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Abstract— Managing Type 1 Diabetes (T1D) is a complex and demanding process, requiring continuous glucose
monitoring and precise insulin administration to maintain optimal glycemic control. In this paper, we introduce
an innovative approach to diabetes management by leveraging digital twin technology to develop and verify a
closed-loop artificial pancreas system. The approach used a compositional simulation interconnect framework to
seamlessly integrate a Runtime Verification (RV) monitor for property checking, advanced control algorithms, and
hardware-in-the-loop (HIL) testing. By automating insulin delivery and ensuring real-time safety verification, this
system aims to enhance glycemic control, reduce patient burden, and improve overall quality of life for individuals
with T1D. The integration of digital twin technology in the medical vertical represents a significant advancement
in the development of reliable and patient-centric diabetes management systems.
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I. INTRODUCTION

Digital Twin (DT) technology [1], originally rooted in manufacturing, has emerged as a valuable tool for simulating
and controlling complex systems in real time. By replicating physical systems virtually, DTs enable predictive modeling,
closed-loop experimentation, and risk-free validation—capabilities especially relevant in healthcare. Recent advances have
positioned DTs as enablers of personalized medicine, allowing treatment strategies to be tested and tuned per patient before
deployment.

Type 1 Diabetes Mellitus (T1D) is a prime application, being a chronic autoimmune condition where insulin production
is absent [2]. Despite advances in continuous glucose monitors (CGMs) [3] and insulin pumps, achieving stable glycemic
control remains difficult due to individual variability and lifestyle factors like meals, exercise, and stress [4].

We propose a DT-based framework for simulating a personalized artificial pancreas system. It integrates (i) a virtual
patient model exported as a Functional Mock-up Unit (FMU) [5], (ii) an adaptive insulin controller responsive to meals
and physical activity, and (iii) a runtime safety monitor using TP-DejaVu [6].

These components are orchestrated via a compositional interconnect fabric, enabling pre-clinical validation, real-time
safety verification, and closed-loop control—all within a unified simulation platform designed for reliability and patient-
centric tuning.

II. BACKGROUND: STANDARDS & TOOLS FOR CO-SIMULATION

This section presents the key standards and tools that form the foundation of our co-simulation architecture for the
diabetes management digital twin. Effective co-simulation relies on robust interoperability mechanisms and specialized
platforms to integrate heterogeneous system components [7].

Functional Mock-up Interface (FMI)

A widely adopted standard for enabling co-simulation and model exchange is the FMI [8]. FMI defines a standardized
Application Programming Interface (API) and a packaging format for model components, known as Functional Mock-up
Units (FMUs). An FMU encapsulates a model (our virtual patient model developed in Simcenter Amesim) as a black box
that exposes its functionality through the methods defined in the FMI APL.
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Compositional Simulation Interconnect Framework

We leverage an optimized interconnect framework [9] that enables the integration of heterogeneous components to build
domain-specific digital twins across verticals such as automotive, robotics, avionics, and healthcare.

This framework supports the co-simulation of diverse clients, including sensor/scenario simulators, mechatronic system
models, cloud services, compute nodes, and software modules implemented at various abstraction levels (e.g., C/C++, RTL,
SystemC). It can also interface with physical hardware (e.g., embedded boards) over standard communication links such
as Ethernet and CAN. The design methodology is centered on three core enablers: the Gateway mechanism, the Digital
Twin Description Language (DTDL), and an automation flow that simplifies system integration, as illustrated in Figure 1.

Gateway ] [ Gateway ] [ Gateway
Dlglla!Th.'vln Digital Twin L(Remote Client) (Remote Client) (Remote Cllent)J |
Description -
Language Builder
g ™
(DTDL) (vSIBuild) Compositicnal Simulation Interconnect Fabric

(Sense)

(Actuate)

rSensor Mode\] [Actuator Model] [Cloud Service1

(Connect)

(Backplane Server)

Gateway

(Remote Client)

.................................................

System Under Test
Formal, System Level, Pre-Silicon, Post-Silicon

Digital Twin Simulator (VSISim)

Fig. 1: Digital Twin Interconnect Framework.

