2025

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

OCTOBER 14-15, 2025

Functional Twin: A Framework for
ReusableVirtual Electronic Control Units

Sacha Loitz, Torsten Hermann, Martin Hruschka, AUMOVIO SE, Frankfurt a.M., Germany
(sacha.loitz@aumovio.com , torsten.hermann@aumovio.com, martin.3.hruschka@aumovio.com)

Abstract— Virtualization is a key enabling technology to develop applications in the context of a Software-defined
Vehicle (SDV). Closed loop applications, e.g.: trunk lift, rely on sensor information (Inputs) and actuator controls
(Outputs) which are provided by real-time systems like Classic AUTOSAR [1]. The development of real time
applications for SDV require an early development and validation environment which also provides the target related
Basic SW (BSW) including the connection to a virtual environment. Such a virtual environment allows a hardware
independent SW development as well as making the development process more efficient and streamlined.

The development of a digital twin with the focus on embedded SW testing is quite costly. Due to these costs today's
virtualization setups for virtual ECU testing and (sub-) system testing of connected ECUs often start with an L3
virtualization level. And here it again often starts with pure networking test based on the typical communication
technologies like CAN, ethernet, etc. In such a pure networking virtual ECU setup the functionality is abstracted away,
and the virtual ECUs are degraded towards traffic generators or consumers on the communication network. While
this is helpful to validate the overall cars electrical/electronic (EE) architecture, the correct functionality of an
application / system cannot be validated without a complete model of the ECU.

In this paper we show our approach to stepwise setup a digital twin for an L3 virtualization which provides an
embedded SW function related virtual environment with respect to virtual peripherals and wiring up to the virtual
connector. The innovative aspect of our approach is that we setup the interfaces of the ECU component models to be
developed in such a way that the same ECU component model can be reused in an L3 as well as in an L4 virtualization
system thus reducing the need to recreate these models when moving to lower abstraction levels. Together with
wrappers tailored towards different L3 / L4 simulation tools we enable a high reusability and by that enable a higher
return on the initial invest to create such a virtual ECU. A key aspect for this is the formal description of the wiring
that can be automatically processed and allows for an automatic creation of a virtual ECU tailored towards a specific
simulation tool.

In the result section we demonstrate how we use our approach to create an L3 and an L4 virtual ECU from the
same source and give an indication on the accuracy and the real time factor we achieve.

Keywords— Digital Twin, Virtualization Levels, Electronic Control Unit, Software-defined-Vehicle, Classic AUTOSAR

I. MOTIVATION

The new Electronic and Electrical (E/E) architecture supporting the Software Defined Vehicle concept features
a centralized design built on high-performance processors for computing centralized vehicle control functions.
Despite this centralization, access to sensors and actuators remains essential, typically managed through Classic
AUTOSAR services. The emerging E/E architecture integrates High Performance Computers (HPC) connected via
high-speed Ethernet links to Zone Control Units (ZCU). While Adaptive AUTOSAR offers flexibility with services
tailored for Linux and Hypervisor-based HPCs, Classic AUTOSAR continues to be relevant for local control and
I/0 interfaces, ensuring fast and secure vehicle control.

While virtualization of hardware resource and network is a state-of-the-art technology for server applications,
it is still evolving for setting up vehicle “Digital Twins” with HPC computers connected to their environment,
facilitating system development and early validation. These solutions include Ethernet network virtualization,
enhancing connectivity between HPCs and ZCUs. Various commercial solutions [2, 3, 4] enable the abstraction of
basic software through the Classic AUTOSAR Microcontroller Abstraction Layer (MCAL). Typically, these
solutions virtualize the OS and communication services to simulate a ZCU at a functional level. However, MCAL
abstraction is often 1) vendor-specific, 2) requires specific development for 1/O control, and 3) is not suited for
more accurate simulators. Additionally, OEM requirements and use case driven testing often require the setup of
different virtualization solutions compatible with different vendors. Combined with the number of peripherals to
be supported individual solutions for each setup become overwhelming [5].

