2025

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

OCTOBER 14-15, 2025

Offloading Complex Mathematical Computations
In SystemVerilog Testbenches

Asyncronous verification of ethernet Reed-Solomon forward error correction using
third-party Python packages

Simon Coulter, Cadence Design Systems, Cork, Ireland (scoulter@cadence.com)

Abstract— Mathematically complex RTL blocks can pose an issue with verification. Applying standard
SystemVerilog/UVM verification to mathematically complex RTL blocks is challenging, as developing verification code
often requires reimplanting the full mathematical function. This paper will present a methodology for offloading these
calculations to a 3 party software library with established software models that can be used to verify against the
Device-Under-Test (DUT) Module. This approach is particularly beneficial when applied to functionality such as Reed-
Solomon Forward Error Correction (RS-FEC), where implementing a verification model would consume a
disproportionate amount of the design and verification resources. The methodology allows for verification of multiple
different DUT elements simultaneously, scales to thousands of parallel tests for large regressions run across a server
farm and runs independent of other test frameworks; it can be seamlessly integrated into existing testbenches as plug-
in functionality. This solution reduces verification implementation times for mathematically complex functionality
without compromising thoroughness or reliability.

Keywords—Verification; Mathematically Complex; Direct Programming Interface; TCP; Universal Verification
Methodology; Reed-Solomon; Python

. INTRODUCTION

The verification of complex mathematical functions in Register-Transfer-Level (RTL) designs presents a
persistent challenge in hardware development. As digital systems increasingly incorporate error correction,
cryptography, and signal processing algorithms, traditional verification approaches using independently created
validation models in SystemVerilog, using SystemVerilog/lUVM testbenches [1] struggle to verify the expected
behaviour without duplicating the development effort of the original design.

This is particularly true of functionality such as Reed-Solomon Forward Error Correction (RS-FEC), where the
algorithm involves operations in finite fields, polynomial arithmetic and computational algebra, among others.
Creating a verification environment for such functionality traditionally requires substantial expertise in both the
mathematical domain and hardware description languages, often resulting in verification effort comparable to the
original RTL implementation effort.

Several software languages, on the other hand, have existing libraries with robust software models for these
functionalities. Notably Python and C/C++ have many freely available packages or libraries (Python: ReedSolo, C:
Shifra, libcorrect, etc.) A library such as one of these can be used in conjunction with a standard
SystemVerilog/UVM simulation by connecting the applications via a Transmission Control Protocol (TCP) socket,
as shown in Figure 1.

Simulation Python Daemon

RS-FEC Model

Testbench

f f

Figure 1. Conceptual high-level architecture

2025

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

OCTOBER 14-15, 2025

By combining the use of pre-existing software libraries with robust implementations of complex mathematical
algorithms and a TCP socket infrastructure designed to handle hundreds or thousands of simultaneous simulation
instances, this paper demonstrates a verification approach that significantly reduces the implementation effort
required while maintaining confidence in the hardware implementation. This paper will focus on an implementation
of this framework for RS-FEC and Python, though its applicability is not limited to this example.

Il. RELATED WORK

There are several existing successful efforts in this space. Previous research [2] demonstrated SystemVerilog's
Direct Programming Interface (DPI) functionality for C/C++ integration. However, Python integration requires an
additional C intermediary layer, creating differing architectural considerations to this approach. Another
verification approach [3] implemented compiled MATLAB executables called directly from the SystemVerilog
testbench. A significant limitation of this method is the requirement for the executable to start up and complete
execution before simulation can continue, causing increased simulation times. Direct SystemC models through the
DPI have been utilised in [4] to simulate complex blocks. While this approach shares the goal of reducing
implementation time, it offers less flexibility for verification across multiple toolchains and environments. A TCP
socket-based framework similar to this work was developed in [5]. However, their primary objective was co-
simulation with FPGA hardware alongside software models, rather than software replacement of verification
blocks, as in our approach.

The methodology also differs from frameworks like cocotb, which require the entire testbench to be
implemented in Python. Instead, we maintain the existing verification environment while supplementing it with
external mathematical models, preserving investment in established infrastructure. The implementation of the
methodology discussed in this work is substantially less than that of re-implementation or porting an existing
testbench to Python.

While this work shares conceptual similarities with these existing methodologies, it distinguishes itself by
providing a framework where any software co-verification package can be seamlessly integrated into an existing
verification testbench. It also provides a pathway for an engineer to validate a complex block without having to
spend time understanding the complexities of the underlying math, instead focusing functionality, coverage, and
more thorough testing. While this work was based on validation using Python, C/C++/SystemC or other languages
could be substituted.

