

1

Public

Functional Twin: A Framework for

ReusableVirtual Electronic Control Units

Sacha Loitz, Torsten Hermann, Martin Hruschka, AUMOVIO SE, Frankfurt a.M., Germany

(sacha.loitz@aumovio.com , torsten.hermann@aumovio.com, martin.3.hruschka@aumovio.com)

Abstract— Virtualization is a key enabling technology to develop applications in the context of a Software-defined

Vehicle (SDV). Closed loop applications, e.g.: trunk lift, rely on sensor information (Inputs) and actuator controls

(Outputs) which are provided by real-time systems like Classic AUTOSAR [1]. The development of real time

applications for SDV require an early development and validation environment which also provides the target related

Basic SW (BSW) including the connection to a virtual environment. Such a virtual environment allows a hardware

independent SW development as well as making the development process more efficient and streamlined.

The development of a digital twin with the focus on embedded SW testing is quite costly. Due to these costs today's

virtualization setups for virtual ECU testing and (sub-) system testing of connected ECUs often start with an L3

virtualization level. And here it again often starts with pure networking test based on the typical communication

technologies like CAN, ethernet, etc. In such a pure networking virtual ECU setup the functionality is abstracted away,

and the virtual ECUs are degraded towards traffic generators or consumers on the communication network. While

this is helpful to validate the overall cars electrical/electronic (EE) architecture, the correct functionality of an

application / system cannot be validated without a complete model of the ECU.

In this paper we show our approach to stepwise setup a digital twin for an L3 virtualization which provides an

embedded SW function related virtual environment with respect to virtual peripherals and wiring up to the virtual

connector. The innovative aspect of our approach is that we setup the interfaces of the ECU component models to be

developed in such a way that the same ECU component model can be reused in an L3 as well as in an L4 virtualization

system thus reducing the need to recreate these models when moving to lower abstraction levels. Together with

wrappers tailored towards different L3 / L4 simulation tools we enable a high reusability and by that enable a higher

return on the initial invest to create such a virtual ECU. A key aspect for this is the formal description of the wiring

that can be automatically processed and allows for an automatic creation of a virtual ECU tailored towards a specific

simulation tool.

In the result section we demonstrate how we use our approach to create an L3 and an L4 virtual ECU from the

same source and give an indication on the accuracy and the real time factor we achieve.

Keywords— Digital Twin, Virtualization Levels, Electronic Control Unit, Software-defined-Vehicle, Classic AUTOSAR

I. MOTIVATION

The new Electronic and Electrical (E/E) architecture supporting the Software Defined Vehicle concept features

a centralized design built on high-performance processors for computing centralized vehicle control functions.

Despite this centralization, access to sensors and actuators remains essential, typically managed through Classic

AUTOSAR services. The emerging E/E architecture integrates High Performance Computers (HPC) connected via

high-speed Ethernet links to Zone Control Units (ZCU). While Adaptive AUTOSAR offers flexibility with services

tailored for Linux and Hypervisor-based HPCs, Classic AUTOSAR continues to be relevant for local control and

I/O interfaces, ensuring fast and secure vehicle control.

While virtualization of hardware resource and network is a state-of-the-art technology for server applications,

it is still evolving for setting up vehicle “Digital Twins” with HPC computers connected to their environment,

facilitating system development and early validation. These solutions include Ethernet network virtualization,

enhancing connectivity between HPCs and ZCUs. Various commercial solutions [2, 3, 4] enable the abstraction of

basic software through the Classic AUTOSAR Microcontroller Abstraction Layer (MCAL). Typically, these

solutions virtualize the OS and communication services to simulate a ZCU at a functional level. However, MCAL

abstraction is often 1) vendor-specific, 2) requires specific development for I/O control, and 3) is not suited for

more accurate simulators. Additionally, OEM requirements and use case driven testing often require the setup of

different virtualization solutions compatible with different vendors. Combined with the number of peripherals to

be supported individual solutions for each setup become overwhelming [5].

mailto:sacha.loitz@aumovio.com
mailto:torsten.hermann@aumovio.com
mailto:martin.3.hruschka@aumovio.com

2

Public

This is why AUMOVIO implemented a Proof of Concept (PoC) to enable a configurable single virtualized

concept for different virtualization abstraction levels, including I/O control diversity for Classic AUTOSAR real-

time systems. This setup provides a flexible simulation environment, incorporating ECU-level peripheral

simulation, various virtualization solutions, and multiple abstraction levels. In this paper, we explain the

virtualization concept using an extract from I/O based ECU, comparable to a Controller Platform as a ZCU instance

and demonstrate the performance test use case requirements.