Public

mailto:sacha.loitz@aumovio.com
mailto:torsten.hermann@aumovio.com
mailto:martin.3.hruschka@aumovio.com

2025

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

OCTOBER 14-15, 2025

This is why AUMOVIO implemented a Proof of Concept (PoC) to enable a configurable single virtualized
concept for different virtualization abstraction levels, including 1/O control diversity for Classic AUTOSAR real-
time systems. This setup provides a flexible simulation environment, incorporating ECU-level peripheral
simulation, various virtualization solutions, and multiple abstraction levels. In this paper, we explain the
virtualization concept using an extract from 1/0O based ECU, comparable to a Controller Platform asa ZCU instance
and demonstrate the performance test use case requirements.

This article is structured as follows: Section Il provides an overview for the system set-up and the different
virtualization levels (LO to L4). Section I11 details signal flows and virtualization, by describing signal flow at ECU
level of the system setup and how this signal flow is modelled at different levels of abstraction. In detail the flow
is described for a L3 and L4 signal flow virtualization level. Based on these signal flows we outline the gaps in
existing commercial solutions and the needs for implementing virtual peripherals. Section IV presents the virtual
peripheral concept setup, with the tool setup, the virtual peripheral architecture, and finally the PoC implementation.
To wrap up, section V summarizes the conclusion and suggests directions for future works.

Il. STATEOFTHE ART

A. System set-up

The system setup for the demonstration of the proposed methodology performed as a PoC is based on an
embedded real-time ECU for automotive applications that typically sense and steer parts of the vehicle. Our
example is the control of the trunk of a car, where the ECU controls a motor which finally moved the trunk lid as

depicted below in Figure 1.

== .

Figure 1 System setup

The ECU is built on the top of Classical AUTOSAR (C-AR) architecture, and the trunk lid is controlled by a
hardware driver piloting the trunk lid motor. Three sensors are integrated, one for measuring the current of the
motor and a second and third as information when the trunk is opened / closed. The communication with the
hardware driver is performed with a serial communication for its configuration. The environment for the
experiments is based on commercial tools, one for L3 virtualization and another one for L4 virtualization.

B. Virtualization Levels

The state-of-the-art industry wide smart System Engineering Prostep IVIP association agreed on different levels
for virtualization of Electronic Control Units (V-ECU) applicable for interoperability of simulation standards. The
white paper [6] defines V-ECU simulation levels applicable to AUTOSAR systems that goes from Level 0 aka
controller model at algorithm level to Level 4 aka target binary to simulate (close to real-time behavior) and
verify/pre-validate the target binary software with representativity of hardware signals.

In between Level 1 contains software code application executed in communication simulation level (typically
RTE for AUTOSAR) to perform integration of application software component for functional verification at
communication level. The Level 2 simulation BSW provides an environment simulating the BSW services with no
software driver dependencies to complete functional software verification with abstracted basic software services
(typical communication or memory abstracted level). The Level 3 Production BSW integrates the Hardware
Abstraction Layer with simulation of low-level software drivers. Hardware drivers are simulated (e.g. MCAL for
AUTOSAR) and application can be verified including BSW features (still with Micro Controller hardware
abstracted). Finally, Level 4 only emulates the hardware. The unmodified and target compiled BSW can directly
execute on the L4 virtual platform. See Figure 2 for graphical explanation of the levels.

Public

2025

DESIGN AND VERIFICATION™

DVLCOIN

CONFERENCE AND EXHIBITION

MUNICH, GERMANY
DCTOBER 14-15, 2025

interpreted host comp target comp

Figure 2 Virtualization levels

The proposed methodology aims to focus on Level 3 and Level 4 V-ECU virtualization levels. The paper
proposes to design a methodology capable to abstract hardware signal level and propose a configurable
implementation capable to support both level of simulation.

I1l. SIGNAL FLOW AND VIRTUALIZATION

A. Signal Flow in an ECU

The driving of the motor is implemented with a HW brick called ‘power output’. This power output gets signals
/ commands from the ECU and drives the power for the motor accordingly. After the motor is enabled, it consumes
some current which is read back by the ECU. With the evaluation of the current usage a sticking trunk lid can be
detected, and reactions can be derived.