Ill. ARCHITECTURE

The verification system can be thought of as having three parts:

1. The Testbench Code, responsible for compiling data to be verified, and packaging it for transmission.
2. The transmission code — consisting of a TCP socket on each side of the link.

3. The verifier application — written in a software language that has a reference library with the complex
mathematics already handled, such as Python or C/C++. This paper focuses on a Python implementation.

Furthermore, for this approach to fit seamlessly into existing testbenches, it should:
1. Be scalable to 1000s of simultaneous simulations run in parallel.

2. Be flexible to adaptation for other test needs - including anything that is difficult to verify in a traditional
SV/UVM testbench.

3. Not be overly consumptive of server resources — this covers several fronts, including RAM usage, CPU
time, server farm “slots”, file/socket handle limits, and ethernet bandwidth.

While some of these, such as ethernet bandwidth within the server farm, are relatively trivial to optimise, others
are more challenging.

2025

DESIGN AND VERIFICATION™

DVLCOIN

CONFERENCE AND EXHIBITION

MUNICH, GERMANY
DCTOBER 14-15, 2025

A. Testbench code

The primary role of the testbench code is to compile data across multiple clock ticks, package it into a
structured binary data blob, and send it to the TCP socket. “Compiling” the data in this context refers to packaging
a meaningful block of data such as an RS-FEC codeword that passes through a module interface over multiple
clock ticks. RS-FEC (544, 514, m=10) for instance, as used in the 802.3 Ethernet Physical Coding Sublayer (PCS)
for lane rates of 50G or greater, uses a 5440-bit block of data of 544 10-bit symbols, referred to as a codeword
(Figure 2) [6]. The first 514 symbols consist of data, and the remaining 30 are parity bits - the decoding of which
is a particularly complex process. Due to its size the codeword arrives over multiple clock cycles, in “data stripes”
in the range of hundreds of bits per cycle. The test bench code tracks the start and end of these codewords, captures
the data, and holds it in a buffer. It simultaneously tracks the progress of the codeword through the module and
captures it on exit again several clock ticks later, after the parity calculations are performed. The two are then
packaged together and sent to the socket. As each set of codewords are fully independent from all other codewords,
this forms a complete and independent transaction. By taking this approach and storing the codewords in the
testbench code until the matching exit codeword and other relevant signals are ready, the task of synchronising

the data is greatly simplified.
- I I

5140 data bits 300 parity bits

Figure 2. RS-FEC (544, 514) Codeword

The code required to pre-process the data is encapsulated in an “observer” module along with any other
required functionality — for example, inverting bit/symbol orders where necessary, or packaging of the data into a
byte-stream for the TCP socket. This is shown in Figure 3, where the “observer” module monitors the I/O of the
DUT module using a SystemVerilog bind construct. A single simulation instance might have several DUT

Simulation instance

“Observer” Module instance 0

Dut Module instance 0

(eg. RSFEC_544) —>

Shared Channelised TCP
Socket
“Observer” Module instance m

To External Verification

1,2,.

Dut Module instance m

(eg. RSFEC_272)

Figure 3. Simulation side infrastructure

2025

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

OCTOBER 14-15, 2025

modules in need of validation of varying types; for example, different RS-FEC types ((544, 514), (272, 257+1),
(528, 514)). Each individual DUT module has its own observer module instance, and typically each type of DUT
module being observed will require a different type of observer module. The use of the bind construct makes the
observer module independent of the testbench driving the stimulus — it can sit adjacent to UVM or pure SV
testbenches with equal ease.

When results are returned across the TCP link from the external verification application, they can be interpreted
by the observer module, or a separate code unit. Pass/Fail information can be assigned to an assertion or plugged
into any testbench as required (UVM, SystemVerilog, or other). Coverage information is gathered for successful
comparisons, while failed comparisons can be dumped to debug logs (the simulation timestamp metadata is
particularly useful for this). This section of the framework is extremely flexible and can be adapted to the needs of
the testbench.

B. TCP socket infrastructure

There are several ways two independent applications can communicate, but IP/TCP sockets provide
advantages that cannot easily be replicated. Simple programs might use file handles, reading and writing out to
files in known locations — however with a requirement to support hundreds or thousands of simulations
simultaneously, a file handle per simulation quickly becomes unwieldy, and a drain on system resources.
Additionally, to enable two-way communication, as is necessary in this case for communicating results, either a
second file handle or a very carefully orchestrated protocol is required. Local Unix sockets step past much of this
and are very efficient. They are bidirectional and can operate on a packet or streaming interface basis, which is
ideal for this use case, but are crucially limited to a single physical machine.