A. Gateway Concept

Each digital twin component is connected to the VSI backplane server via a dedicated Gateway, which handles data
conversion, routing, and protocol interfacing. Gateways abstract away communication complexity by translating between
simulated or physical transport protocols and the internal interface of the component. VSI categorizes gateways into several
types, including Language2Protocol (e.g., C++, Python, ROS), Pre-Silicon (VPs, RTL), Post-Silicon (HiL setups), and
Specialized (sensor/actuator interfaces, cloud platforms, or external tools). Supported communication protocols include
Ethernet, CAN, LIN, and AXI, among others.

B. Digital Twin Description Language (DTDL)

DTDL is a domain-specific intermediate format used to define the connectivity and interaction between components in
the digital twin system. It acts as the blueprint for system composition and enables automatic generation of the required
infrastructure. Due to space limitations, we omit the detailed syntax and semantics of DTDL in this paper.

C. Automation Flow

To simplify the setup of the co-simulation environment, VSI provides an automation pipeline for generating the backplane
server and associated gateways. The user begins by describing the system architecture in DTDL. This description is parsed
by a builder tool that generates the interconnect configuration. Once the System Under Test (SUT) is plugged in, the
simulation can be launched via the VSI simulator.

The automation flow includes the following tools:

o VSIBuild: A command-line utility that parses DTDL files and generates the skeleton configuration for a digital twin.
This greatly reduces manual integration overhead and enables rapid prototyping. Users invoke it with: vsiBuild
[options] —-f <commandFile>.

« VSISim: A simulator that manages time synchronization across all components and provides an interface for interactive
control. It spawns terminal windows for each connected client and provides simulation control via a command prompt.
The simulation is launched using: vsiSim <digital_twin_name.dt> [options].
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III. RELATED WORK

Several models simulate glucose-insulin dynamics in Type 1 Diabetes (T1D), from the Bergman Minimal Model [10]
to more detailed representations by Sorensen [11] and Cobelli [12]. The UVA/Padova simulator [13] and Hovorka model
[14] strike a balance between detail and usability. We use the Hovorka model to construct a virtual patient in Simcenter
Amesim, exported as an FMI-compliant Functional Mock-up Unit (FMU), enabling integration into a closed-loop digital
twin co-simulation.

To handle variability and insulin delay, we implement a neural network—based PID (NN-PID) controller [15], with an
LSTM predicting PID gains (K, K;, K;) from real-time glucose input. The patient model and NN-PID controller operate
within a co-simulation framework that synchronizes time and data exchange.

To enhance safety, we integrate the TP-DejaVu runtime monitor to verify temporal properties during simulation. A test
case manager introduces clinically relevant edge cases, supporting traceability, early validation, and functional safety for
embedded insulin control systems.

IV. ARCHITECTURE AND WORKFLOW

This section presents the overall architecture of our digital twin system designed for closed-loop management of Type-1
Diabetes (T1D). The proposed system integrates four principal components, each playing a distinct role in the real-time
simulation, control, and verification pipeline. These components include a virtual patient model implemented in Simcenter
Amesim, a neural network-tuned PID controller for insulin delivery, a runtime verification engine based on TP-DejaVu, all
connected using a compositional simulation interconnect framework.

A. System Overview

The complete digital twin (DT) system functions as a hardware-software co-simulation platform capable of continuous
closed-loop operation. Each subsystem acts as a remote client connected to the interconnect backplane. The simulation
flow and data exchange are managed by a DT configuration file written in DTDL, which the VSI builder then parses. This
setup ensures time synchronization and signal mapping for inter-process communication.

Figure 2 illustrates the system-level architecture. The virtual patient receives insulin infusion rates as /O glucose levels
every simulation step. The glucose signal is passed to the NN-PID controller, which computes the appropriate insulin
rate. Both signals are recorded and analyzed in real-time by the TP-DejaVu, which verifies temporal safety and stability
properties. Communication across the components is managed via TCP-based protocol through the interconnect backplane.
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Fig. 2: Architecture of the closed-loop T1D digital twin using VSI interconnect
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As shown in Figure 3, we defined two communication ports using the DTDL, assigning suitable gateway types to each.
This configuration involved specifying the signal names, their data directions (input/output), and establishing the data
exchange mechanism based on the selected communication protocol—in our setup, the physical Ethernet protocol.