The implementation of the motor and trunk lid simulation, aka. plant model will receive the provided power
and provide the actual current. If such a plant model shall be reused from a HW in the Loop (HiL) setup in a virtual
environment, the virtualization must also provide the information of the power and read the used current. Figure 3
shows the system setup. The power output peripheral is soldered on the PCB and thus also called “PCB soldered
peripheral”. These kinds of peripherals are described here; they get commands from the ECU, drive a line to an
external device and read back the used current.

&

B

PCB
[Target | .
et peripherals

Figure 3 System setup of an ECU with a connected plant model

In the example the trunk lid control application SW component controls the trunk lid plant model. To open the
trunk by driving the move of the motor with 50% speed a trigger is generated on interface (1) as shown in Figure
4. The power output driver, located in C-AR Basic Software (BSW) as Complex Device Driver (CDD), converts
this functional request at interface (2) with a Pulse-Width Modulation (PWM) control, driven by a hardware driver
part of the Micro Controller Abstraction Layer (MCAL). This module configures the Micro Controller (uC) PWM
peripheral to toggle a digital output pin of the uC at the requested frequency — see interface (3).

&

s e

peripherals

Figure 4 ECU based system with main interface references

This pC output pin acting on related voltage level, 0...3.3V or 0...5V, controls the power output input pin of
the peripheral. The power output peripheral switches the 12 VV motor command at the requested frequency. If the
SWC requests 50% of the maximal speed, the external line is switched for 50% to on and 50% to off. This leads to
a theoretical power output of 6V and the motor runs with only 50% of the maximal speed.

w

Public

2025

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

OCTOBER 14-15, 2025

While the motor is running its current consumption is measured. The measurement is implemented in or next
to the peripheral. This circuit setup converts the consumed current (in Ampere) into a voltage value image of the
current. The conversion is performed several times during trunk movement to provide e.g. anti-pinch protection.

The additional sensors report the opened / closed position of the trunk lid. This information is digitalized by the
HC ADC and routed to the application SW component to switch off the motor.

B. Signal flow in a L3 & L4 Virtualization

L3 and L4 virtualization is used for functional and integration testing with a wide range of test capabilities from
basic communication and diagnosis tests up to closed loop testing. The test cases must be executed with minimum
impacts on the virtualized solution and the embedded SW must not be adapted to virtualization needs — except
mentioned differences in virtualization levels. To enable closed loop tests in a L3 and L4 virtualization the signal
flow as on a real hardware must be respected. Otherwise changes in embedded SW are mandatory and lead to the
need of an implementation of virtual peripherals for L3 and L4 virtualization.

IV. REQUIREMENTS ON VIRTUAL PERIPHERAL IMPLEMENTATION

A. Virtual peripheral needs

Virtual peripherals are the connector between the physical interface of the ECU and the pController in- and
outputs. There are different peripheral types used in real time projects. A categorization can be done as follows:

e Lesscomplex like (de-)multiplexer or simple logical AND/OR gates, Inverter
e Medium complex, like H-Bridges, High Side Drivers (HSD), Low Side Drivers (LSD), eFuses.

e Highly complex, like ethernet switches RF antenna, Bluetooth, ...

For each of the peripheral categories different hardware features must be managed like the communication
between pController and peripheral (DIO, SPL ...) and the supported voltages and currents. A mid-range ECU
project embeds around 60 peripherals and around 20 different categories and kinds.

To be able to efficiently handle these peripherals while achieving a good simulation performance the impact on
the embedded SW needs to be analyzed for each peripheral with the functional test objective in mind. Most ECU
soldered peripherals have no direct impact on the embedded SW and can thus be ignored. Other components offer
registers that are directly accessed by the SW but are not connected to the plant model (e.g. temperature sensor or
PMIC) and can be represented by a simple register stub. Most interesting in the context of this presentation are the
remaining peripherals that require a functional model. Especially for these the functional requirements of the model
need to be analyzed e.g. the communication interface to the MCU is for both L3 and L4 level models often
established for performance reason not at a pin level but at an API level and e.g. missing retry mechanisms. Still
the effort to implement such peripherals is high and it cannot be afforded to reimplement these peripherals for
different abstraction levels or simulation tool vendors. The next section presents our approach to cover several tools
at both L3 and L4 level with the same peripheral model. Please note that for these peripherals the functional
requirements to the model are besides the communication interface to the MCU model / MCAL model equivalent
for both L3 and L4 level simulations thus that usually the L4 simulation benefits from the higher speed of reusing
an L3 model.