IP/TCP sockets on the other hand are limited to one system/server, which is extremely useful in a distributed
server farm environment. They are however less efficient than local sockets and operate on a streaming interface
basis rather than packet based, requiring extra code to manage. The use of sockets also allows an easy N-to-1
connection, where multiple clients (simulation instances) can connect to a single server (Python, etc.) socket [7].

To reduce the usage of system resources, each simulation instance uses a single socket instance, shared
between the observer modules. The packaged data has a standard header prepended to it, including a channel 1D
that associates it back to its relevant observer module. The packaged data contains other information, such as a
simulation timestamp for debug, as well as module signals (modes, rates, clock frequency) in addition to the
codeword data. The actual socket code in SystemVerilog must be via a DPI-C call, as there is no native socket
implementation; many libraries exist to implement this.

The python application side is implemented using the asyncio package and standard socket calls. The asyncio
package [8] allows the application to handle multiple socket connections simultaneously, setting the socket read
commands to sleep while waiting for activity. This causes the system to behave as if multi-threaded even when
running on a single thread — ideal for this use case, as each pair of codewords is completely independent from all
others. Additionally, if the load for a single thread becomes too high to keep up with the influx of data the asyncio
package is designed to allow handing off its asynchronous tasks off to subprocesses?, allowing true parallelisation
across multiple cores, with minimum additional implementation effort.

C. Python verification application

The verification app consists of two parts —a TCP server wrapped in an asynchronous handler, and a wrapper
around the RS-FEC library. The TCP server has mostly been discussed in the section above — the asynchronous
wrapper allows the application to scale easily from a single client to many (Figure 4). If the load becomes so
heavy that several subprocesses are necessary, a dispatcher that assigns socket connections to a pool of worker

1 Python subprocesses are somewhat analogous to threads in most other languages. Threads in Python are in some senses still single threaded,
as they must all access the same Global Interpreter, which is single threaded. Subprocesses step around this by spawning a new instance of
the Global Interpreter, effectively launching a new instance of Python in a controllable fashion. Multiple “threads” — or asyncio tasks - can
run on each subprocess.

2025

DESIGN AND VERIFICATION™

DVCON

CONFERENCE AND EXHIBITION

MUNICH, GERMANY
DCTOBER 14-15, 2025

threads/processes will also be necessary [9], along with a process-safe communication and management system
for managing logging and load balancing.

Once the package of information reaches the library, it must be parsed out of the data blob into its relevant
components — codewords, module signals, metadata, etc. For RS-FEC the data package must contain information
on what kind of codeword is contained, as the various kinds used in ethernet ((544, 514), (272, 257+1), (528,
514)) all have different data sizes and thus different encoding/decoding algorithms. The library performs the
calculations - RSFEC encoding or decoding as relevant — and compares against the DUT calculation, checking
the full codewords and the calculated error locations. The result of this comparison is then repackaged and
transmitted back across the TCP link. It is accompanied by other information — in the case of a failed comparison,
all information can be sent for debug, or for a success, only information necessary for generating coverage data.
Results can then be gathered in the observer module and dealt with as needed — for example using assertions and
coverage bins, or UVM reporting if desired.

Python Daemon

Socket endpoints
distributed to

subprocesses as needed
based on load

Python subprocess Python subprocess

Async Socket read/write 1,2,..n Async Socket read/write
Necessary Calculations Scales as Necessary Calculations
performed needed performed
Results repackaged and Results repackaged and
transmitted across socket transmitted across socket

Figure 4. Verification application infrastructure (using Python as an example)

D. Optimisations - RAM/CPU/Server slot usage

The least complex implementation of this architecture utilises a single instance of the Python application for
each simulation instance; The socket connection is one-to-one, and synchronising the start and end of each
simulation is simple. However, each instance of the Python application detailed above uses approximately 300 MB
of RAM; multiply this by 1000 simulation instances and a memory footprint of greater than 300 GB is required.
Additionally, each Python instance takes up a new server slot. On the other hand, testing revealed that the simulation
of the ethernet PCS design, for which this system was developed, produced codewords for verification on the order
of hundreds of times slower than the Python application could process and return them. Reversed, this implies that
a single Python instance can easily support hundreds of simulation instances, and that the CPU utilisation efficiency
per slot increases dramatically. On this basis it made sense to connect multiple simulation instances to a single
python instance rather than one-to-one connections, massively reducing RAM footprint and server slot usage.