# Add the FMU component

add compenent —type Fmu -name patientModel —fmuPath ¢ Path to FMU >
add port —-name patientModelPort -gateway fmu2DtEthernet —componentName patientModel

# Add the TP dejavu component
add component —type C++ -name tpDejavu

add port —name tpDejavuPort -gateway c++2DtEthernet -componentName tpDejavu

# Add the Controller component

add component —name controller -type Python -remoteComponent
add port -name controller -gateway python2DtEthernet -componentName controller

Fig. 3: Digital Twin Description Language for digital twin configuration.

B. Virtual Patient Model (FMU)

At the core of our digital twin lies a high-fidelity virtual patient model that replicates glucose-insulin dynamics in
individuals with T1D. This model is implemented using Simcenter Amesim and builds upon the widely used Hovorka
model, which simulates insulin pharmacokinetics (PK) and glucose pharmacodynamics (PD). Our implementation extends
this foundation by incorporating modules for physical activity (exercise) and circadian variation in insulin sensitivity to
reflect real-world patient behavior more accurately.

The virtual patient is exported as an FMU compliant with the FMI 2.0 co-simulation standard, enabling time-synchronized
interaction with external components such as the insulin controller, test case generator, and runtime monitor. The FMU
operates on a time-driven simulation basis with a fixed step size of 1 minute, during which it processes control signals
(insulin dosing, meal intake, and activity flags) and updates physiological states accordingly.
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Fig. 4: Virtual Patient Model in Amesim.

Internally, the model comprises multiple interacting subsystems that simulate insulin absorption, glucose appearance
from meals, endogenous glucose production, tissue glucose uptake, and renal clearance. These are governed by a set of
nonlinear differential equations parameterized by patient-specific characteristics (body weight, insulin sensitivity, CHO-
to-insulin ratio). The exercise module triggers transient increases in glucose disposal rate and suppresses hepatic glucose
production, simulating the physiological response to moderate aerobic activity.
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Table I outlines the key input and output signals of the FMU. These are exchanged at runtime with other digital twin
components through VSI to facilitate closed-loop glucose control.

TABLE I: Inputs and Outputs of the Virtual Patient Model (FMU)

Signal Description

Inputs

Continuous input representing either basal or bolus insulin delivered under the skin.

Insulin Infusion Rate (U/min) Used to update insulin compartments.

CHO (Carbohydrate) Intake (g) Discrete carbohydrate intake events representing meals.

Boolean signal triggering increased insulin sensitivity and modified glucose dynamics

Exercise Start/Stop Flag to simulate physical activity.

Outputs

Simulated CGM signal, derived from plasma glucose concentration. Used by the
controller as the primary feedback signal.

Sensor Glucose (mg/dL)

C. Neural Network-Tuned PID Insulin Controller

Maintaining normoglycemia in T1D requires timely insulin dosing in response to dynamic glucose fluctuations. We
employ a classical PID structure augmented with adaptive neural network tuning.

Control Objectives. The controller regulates insulin via:
« Basal insulin: Continuous delivery for background metabolic needs.
« Bolus insulin: Discrete doses to mitigate meal- or excursion-induced spikes.

PID Control Law. The control signal u(t) is given by:

de(t)
dt

t
u(t) = Ke(t) + K / e(rydr+ K2 4ot )
0

where e(t) is the glucose error (setpoint minus CGM value),
and ucorr(t) is a correction term applied during bolus events.

Adaptive Gain Tuning via LSTM. To account for intra- and inter-patient variability, a Long Short-Term Memory (LSTM)
network dynamically predicts optimal PID gains every 5 minutes, based on recent CGM history and time-of-day features.
The architecture includes two LSTM layers (64 and 32 units) and a dense output layer trained on the OhioT1DM dataset [16].
Gains are optimized for postprandial stability and glycemic range compliance.

Reinforcement Learning Alternative. We also explore a reinforcement learning (RL) strategy using an Advantage Actor-
Critic (A2C) agent that continuously adjusts (K, K;, K4) in a continuous action space. The agent observes glucose levels,
rates of change, and time-of-day; rewards prioritize time-in-range (70-180 mg/dL), penalizing hypoglycemia and severe
excursions. The policy network consists of actor-critic pairs (64/32 units each), trained via policy gradient. Safety constraints
(insulin lockout, episode termination for <50 mg/dL) ensure robust behavior.