B. Comparison of virtual peripheral implementation for L3 and L4

When modeling ECU (Electronic Control Unit) peripherals in the context of ProSTEP IVIP simulation levels,
the level of detail and realism in how these peripherals behave and interact with the rest of the system varies
significantly between Level 3 (L3) and Level 4 (L4). The following sections primarily focus on the software
intended to run on the virtual ECU and the interaction between microcontroller and external peripherals on the
PCB. We do not focus on the actual implementation of the virtual microcontroller and do thus not compare the
internal implementation for e.g. registers, on-chip interconnect, caches, etc.

In a Level 3 simulator, ECU peripherals are typically functionally modeled without incorporating timing
behavior. This means the simulation focuses on the logical correctness of the software interacting with the
peripherals but does not account for how long operations take or how they are scheduled in real time. The models

Public

2025

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

OCTOBER 14-15, 2025

are abstract and simplified, which allows for faster simulation and early-stage software testing but limits the ability
to detect timing-related issues.

In contrast, a Level 4 simulator introduces a more detailed and loosely time-accurate representation of ECU
peripherals. While it still does not simulate exact hardware timing, it includes approximate timing behavior to better
reflect real-world execution. This is often achieved using Transaction-Level Modeling (TLM), which abstracts
communication between components at a higher level than signal-level simulation, enabling faster execution while
still capturing essential timing characteristics. This allows for more realistic integration testing, including the
detection of potential race conditions or scheduling conflicts. A comparison between the characteristics of L3 and
L4 is captured in Table I.

Table I. Comparison of L3 and L4

Aspect Level 3 (L3) Level 4 (L4)
Simulation Fidelity High fidelity; close to real ECU behavior, Very high fidelity; includes hardware abstraction and
excluding hardware-dependent drivers near-complete ECU behavior
Software Integration Includes all basic software above hardware drivers Includes full software stack including hardware
abstraction layers. Binary compatible.
Timing Behavior Capable of simulating timing with real-time OS Simulates precise timing and scheduling, suitable for
Simulation integration virtual hardware-in-the-loop (VHiL)
Use Cases Software-in-the-loop (SiL), early integration testing VHiL, final validation, safety-critical testing
HW Dependency Minimal; excludes hardware-specific drivers Abstracted; simulates hardware interfaces
Complexity Moderate to high Very high
Toolchain Requires real-time OS and simulation environment Requires full simulation stack and possibly co-
Requirements simulation tools
Validation Scope Functional and timing validation Full system validation including fault injection and

robustness testing

In a typical ECU development flow, both Level 3 (L3) and Level 4 (L4) simulators are essential because they
serve complementary purposes at different stages of the development and validation process. L3 simulators are
used early in the development cycle for functional testing and software integration, offering fast simulation speeds
and enabling developers to validate logic without being constrained by hardware or timing. L4 simulators, on the
other hand, are used later for system-level validation, where timing behavior, hardware abstraction, and integration
with real-time systems become critical. As L4 simulators are still an abstract representation especially of the timing
the final system-level validation always needs to be done hand-in-hand with real hardware. The binary compatibility
here allows a transition between L4 simulator and real hardware.

However, these simulators are rarely reusable across levels due to several key challenges:

e Tool Incompatibilities: L3 and L4 simulators are often developed using different toolchains or
simulation environments, which are optimized for different abstraction levels. This makes direct reuse
technically difficult or even impossible without significant adaptation.

e Lack of Standardization: There is no universally adopted standard for model interfaces or timing
semantics across simulation levels, leads to inconsistencies in how models are structured and executed.

e Different Modeling Objectives: L3 simulators prioritize speed and functional correctness, while L4
simulators emphasize timing accuracy and hardware interaction. As a result, the internal architecture
and assumptions of the models differ significantly.

o Performance Trade-offs: L4 simulators often use Transaction-Level Modeling (TLM) and include
loosely timed behavior, which adds complexity and overhead not needed in L3. Reusing an L4
simulator in an L3 context would unnecessarily slow down simulation, while using an L3 simulator in
an L4 context would lack the required fidelity.