This article is structured as follows: Section II provides an overview for the system set-up and the different

virtualization levels (L0 to L4). Section III details signal flows and virtualization, by describing signal flow at ECU

level of the system setup and how this signal flow is modelled at different levels of abstraction. In detail the flow

is described for a L3 and L4 signal flow virtualization level. Based on these signal flows we outline the gaps in

existing commercial solutions and the needs for implementing virtual peripherals. Section IV presents the virtual

peripheral concept setup, with the tool setup, the virtual peripheral architecture, and finally the PoC implementation.

To wrap up, section V summarizes the conclusion and suggests directions for future works.

II. STATE OF THE ART

A. System set-up

The system setup for the demonstration of the proposed methodology performed as a PoC is based on an

embedded real-time ECU for automotive applications that typically sense and steer parts of the vehicle. Our

example is the control of the trunk of a car, where the ECU controls a motor which finally moved the trunk lid as

depicted below in Figure 1.

Figure 1 System setup

The ECU is built on the top of Classical AUTOSAR (C-AR) architecture, and the trunk lid is controlled by a

hardware driver piloting the trunk lid motor. Three sensors are integrated, one for measuring the current of the

motor and a second and third as information when the trunk is opened / closed. The communication with the

hardware driver is performed with a serial communication for its configuration. The environment for the

experiments is based on commercial tools, one for L3 virtualization and another one for L4 virtualization.

B. Virtualization Levels

The state-of-the-art industry wide smart System Engineering Prostep IVIP association agreed on different levels

for virtualization of Electronic Control Units (V-ECU) applicable for interoperability of simulation standards. The

white paper [6] defines V-ECU simulation levels applicable to AUTOSAR systems that goes from Level 0 aka

controller model at algorithm level to Level 4 aka target binary to simulate (close to real-time behavior) and

verify/pre-validate the target binary software with representativity of hardware signals.

In between Level 1 contains software code application executed in communication simulation level (typically

RTE for AUTOSAR) to perform integration of application software component for functional verification at

communication level. The Level 2 simulation BSW provides an environment simulating the BSW services with no

software driver dependencies to complete functional software verification with abstracted basic software services

(typical communication or memory abstracted level). The Level 3 Production BSW integrates the Hardware

Abstraction Layer with simulation of low-level software drivers. Hardware drivers are simulated (e.g. MCAL for

AUTOSAR) and application can be verified including BSW features (still with Micro Controller hardware

abstracted). Finally, Level 4 only emulates the hardware. The unmodified and target compiled BSW can directly

execute on the L4 virtual platform. See Figure 2 for graphical explanation of the levels.

3

Public

Figure 2 Virtualization levels

The proposed methodology aims to focus on Level 3 and Level 4 V-ECU virtualization levels. The paper

proposes to design a methodology capable to abstract hardware signal level and propose a configurable

implementation capable to support both level of simulation.

III. SIGNAL FLOW AND VIRTUALIZATION

A. Signal Flow in an ECU

The driving of the motor is implemented with a HW brick called ‘power output’. This power output gets signals

/ commands from the ECU and drives the power for the motor accordingly. After the motor is enabled, it consumes

some current which is read back by the ECU. With the evaluation of the current usage a sticking trunk lid can be

detected, and reactions can be derived.

The implementation of the motor and trunk lid simulation, aka. plant model will receive the provided power

and provide the actual current. If such a plant model shall be reused from a HW in the Loop (HiL) setup in a virtual

environment, the virtualization must also provide the information of the power and read the used current. Figure 3

shows the system setup. The power output peripheral is soldered on the PCB and thus also called “PCB soldered

peripheral”. These kinds of peripherals are described here; they get commands from the ECU, drive a line to an

external device and read back the used current.

Figure 3 System setup of an ECU with a connected plant model

In the example the trunk lid control application SW component controls the trunk lid plant model. To open the

trunk by driving the move of the motor with 50% speed a trigger is generated on interface (1) as shown in Figure

4. The power output driver, located in C-AR Basic Software (BSW) as Complex Device Driver (CDD), converts

this functional request at interface (2) with a Pulse-Width Modulation (PWM) control, driven by a hardware driver

part of the Micro Controller Abstraction Layer (MCAL). This module configures the Micro Controller (µC) PWM

peripheral to toggle a digital output pin of the µC at the requested frequency – see interface (3).