Deployment & Safety. The LSTM controller has 29k trainable parameters, 115 KB memory footprint, and < 10 ms
inference latency, suitable for embedded platforms like NVIDIA Jetson TX2. Basal insulin is continuously updated;
bolus insulin is delivered through event-based triggers. Safety caps on insulin dosing minimize hypoglycemia and ensure
real-time reliability when interfaced with the virtual patient (Section IV-B).

D. Mobile Application Dashboard

To visualize the digital twin’s output data in real time, we developed a lightweight mobile application that functions as
a dashboard. The app receives structured simulation data (e.g., blood glucose levels, insulin doses, and detected events)
via a backend interface and displays them using interactive charts and time series plots.

The dashboard, as illustrated in figure 5, provides intuitive views for tracking key metrics such as time-in-range, bolus
history, and glucose trends. It was built using Flutter for cross-platform compatibility and communicates with the simulation
environment through a lightweight API. This enables quick feedback during co-simulation and allows end-users or clinicians
to monitor outcomes on-the-go.
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Fig. 5: Mobile application screens

E. Runtime Monitoring using TP-DejaVu

To ensure real-time safety in insulin delivery, we employ TP-DejaVu, an advanced runtime verification (RV) framework
for temporal property checking. It monitors simulation traces during closed-loop operation and flags violations of user-
defined safety constraints. The tool supports property specification in two layers:

« Operational Specification: Defines intermediate variables and computations from incoming event traces.

« Declarative Specification: States properties using temporal logic over those variables (bounded response, past-time

logic).

E Safety Property Definitions
1) Hypoglycemia Hazard: Ensures blood glucose remains above 50 mg/dL.

prop MonitorInsulin:

exists glucoselevel .

(glucoselevel < 50)

2) Hyperglycemia Hazard: Detects readings exceeding a defined upper threshold (250 mg/dL).

prop MonitorInsulin:

exists glucoselevel .

(glucoseLevel > 250)

3) Inaccurate Glucose Trends: Flags large variations (>50 mg/dL) between two consecutive readings.

prop MonitorInsulin:

exists deltaGlucose .

(deltaGlucose > 100)

4) Sensor Error Detection: Detects biologically invalid glucose values, particularly zeros.

prop MonitorInsulin:

Scenario Generation

To validate the runtime monitor, we simulate a set of controlled fault injection scenarios involving patient parameters, meal
times, and exercise events. Table II summarizes the scenarios used to test safety property violations and the corresponding

system responses.

exists glucoselLevel .

TABLE II: Scenario Generation

(glucoselLevel =

0)

Scenario Safety Requirement Monitored Expected .Pmperty to be Actions Taken
Violated
Normal conditions with reasonable . . .
. No action required; monitor confirms
0 glucose levels, scheduled meals, None (Baseline) .
. system stability
and moderate exercise
Blood glucose level falls below 50 . . - .
I mg/dL (hypoglycemia danger) Hypoglycemia hazard Pause insulin infusion
Blood glucose level exceeds . .
I hyperglycemia threshold Hyperglycemia hazard Raise a flag
Variation between two consecutive Flae as noise. smooth sienal. and
I readings > 50 mg/dL due to Risk of inaccurate glucose trend & o gnal,
. . avoid acting on it
interference (e.g., microwaves)
v Glucose reading is zero due to a Sensor error Suspend loop, trigger alert, request
Sensor error sensor check
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V. EXPERIMENTAL RESULTS

We evaluated the system in two closed-loop control configurations over a 24-hour scenario featuring three meals and
one exercise event:
o« LSTM-PID: A neural network-tuned PID controller.
o RL-PID: A reinforcement learning-based PID controller.

A. Glucose Dynamics
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Fig. 6: Glucose response using LSTM-PID controller. Fig. 7: Glucose response using RL-PID controller.

Both controllers successfully maintained blood glucose within the target range, with smooth recovery from disturbances
and no hypoglycemia events.