Because of these differences, development teams typically maintain separate simulator versions for L3 and L4,
each tailored to its specific role in the development pipeline [7, 8, 9]. Adding different tool suppliers at each level
that all need to be supported due to different customer requests we get a huge zoo of different flavors that need to
be supported by the different peripheral models that are part of our simulators. Opening the question on how far we
can combine these different models.

Public

2025

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

OCTOBER 14-15, 2025

C. Unique implementation of virtual peripherals for L3 and L4

While L3 and L4 simulators are often developed independently due to toolchain and fidelity differences, reuse
of individual L3 peripheral models at L4 is not categorically impossible — it largely depends on the required fidelity
and simulation objectives. In scenarios where the goal is to execute unmodified software on an L4 virtual ECU
without validating full ECU functionality, a compromise on fidelity is acceptable. This is particularly relevant for
control-oriented software, such as our example of the trunk window lifter, where the interaction with PCB
peripherals is the primary concern. Since this interaction is central to the software’s behavior, models of these
peripherals are required at both L3 and L4 simulator levels.

The main distinction between L3 and L4 simulation flows lies in the presence or absence of timing annotations.
While both levels can simulate the same software logic, their treatment of timing and peripheral interaction differs
significantly. The impact of the peripheral timing on the actual simulation depends on who is the initiator of a
transaction. Table 2 shows a comparison for the L3 and L4 features for transactions initiated by the MCU. While
Table 3 presents the behavior if a peripheral is the source of a transaction.

Table 2 Transactions Initiated by Software (MCU — Peripheral)

Aspect Level 3 (L3) Level 4 (L4)
Timing No timing information is modeled. TLM allows attaching timestamps to transactions, enabling
loosely timed behavior.
Peripheral Assumes static, passive behavior. Immediate Also assumes static behavior but allows modeling of response
Behavior response expected. delays.
Use Case Fit Sufficient for validating control logic (e.g., Adds realism for integration testing, but not strictly necessary if
trunk/window lifter). timing is not critical.

Insight: Since PCB peripherals (e.g., switches, sensors) are typically passive and their behavior doesn’t change
dynamically, L3 is often sufficient for validating software logic. L4 adds timing realism but may not be essential
unless integration with other timed systems is required.

Table 3 Transactions Initiated by Peripherals (Peripheral — MCU)

Aspect Level 3 (L3) Level 4 (L4)
Peripheral Peripherals cannot actively initiate transactions. No Peripherals can initiate transactions and raise
Activity interrupts. interrupts.
Event Handling External events (e.g., from plant model) are polled or Interrupts can be raised and handled by the
triggered via callbacks. simulated MCU core.
Use Case Fit Acceptable for most control SW, as polling is the dominant Necessary for testing interrupt-driven behavior or
pattern. fault injection.

Insight: In most real-world ECU applications, polling is preferred over interrupts for safety and determinism.
Interrupts are mainly used for fault management, which in simulation is often script-controlled and directly injected
into the MCU model — making L3 sufficient in many cases.

D. Known limitations of the selected approach

While the selected approach — reusing L3 models in L4 contexts with relaxed fidelity — offers efficiency and
practicality, it has clear limitations:

e Timing-Critical Applications: The approach is not suitable for systems with tight real-time constraints,
where precise timing and synchronization between components are essential.
o Example ESC Control: In an Electronic Stability Control (ESC) system, the microcontroller must:
o Measure vehicle motion via an inertial sensor,
o Apply brake pressure,
o Monitor wheel speed and inertial feedback,
o Release brake pressure accordingly.
This closed-loop control involves multiple tightly coupled components and real-time feedback, making it
infeasible to simulate accurately without precise timing and interrupt handling, thus out of scope for the current
abstraction level.