Figure 4 ECU based system with main interface references

This µC output pin acting on related voltage level, 0…3.3V or 0…5V, controls the power output input pin of

the peripheral. The power output peripheral switches the 12 V motor command at the requested frequency. If the

SWC requests 50% of the maximal speed, the external line is switched for 50% to on and 50% to off. This leads to

a theoretical power output of 6V and the motor runs with only 50% of the maximal speed.

4

Public

While the motor is running its current consumption is measured. The measurement is implemented in or next

to the peripheral. This circuit setup converts the consumed current (in Ampere) into a voltage value image of the

current. The conversion is performed several times during trunk movement to provide e.g. anti-pinch protection.

The additional sensors report the opened / closed position of the trunk lid. This information is digitalized by the

µC ADC and routed to the application SW component to switch off the motor.

B. Signal flow in a L3 & L4 Virtualization

L3 and L4 virtualization is used for functional and integration testing with a wide range of test capabilities from

basic communication and diagnosis tests up to closed loop testing. The test cases must be executed with minimum

impacts on the virtualized solution and the embedded SW must not be adapted to virtualization needs – except

mentioned differences in virtualization levels. To enable closed loop tests in a L3 and L4 virtualization the signal

flow as on a real hardware must be respected. Otherwise changes in embedded SW are mandatory and lead to the

need of an implementation of virtual peripherals for L3 and L4 virtualization.

IV. REQUIREMENTS ON VIRTUAL PERIPHERAL IMPLEMENTATION

A. Virtual peripheral needs

Virtual peripherals are the connector between the physical interface of the ECU and the µController in- and

outputs. There are different peripheral types used in real time projects. A categorization can be done as follows:

• Less complex like (de-)multiplexer or simple logical AND/OR gates, Inverter

• Medium complex, like H-Bridges, High Side Drivers (HSD), Low Side Drivers (LSD), eFuses.

• Highly complex, like ethernet switches RF antenna, Bluetooth, …

For each of the peripheral categories different hardware features must be managed like the communication

between µController and peripheral (DIO, SPI, …) and the supported voltages and currents. A mid-range ECU

project embeds around 60 peripherals and around 20 different categories and kinds.

To be able to efficiently handle these peripherals while achieving a good simulation performance the impact on

the embedded SW needs to be analyzed for each peripheral with the functional test objective in mind. Most ECU

soldered peripherals have no direct impact on the embedded SW and can thus be ignored. Other components offer

registers that are directly accessed by the SW but are not connected to the plant model (e.g. temperature sensor or

PMIC) and can be represented by a simple register stub. Most interesting in the context of this presentation are the

remaining peripherals that require a functional model. Especially for these the functional requirements of the model

need to be analyzed e.g. the communication interface to the MCU is for both L3 and L4 level models often

established for performance reason not at a pin level but at an API level and e.g. missing retry mechanisms. Still

the effort to implement such peripherals is high and it cannot be afforded to reimplement these peripherals for

different abstraction levels or simulation tool vendors. The next section presents our approach to cover several tools

at both L3 and L4 level with the same peripheral model. Please note that for these peripherals the functional

requirements to the model are besides the communication interface to the MCU model / MCAL model equivalent

for both L3 and L4 level simulations thus that usually the L4 simulation benefits from the higher speed of reusing

an L3 model.

B. Comparison of virtual peripheral implementation for L3 and L4

When modeling ECU (Electronic Control Unit) peripherals in the context of ProSTEP IVIP simulation levels,

the level of detail and realism in how these peripherals behave and interact with the rest of the system varies

significantly between Level 3 (L3) and Level 4 (L4). The following sections primarily focus on the software

intended to run on the virtual ECU and the interaction between microcontroller and external peripherals on the

PCB. We do not focus on the actual implementation of the virtual microcontroller and do thus not compare the

internal implementation for e.g. registers, on-chip interconnect, caches, etc.

In a Level 3 simulator, ECU peripherals are typically functionally modeled without incorporating timing

behavior. This means the simulation focuses on the logical correctness of the software interacting with the

peripherals but does not account for how long operations take or how they are scheduled in real time. The models

5

Public

are abstract and simplified, which allows for faster simulation and early-stage software testing but limits the ability

to detect timing-related issues.