Figure 5 shows the overall infrastructure of the verification system, with many simulation instances connected
to a single external verifier. The external verifier (python in this instance) uses subprocesses (or threads in C/C++)
to dynamically allocate resources for high loads. Note that the number of subprocess/threads need not be equal to
the number of simulation instances, and is practically bound by the number of available CPU threads.

2025

DESIGN AND VERIFICATION™

DVLCOIN

CONFERENCE AND EXHIBITION

MUNICH, GERMANY
DCTOBER 14-15, 2025

Simulation instance 1 Simulation instance m

Python daemon
with n subprocesses

Figure 5. Full infrastructure with one python daemon connected to many simulation instances simultaneously.

E. Optimisations — Parallel and Asynchronous processing

Offloading the RS-FEC verification calculations to Python running on a separate process is an easy source of

parallelism, which is highly beneficial in a distributed server farm environment. Another source of optimisation is
found in asynchronous sending and receiving of data packages to the verification app; more specifically, the
simulation generates a data package, sends it to be verified, and then does not wait for the return message. The
simulation continues without getting the results, and some time later, when the verification application is finished
processing, the results arrive and can be dealt with. This is particularly important when using a setup with many
simulations and one verification app, such as is described in this paper, as it removes a major potential source of
bottlenecking. Figure 6 shows a visual representation of this. Note that wall clock time refers to “real time”, where
sim time is the artificial time represented by the simulations progress. It is worth noting here that for a direct DPI-
C call to a C/C++ executable, using this asynchronous and parallel methodology is impractical. Whether this
approach would execute faster than the socket calls is unexplored. However, if returning of the results in step with
the simulation execution is required, the asynchronous approach described here is certainly less ideal.

“Wall Clock” time

Simulation B

Simulation A External Verification App

processing
delay

Sim time =1000ns
Packet 1 ready Sim time =1000ns

Packet 1 ready
] Processing Sim A Packet 1

Sim time =1002ns
Packet 1 returned

Processing Sim B Packet 1

A 4

Sim time =1100ns
Packet 2 ready

Sim time =1032ns
Packet 2 read

Processing Sim A Packet 2

Figure 6. Asynchronous handling of results by the simulation. Processing times are not shown to scale, timestamps are illustrative only

2025

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

OCTOBER 14-15, 2025

IV. RESULTS AND DISCUSSION

The proposed methodology was successfully implemented and validated for Reed-Solomon Forward Error
Correction (RS-FEC) verification in an ultra-high-speed Ethernet controller design, with three key advantages:

e The addition of the Python based verification framework had no measurable impact on simulation
execution time.

¢ Implementation of the framework did not require any of the in-depth mathematical knowledge need to
implement the DUT module — only knowledge of how RS-FEC is used within the Ethernet standard.

e The methodology operates seamlessly as a “plug-in” to existing testbenches without requiring
modifications to existing infrastructure.

The system demonstrated robust scalability, successfully supporting greater than 400 concurrent simulation
instances connected to a single Python verification daemon running on a single thread without performance
degradation. The upper bound of simulations-per-python-instance will be dependant on the nature of the design
being simulated — in this case an ethernet PCS. Designs that produce more or less information to validate relative
to the design size may have different concurrency limitations, especially after socket overhead is considered. Multi-
threading (or multi-processing in Python) was successfully demonstrated to raise this limit as needed, supporting
hundreds of simulations per CPU core. This required additional load balancing infrastructure in the application.
There is a practical limitation to the number of Python subprocess that can be invoked of one per CPU core on the
server in use. As each process can handle hundreds of concurrent connections, this is not expected to be a substantial
limitation.

The shared daemon architecture provides significant resource optimisation compared to traditional one-to-one
approaches. While a naive implementation would require 300 MB of RAM per simulation instance (totalling 300
GB for 1000 simulations?), the shared daemon approach reduces this to a single 300 MB Python instance plus
minimal per-simulation overhead.

The addition of the Python based verification framework had no measurable impact on simulation execution
time. A minimal overhead is added by the observer modules and TCP socket, but this is dwarfed by the simulation
itself. This is particularly significant given that the DUT RS-FEC block itself consumes over 75% of the total
simulation time, implying that if the traditional verification approach of implementing an independent model had
been used, the total simulation time would have increased by ~75%. This could be further extrapolated to imply
that the Python based verification represents an approximately 40% saving in execution time over an independent
verification model. The asynchronous and parallel processing architecture ensures that the mathematical
verification calculations execute without impeding the ongoing simulation, eliminating computational bottlenecks.