Public

2025

DESIGN AND VERIFICATION™

DVLCOIN

CONFERENCE AND EXHIBITION

MUNICH, GERMANY
DCTOBER 14-15, 2025

V. EVALUATION OF THE PRESENTED APPROACH

To show the proof of the concept AUMOVIO has implemented prototypes in commercial simulation tools for
Level 3and Level 4. Each prototype uses the same virtual peripheral C++ implementation for the eFuse VNFID5F.
The embedded SW was, except for the different MCAL modules, almost identical. In Level 3 simulation a
multiplexer was additionally integrated. Figure 5 explains the setup of the virtual PCB with the wiring from the
MCAL over the virtual peripheral up to the virtual connector where measurement- and test-tool was connected.
Figure 6 shows the almost identical setup for L4 but with the “Virtual Adapter” to embed the virtual peripheral to

the L4 environment.

| Callback f

\ virtual ECU

Figure 5 Setup Level 3 simulation environment

I

eFuse |
driver I

DI0| sP1 |ADC|PWM]

Virtual
Adapter
a

SystemC Layer
virtual ECU

jscML
SCML Layer signals

[

Figure 6 Setup Level 4 simulation environment

Wiring
cfg.json
(Al
Switch {Clamp 15}
Gurent }
Callback Q;l/l;e':\t
Voltage 1
Voltage ...
Voltage 8
I Callback User Control
Callback
Ampere graph
Voltage ——I
virtual PC| Meter
+{ Callback connector

Test Tool

System
Variables

Test Tool

The SPI initialization sequence of the eFuse, shown in Figure 7, was measured at the L3 setup. Here it is shown,
that by the eFuse internal state change to “Normal”, triggered by SPI commands, the Outputs are disabled and must
be explicitly enabled via SPI. The PWM ramp-up and Voltage changes on the eFuse outputs in Figure 8 have been
taken from the L4 setup. Channel O is disabled, and Channel 1 provides a Voltage of 2.5V

SPIstate
SPI commands.

To Normal
eFuse state
Pin CSN

Pin STDBY_NOT

Pin DIO

Acti
Enable
Output0

ive

Enable

s Adie 4
state Output1
m*m_

PinDn '

Pin Outputd | " H-followDI0_|
|

Pin Output1 H = followDIT |

Output0 Voltage vee - follow Dio |

Outputl Voltage

i
i
i
|
i
}
I
i
|

Vee - follow DIT I

|
I
i
F
|
|
1

12V .

12v

Figure 7 SPI based eFuse initialization sequence

Figure 8 PWM ramp-up and voltage change on the eFuse outputs

Public

2025

DESIGN AND VERIFICATION™

DVLCOIN

CONFERENCE AND EXHIBITION

MUNICH, GERMANY
DOCTOBER 14-15, 2025

VI. RESULT/CONCLUSION

A. Result

While L4 offers more accurate timing and interrupt handling, L3 can often be reused in L4 contexts if the
simulation goals are limited to software execution and not full ECU validation. The key enabler is a clear
understanding of the required fidelity: if timing and peripheral-initiated events are not critical, L3 models can be
adapted or reused with minimal compromise. To be able to reuse our L3 peripherals we defined an API according
to which our peripherals are developed. This API focuses on the commonalities of virtual peripherals: PINs. Every
kind of virtual peripheral has a set of PINs which can be connected or not. In case they are connected, they transfer
a certain data type (current, voltage, DIO, PWM, ...). In addition, each PIN has a defined direction (input or output)
which allows safe and consistent wiring. This generic API is then wrapped in a SystemC wrapper interfacing to
SystemC signals and TLM transactions.

According to this API we implemented an eFuse model for use in an L3 simulation. To reuse this model in an
L4 simulation we only had to implement a wrapper that is due to our API generic for different peripherals and add
the according wiring which is here the TLM transaction from the microcontroller to the peripheral. We tested this
setup first with dummy initiator in an IEEE1666 SystemC environment. In a later stage the TLM was converted
into the TLM flavor used by a proprietary tool supplier. In this setup we were able to successfully run a SW
example switching the eFuse and reading back the resulting voltages. With this we have shown that we only need
to adjust the connection (aka wiring) between the respective microcontroller model and the peripheral and don’t
need to touch the peripheral implementation.