In contrast, a Level 4 simulator introduces a more detailed and loosely time-accurate representation of ECU

peripherals. While it still does not simulate exact hardware timing, it includes approximate timing behavior to better

reflect real-world execution. This is often achieved using Transaction-Level Modeling (TLM), which abstracts

communication between components at a higher level than signal-level simulation, enabling faster execution while

still capturing essential timing characteristics. This allows for more realistic integration testing, including the

detection of potential race conditions or scheduling conflicts. A comparison between the characteristics of L3 and

L4 is captured in Table I.

Table I. Comparison of L3 and L4

Aspect Level 3 (L3) Level 4 (L4)

Simulation Fidelity High fidelity; close to real ECU behavior,

excluding hardware-dependent drivers

Very high fidelity; includes hardware abstraction and

near-complete ECU behavior

Software Integration Includes all basic software above hardware drivers Includes full software stack including hardware

abstraction layers. Binary compatible.

Timing Behavior

Simulation

Capable of simulating timing with real-time OS

integration

Simulates precise timing and scheduling, suitable for

virtual hardware-in-the-loop (vHiL)

Use Cases Software-in-the-loop (SiL), early integration testing vHiL, final validation, safety-critical testing

HW Dependency Minimal; excludes hardware-specific drivers Abstracted; simulates hardware interfaces

Complexity Moderate to high Very high

Toolchain

Requirements

Requires real-time OS and simulation environment Requires full simulation stack and possibly co-

simulation tools

Validation Scope Functional and timing validation Full system validation including fault injection and

robustness testing

In a typical ECU development flow, both Level 3 (L3) and Level 4 (L4) simulators are essential because they

serve complementary purposes at different stages of the development and validation process. L3 simulators are

used early in the development cycle for functional testing and software integration, offering fast simulation speeds

and enabling developers to validate logic without being constrained by hardware or timing. L4 simulators, on the

other hand, are used later for system-level validation, where timing behavior, hardware abstraction, and integration

with real-time systems become critical. As L4 simulators are still an abstract representation especially of the timing

the final system-level validation always needs to be done hand-in-hand with real hardware. The binary compatibility

here allows a transition between L4 simulator and real hardware.

However, these simulators are rarely reusable across levels due to several key challenges:

• Tool Incompatibilities: L3 and L4 simulators are often developed using different toolchains or

simulation environments, which are optimized for different abstraction levels. This makes direct reuse

technically difficult or even impossible without significant adaptation.

• Lack of Standardization: There is no universally adopted standard for model interfaces or timing

semantics across simulation levels, leads to inconsistencies in how models are structured and executed.

• Different Modeling Objectives: L3 simulators prioritize speed and functional correctness, while L4

simulators emphasize timing accuracy and hardware interaction. As a result, the internal architecture

and assumptions of the models differ significantly.

• Performance Trade-offs: L4 simulators often use Transaction-Level Modeling (TLM) and include

loosely timed behavior, which adds complexity and overhead not needed in L3. Reusing an L4

simulator in an L3 context would unnecessarily slow down simulation, while using an L3 simulator in

an L4 context would lack the required fidelity.

Because of these differences, development teams typically maintain separate simulator versions for L3 and L4,

each tailored to its specific role in the development pipeline [7, 8, 9]. Adding different tool suppliers at each level

that all need to be supported due to different customer requests we get a huge zoo of different flavors that need to

be supported by the different peripheral models that are part of our simulators. Opening the question on how far we

can combine these different models.

6

Public

C. Unique implementation of virtual peripherals for L3 and L4

While L3 and L4 simulators are often developed independently due to toolchain and fidelity differences, reuse

of individual L3 peripheral models at L4 is not categorically impossible — it largely depends on the required fidelity

and simulation objectives. In scenarios where the goal is to execute unmodified software on an L4 virtual ECU

without validating full ECU functionality, a compromise on fidelity is acceptable. This is particularly relevant for

control-oriented software, such as our example of the trunk window lifter, where the interaction with PCB

peripherals is the primary concern. Since this interaction is central to the software’s behavior, models of these

peripherals are required at both L3 and L4 simulator levels.

The main distinction between L3 and L4 simulation flows lies in the presence or absence of timing annotations.

While both levels can simulate the same software logic, their treatment of timing and peripheral interaction differs

significantly. The impact of the peripheral timing on the actual simulation depends on who is the initiator of a

transaction. Table 2 shows a comparison for the L3 and L4 features for transactions initiated by the MCU. While

Table 3 presents the behavior if a peripheral is the source of a transaction.