Utilisation of this methodology achieved a reduction in verification development effort and complexity.
Implementation of the complete RS-FEC verification framework, including the development of the TCP
infrastructure, SystemVerilog modules, and Python verification daemon, required substantially fewer man-hours
than the original DUT module. This represents a significant improvement over implementation of a full independent
model and did not require any of the in-depth mathematical knowledge need to implement the DUT module.

The observer-based architecture using SystemVerilog bind constructs enables seamless integration into existing
verification environments. The methodology operates as a zero-impact plug-in to testbench frameworks,
successfully interfacing with both UVM and pure SystemVerilog environments without requiring modifications to
existing stimulus generation or validation infrastructure. The present validation focuses exclusively on RS-FEC
functionality, representing a single-domain case study. While the architectural framework is designed for

2n reality this number will be lower due to shared virtual memory pool for libraries. The real number is difficult to calculate or predict, as it
requires predetermined knowledge of the number of machines a regression will be split across for a given server farm.

2025

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

OCTOBER 14-15, 2025

extensibility to other mathematically complex functions, broader validation across different mathematical domains
(cryptographic functions, signal processing algorithms, etc.) remains to be demonstrated.

V. CONCLUSIONS

This paper presents a novel verification methodology that successfully addresses the challenge of verifying
mathematically complex RTL blocks through external software library integration. The approach demonstrates
three key contributions: (1) significant reduction in verification development effort through reuse of established
mathematical libraries, (2) increased confidence in verification accuracy due to the use of third-party golden
reference models, (3) excellent scalability characteristics suitable for large-scale regression testing, and (4) plug-in
integration with existing verification frameworks.

The RS-FEC case study validates the practical applicability of the approach, achieving complete verification
coverage with zero accuracy loss while maintaining simulation performance parity with traditional methods. The
demonstrated scalability to over 400 concurrent simulations with optimised resource utilisation makes this
methodology particularly suitable for verification environments where development efficiency and regression
capacity are critical constraints. While the current validation is limited to a single mathematical example, the
architectural framework provides a foundation for broader application to other mathematically complex verification
challenges. Any mathematically complex block of RTL is a good candidate for validation using this system;
digital/analogue signal processing, encryption, or neural network accelerators are all examples worth considering.

Finally, while this work focussed on the verification domain of simulation, other domains are also worth
considering, such as FPGA and emulation validation. The major limitation in moving to these domains will be the
use of the SystemVerilog bind construct, which is unlikely to be available when real hardware is in use. Binds were
used here to expose an internal module port; exposing the port physically as a configurable part of the design should
be used here instead. For full hardware emulation (including the testbench), the data will likely need to be post
processed rather than processed live, as in this paper. This remains as future work to be explored.

REFERENCES

[1] Bergeron J. “Writing testbenches: functional verification of HDL models”. Springer Science & Business Media; Dec 2012

[2] P. Goel, A. Sharma, H.V. Balisetty, “““C” you on the faster side: Accelerating SV DPI based co-simulation”, DVCon United Satates,
2014

[3] S.Aluri,J. Mehta, “Advanced functional verification methodology using UVM for complex DSP algorithms in mixed signal RF SoCs”,
DVCon United States, 2014

[4] L.Jinghui, S. Haibo and G. Jiazhen, “Co-simulation platform of SystemC and System-Verilog for algorithm verification”, DVCon China,
2021

[5] A. Papagrigoriou, M.D. Grammatikakis and V. Piperaki, “A hybrid channel for co-simulation of behavioral SystemC IP with its full
system prototype on FPGA”, DVCon Europe, 2018

[6] IEEE Standard for Ethernet, "IEEE Std 802.3-2022 - IEEE Standard for Ethernet," Section 91 (Reed-Solomon Forward Error Correction
(RS-FEC) sublayer), IEEE, 2022

[7] Van Winkle L. “Hands-On Network Programming with C: Learn socket programming in C and write secure and optimized network
code”. Packt Publishing Ltd, May 2019.

[8] Asyncio — Asyncronous I/O for Python, https://docs.python.org/3/library/asyncio.html

[9] Wagner M, Llort G, Mercadal E, Giménez J, Labarta J. “Performance analysis of parallel python applications”. Procedia Computer
Science. Jan 2017