B. Conclusion

With the ability to implement virtual ECU (VECU) peripherals for different virtualization levels we developed
a tooling to connect the virtual ECU peripheral implementation to different virtualization solutions. By using this
tooling, the virtualization tools which — out of the box — mainly support a virtual Microcontroller (vuC) with
communication interfaces like CAN, Ethernet, LIN, etc. can be exchanged. The wiring between the vjuC and the
VECU peripherals are setup outside the tool solution and can been taken over.

Swe o ‘we o Swe o Bwe

¥
()
e p=m= === p=am
— & @ @}
L3 Virtualization L4 Virtualization
Function validation Virtual system validation Target system validation
Hardware independent Function development Hardware designed product / platform development
Digital Twin

Figure 9 Streamlined development with multiple virtualization level support

This means that the setup of a virtual ECU which was developed in one virtualization solution (e.g. L3) the
configuration can be taken over to generate a VECU in a L4 virtualization solution.

Figure 9 shows the approach of the streamlined development with virtualization support. For the application
development (not in focus of this paper) the L1 virtualization is used. The outcome of this step, the embedded SW
component (SWC) and the test cases / plant model / environment simulation, can be reused in the L3 virtualization
to perform functional integration tests. With the re-use of the virtualized ECU from L3 to L4 more detailed tests
like embedded SW multicore and safety tests can run in a virtual environment. The final validation on a real target
probably including real external peripheral (e.g. motor, ..) setup is still mandatory but in a reduced amount of HiL.

With the general capabilities of virtualization like multi-instances, easier SW tracing, error injections, the
overall setup enables a streamlined and cost-efficient way for shorter time to market development approach.

Public

2025

DESIGN AND VERIFICATION™

DVLC O

N

CONFERENCE AND EXHIBITION

MUNICH, GERMANY

DCTOBER 14-15, 2025

[1]
[2]
(3]
[4]
[5]
(6]

[71

(8]

[9]

VII. REFERENCES

AUTOSAR GbR, “AUTOSAR Classic https://www.autosar.org/standards/classic-platform.

Synopsys Silver tool solution, https://www.synopsys.com/verification/virtual-prototyping/silver.html

ASTC, VLAB Works, https://vlabworks.com/

Vector, vVirtualTarget tool solution, https://www.vector.com/at/en/products/products-a-z/software/vvirtualtarget

T. Hermann, P. Cuenot, S. Loitz, “Digital Twin for Classic AUTOSAR ECU,” CESA 2025, Versaille, France, 2025.

prostep ivip association, “Requirements for the Standardization of Virtual Electronic Control Units (V-ECUs), White Paper, 2020,
https://www.prostep.org/en/medialibrary/translate-to-english-
detail?ai%5Baction%5D=detail&ai%5Bcontroller%5D=Catalog&ai%5Bd_name%5D=wp_smartse_vecu&ai%5Bd_pos%5D=.

Ruehl, M., Bronner, F, “Creation and Usage of Virtual Control Units (V-ECUs) in SIL and HIL for Development and Validation
especially for Software-Defined-Vehicles (SDVs).” In: Kulzer, A.C., Reuss, HC., Wagner, A. (eds) 2024 Stuttgart International
Symposium on Automotive and Engine Technology. I{SSYM 2024.

dSPACE GmbH, “(R)evolution in the exchange of V-ECUs,” dSPACE Engineers’ Insights, Paderborn, Germany. [Online].
Auvailable: https://www.dspace.com/en/pub/home/news/engineers-insights/v-ecu-standard.cfm

dSPACE GmbH, “Combining Level 3 and Level 4 virtual ECUs in one simulation,” dSPACE Learning Bits, Paderborn, Germany.
[Online Video]. Available: https://www.dspace.com/en/inc/home/learning-center/recordings/learning-bits/video Ib_I34virtualecus.cfm

Public

https://www.autosar.org/standards/classic-platform
https://www.synopsys.com/verification/virtual-prototyping/silver.html
https://vlabworks.com/
https://www.vector.com/at/en/products/products-a-z/software/vvirtualtarget
https://www.dspace.com/en/pub/home/news/engineers-insights/v-ecu-standard.cfm
https://www.dspace.com/en/inc/home/learning-center/recordings/learning-bits/video_lb_l34virtualecus.cfm

