4 contexts with relaxed fidelity – offers efficiency and 

practicality, it has clear limitations: 

• Timing-Critical Applications: The approach is not suitable for systems with tight real-time constraints, 

where precise timing and synchronization between components are essential. 

• Example ESC Control: In an Electronic Stability Control (ESC) system, the microcontroller must: 

o Measure vehicle motion via an inertial sensor, 

o Apply brake pressure, 

o Monitor wheel speed and inertial feedback, 

o Release brake pressure accordingly. 

This closed-loop control involves multiple tightly coupled components and real-time feedback, making it 

infeasible to simulate accurately without precise timing and interrupt handling, thus out of scope for the current 

abstraction level. 
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V. EVALUATION OF THE PRESENTED APPROACH 

To show the proof of the concept AUMOVIO has implemented prototypes in commercial simulation tools for 

Level 3 and Level 4. Each prototype uses the same virtual peripheral C++ implementation for the eFuse VNF9D5F. 

The embedded SW was, except for the different MCAL modules, almost identical. In Level 3 simulation a 

multiplexer was additionally integrated. Figure 5 explains the setup of the virtual PCB with the wiring from the 

MCAL over the virtual peripheral up to the virtual connector where measurement- and test-tool was connected. 

Figure 6 shows the almost identical setup for L4 but with the “Virtual Adapter” to embed the virtual peripheral to 

the L4 environment. 

 

Figure 5 Setup Level 3 simulation environment 

 

Figure 6 Setup Level 4 simulation environment 

The SPI initialization sequence of the eFuse, shown in Figure 7, was measured at the L3 setup. Here it is shown, 

that by the eFuse internal state change to “Normal”, triggered by SPI commands, the Outputs are disabled and must 

be explicitly enabled via SPI. The PWM ramp-up and Voltage changes on the eFuse outputs in Figure 8 have been 

taken from the L4 setup. Channel 0 is disabled, and Channel 1 provides a Voltage of 2.5V 

 

Figure 7 SPI based eFuse initialization sequence 

 

Figure 8 PWM ramp-up and voltage change on the eFuse outputs 
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VI. RESULT / CONCLUSION 

A. Result 

While L4 offers more accurate timing and interrupt handling, L3 can often be reused in L4 contexts if the 

simulation goals are limited to software execution and not full ECU validation. The key enabler is a clear 

understanding of the required fidelity: if timing and peripheral-initiated events are not critical, L3 models can be 

adapted or reused with minimal compromise. To be able to reuse our L3 peripherals we defined an API according 

to which our peripherals are developed. This API focuses on the commonalities of virtual peripherals: PINs. Every 

kind of virtual peripheral has a set of PINs which can be connected or not. In case they are connected, they transfer 

a certain data type (current, voltage, DIO, PWM, ...). In addition, each PIN has a defined direction (input or output) 

which allows safe and consistent wiring. This generic API is then wrapped in a SystemC wrapper interfacing to 

SystemC signals and TLM transactions. 

According to this API we implemented an eFuse model for use in an L3 simulation. To reuse this model in an 

L4 simulation we only had to implement a wrapper that is due to our API generic for different peripherals and add 

the according wiring which is here the TLM transaction from the microcontroller to the peripheral. We tested this 

setup first with dummy initiator in an IEEE1666 SystemC environment. In a later stage the TLM was converted 

into the TLM flavor used by a proprietary tool supplier.  In this setup we were able to successfully run a SW 

example switching the eFuse and reading back the resulting voltages. With this we have shown that we only need 

to adjust the connection (aka wiring) between the respective microcontroller model and the peripheral and don’t 

need to touch the peripheral implementation. 

B. Conclusion 

With the ability to implement virtual ECU (vECU) peripherals for different virtualization levels we developed 

a tooling to connect the virtual ECU peripheral implementation to different virtualization solutions. By using this 

tooling, the virtualization tools which – out of the box – mainly support a virtual Microcontroller (vµC) with 

communication interfaces like CAN, Ethernet, LIN, etc. can be exchanged. The wiring between the vµC and the 

vECU peripherals are setup outside the tool solution and can been taken over. 

 

Figure 9 Streamlined development with multiple virtualization level support 

This means that the setup of a virtual ECU which was developed in one virtualization solution (e.g. L3) the 

configuration can be taken over to generate a vECU in a L4 virtualization solution. 

Figure 9 shows the approach of the streamlined development with virtualization support. For the application 

development (not in focus of this paper) the L1 virtualization is used. The outcome of this step, the embedded SW 

component (SWC) and the test cases / plant model / environment simulation, can be reused in the L3 virtualization 

to perform functional integration tests. With the re-use of the virtualized ECU from L3 to L4 more detailed tests 

like embedded SW multicore and safety tests can run in a virtual environment. The final validation on a real target 

probably including real external peripheral (e.g. motor, ..) setup is still mandatory but in a reduced amount of HiL. 

With the general capabilities of virtualization like multi-instances, easier SW tracing, error injections, the 

overall setup enables a streamlined and cost-efficient way for shorter time to market development approach. 
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