Table 2 Transactions Initiated by Software (MCU → Peripheral)

Aspect Level 3 (L3) Level 4 (L4)

Timing No timing information is modeled. TLM allows attaching timestamps to transactions, enabling

loosely timed behavior.

Peripheral

Behavior

Assumes static, passive behavior. Immediate

response expected.

Also assumes static behavior but allows modeling of response

delays.

Use Case Fit Sufficient for validating control logic (e.g.,

trunk/window lifter).

Adds realism for integration testing, but not strictly necessary if

timing is not critical.

Insight: Since PCB peripherals (e.g., switches, sensors) are typically passive and their behavior doesn’t change

dynamically, L3 is often sufficient for validating software logic. L4 adds timing realism but may not be essential

unless integration with other timed systems is required.

Table 3 Transactions Initiated by Peripherals (Peripheral → MCU)

Aspect Level 3 (L3) Level 4 (L4)

Peripheral

Activity

Peripherals cannot actively initiate transactions. No

interrupts.

Peripherals can initiate transactions and raise

interrupts.

Event Handling External events (e.g., from plant model) are polled or

triggered via callbacks.

Interrupts can be raised and handled by the

simulated MCU core.

Use Case Fit Acceptable for most control SW, as polling is the dominant

pattern.

Necessary for testing interrupt-driven behavior or

fault injection.

Insight: In most real-world ECU applications, polling is preferred over interrupts for safety and determinism.

Interrupts are mainly used for fault management, which in simulation is often script-controlled and directly injected

into the MCU model – making L3 sufficient in many cases.

D. Known limitations of the selected approach

While the selected approach – reusing L3 models in L4 contexts with relaxed fidelity – offers efficiency and

practicality, it has clear limitations:

• Timing-Critical Applications: The approach is not suitable for systems with tight real-time constraints,

where precise timing and synchronization between components are essential.

• Example ESC Control: In an Electronic Stability Control (ESC) system, the microcontroller must:

o Measure vehicle motion via an inertial sensor,

o Apply brake pressure,

o Monitor wheel speed and inertial feedback,

o Release brake pressure accordingly.

This closed-loop control involves multiple tightly coupled components and real-time feedback, making it

infeasible to simulate accurately without precise timing and interrupt handling, thus out of scope for the current

abstraction level.

7

Public

V. EVALUATION OF THE PRESENTED APPROACH

To show the proof of the concept AUMOVIO has implemented prototypes in commercial simulation tools for

Level 3 and Level 4. Each prototype uses the same virtual peripheral C++ implementation for the eFuse VNF9D5F.

The embedded SW was, except for the different MCAL modules, almost identical. In Level 3 simulation a

multiplexer was additionally integrated. Figure 5 explains the setup of the virtual PCB with the wiring from the

MCAL over the virtual peripheral up to the virtual connector where measurement- and test-tool was connected.

Figure 6 shows the almost identical setup for L4 but with the “Virtual Adapter” to embed the virtual peripheral to

the L4 environment.

Figure 5 Setup Level 3 simulation environment

Figure 6 Setup Level 4 simulation environment

The SPI initialization sequence of the eFuse, shown in Figure 7, was measured at the L3 setup. Here it is shown,

that by the eFuse internal state change to “Normal”, triggered by SPI commands, the Outputs are disabled and must

be explicitly enabled via SPI. The PWM ramp-up and Voltage changes on the eFuse outputs in Figure 8 have been

taken from the L4 setup. Channel 0 is disabled, and Channel 1 provides a Voltage of 2.5V

Figure 7 SPI based eFuse initialization sequence

Figure 8 PWM ramp-up and voltage change on the eFuse outputs

8

Public

VI. RESULT / CONCLUSION

A. Result

While L4 offers more accurate timing and interrupt handling, L3 can often be reused in L4 contexts if the

simulation goals are limited to software execution and not full ECU validation. The key enabler is a clear

understanding of the required fidelity: if timing and peripheral-initiated events are not critical, L3 models can be

adapted or reused with minimal compromise. To be able to reuse our L3 peripherals we defined an API according

to which our peripherals are developed. This API focuses on the commonalities of virtual peripherals: PINs. Every

kind of virtual peripheral has a set of PINs which can be connected or not. In case they are connected, they transfer

a certain data type (current, voltage, DIO, PWM, ...). In addition, each PIN has a defined direction (input or output)

which allows safe and consistent wiring. This generic API is then wrapped in a SystemC wrapper interfacing to

SystemC signals and TLM transactions.

According to this API we implemented an eFuse model for use in an L3 simulation. To reuse this model in an

L4 simulation we only had to implement a wrapper that is due to our API generic for different peripherals and add

the according wiring which is here the TLM transaction from the microcontroller to the peripheral. We tested this

setup first with dummy initiator in an IEEE1666 SystemC environment. In a later stage the TLM was converted

into the TLM flavor used by a proprietary tool supplier. In this setup we were able to successfully run a SW

example switching the eFuse and reading back the resulting voltages. With this we have shown that we only need

to adjust the connection (aka wiring) between the respective microcontroller model and the peripheral and don’t

need to touch the peripheral implementation.

B. Conclusion

With the ability to implement virtual ECU (vECU) peripherals for different virtualization levels we developed

a tooling to connect the virtual ECU peripheral implementation to different virtualization solutions. By using this

tooling, the virtualization tools which – out of the box – mainly support a virtual Microcontroller (vµC) with

communication interfaces like CAN, Ethernet, LIN, etc. can be exchanged. The wiring between the vµC and the

vECU peripherals are setup outside the tool solution and can been taken over.

Figure 9 Streamlined development with multiple virtualization level support

This means that the setup of a virtual ECU which was developed in one virtualization solution (e.g. L3) the

configuration can be taken over to generate a vECU in a L4 virtualization solution.

Figure 9 shows the approach of the streamlined development with virtualization support. For the application

development (not in focus of this paper) the L1 virtualization is used. The outcome of this step, the embedded SW

component (SWC) and the test cases / plant model / environment simulation, can be reused in the L3 virtualization

to perform functional integration tests. With the re-use of the virtualized ECU from L3 to L4 more detailed tests

like embedded SW multicore and safety tests can run in a virtual environment. The final validation on a real target

probably including real external peripheral (e.g. motor, ..) setup is still mandatory but in a reduced amount of HiL.

With the general capabilities of virtualization like multi-instances, easier SW tracing, error injections, the

overall setup enables a streamlined and cost-efficient way for shorter time to market development approach.

9

Public

VII. REFERENCES

[1] AUTOSAR GbR, “AUTOSAR Classic https://www.autosar.org/standards/classic-platform.

[2] Synopsys Silver tool solution, https://www.synopsys.com/verification/virtual-prototyping/silver.html

[3] ASTC, VLAB Works, https://vlabworks.com/

[4] Vector, vVirtualTarget tool solution, https://www.vector.com/at/en/products/products-a-z/software/vvirtualtarget

[5] T. Hermann, P. Cuenot, S. Loitz, “Digital Twin for Classic AUTOSAR ECU,” CESA 2025, Versaille, France, 2025.

[6] prostep ivip association, “Requirements for the Standardization of Virtual Electronic Control Units (V-ECUs), White Paper, 2020,

https://www.prostep.org/en/medialibrary/translate-to-english-

detail?ai%5Baction%5D=detail&ai%5Bcontroller%5D=Catalog&ai%5Bd_name%5D=wp_smartse_vecu&ai%5Bd_pos%5D=.

[7] Ruehl, M., Bronner, F, “Creation and Usage of Virtual Control Units (V-ECUs) in SIL and HIL for Development and Validation

especially for Software-Defined-Vehicles (SDVs).” In: Kulzer, A.C., Reuss, HC., Wagner, A. (eds) 2024 Stuttgart International

Symposium on Automotive and Engine Technology. I{SSYM 2024.

[8] dSPACE GmbH, “(R)evolution in the exchange of V-ECUs,” dSPACE Engineers’ Insights, Paderborn, Germany. [Online].

Available: https://www.dspace.com/en/pub/home/news/engineers-insights/v-ecu-standard.cfm

[9] dSPACE GmbH, “Combining Level 3 and Level 4 virtual ECUs in one simulation,” dSPACE Learning Bits, Paderborn, Germany.

[Online Video]. Available: https://www.dspace.com/en/inc/home/learning-center/recordings/learning-bits/video_lb_l34virtualecus.cfm

https://www.autosar.org/standards/classic-platform
https://www.synopsys.com/verification/virtual-prototyping/silver.html
https://vlabworks.com/
https://www.vector.com/at/en/products/products-a-z/software/vvirtualtarget
https://www.dspace.com/en/pub/home/news/engineers-insights/v-ecu-standard.cfm
https://www.dspace.com/en/inc/home/learning-center/recordings/learning-bits/video_lb_l34virtualecus.cfm