B. Controller Performance Metrics

TABLE III: Performance Metrics for LSTM and RL Controllers

Metric LSTM-PID RL-PID
Time in Range (70-180 mg/dL) 88.82% 100.00%
Time Below 70 mg/dL 0.00% 0.00%
Time Above 180 mg/dL 11.18% 0.00%
Total Insulin Used (U) 28.08 27.70
Bolus Events 3 3
Hypoglycemic Events (Blood glucose level 0 0
less than 70 mg/dL)

Both controllers demonstrated strong performance in managing blood glucose levels while ensuring patient safety. A key
shared success metric is the complete absence of hypoglycemic events, a critical safety goal.

The RL-PID controller excels at maintaining a perfect score within the target range, achieving 100.00% Time in Range.
This indicates its exceptional ability to prevent blood glucose excursions, both high and low, keeping it consistently within
the optimal range. It accomplished this with a slightly lower total insulin usage of 27.70 U.

The LSTM-PID controller also showed very effective glucose management, with a high 88.82% Time in Range. It
successfully maintained blood glucose within the target range for the vast majority of the time and, like its counterpart,
had zero hypoglycemic events. This performance demonstrates its robust capabilities in glucose regulation and its ability
to recover from disturbances while minimizing the risk of dangerously low blood sugar.

C. System Robustness and Noise Injection Analysis

Beyond evaluating the primary control performance, we stressed the system with a series of fault injection scenarios to
verify its robustness and safety. This included testing against a scenario of inaccurate glucose readings caused by external
interference, such as microwaves.

Figure 8, which corresponds to Scenario III in Table II, illustrates the system’s behavior during a simulated noise
event. During the simulation, multiple noise impulses were injected into the simulated glucose readings, causing sharp,
non-physiological spikes in the Blood Glucose Level (BGL). The runtime monitor, detected these rapid, large variations
(greater than 50 mg/dL) and flagged them as noise.
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Fig. 8: Glucose response under noise injection using RL-PID controller.

This action prevented the insulin controller from overreacting and administering an inappropriate insulin basal or an
excessive insulin bolus dose, which could have led to hypoglycemia. By correctly identifying and ignoring the erroneous
data, the system maintained a stable output and demonstrated its ability to operate reliably in the presence of sensor
disturbances. This confirms that the framework can ensure patient safety and prevent incorrect insulin dosing under real-
world, non-ideal conditions. This also serves as a sign-off for the system’s ability to maintain blood glucose levels within
the correct range while avoiding hypoglycemic and hyperglycemic events.

D. Deployment and Hardware-in-the-Loop (HIL) Verification

After validating the system in a software-only simulation environment, we ported the control logic to the embedded NVIDIA
Jetson TX2 board for HIL testing. The results were consistent, confirming that the model’s performance remained stable
across both software and embedded hardware platforms.

VI. CONCLUSION AND FUTURE WORK

This work introduced a digital twin framework for personalized T1D management, integrating the Hovorka patient model
(via FMU), an adaptive NN-PID controller, a runtime verification monitor, and scenario-based testing. The system enables
real-time, safety-aware glucose regulation and supports HIL deployment. Experimental results demonstrated that the NN-
PID controller adapts to dynamic inputs and maintains blood glucose levels effectively, even when deployed on embedded
hardware. The proposed system offers a pathway for developing and validating safe and personalized artificial pancreas
solutions.

There are several opportunities to extend this work. One direction lies in leveraging formal verification techniques with
richer property-specification languages and automated proof engines, which could further strengthen the runtime verification
layer and enable rigorous safety guarantees across a wider range of operating conditions. Another opportunity is the
expansion of the HIL environment through the integration of additional sensor and actuator models. Such enhancements
would allow more representative system-level testing and stress evaluation, improving confidence in the robustness of the
closed-loop framework under realistic deployment scenarios.

REFERENCES

[1] M. Grieves and J. Vickers, “Origins of the digital twin concept,” Florida Institute of Technology, vol. 8, pp. 3-20, 2016.
[2] M. A. Atkinson, G. S. Eisenbarth, and A. W. Michels, “Type 1 diabetes,” The Lancet, vol. 383, no. 9911, pp. 69-82, 2014.
[3] L. Heinemann and S. Freckmann, “Cgm versus fgm; or, continuous glucose monitoring is not flash glucose monitoring,” Journal of Diabetes Science
and Technology, vol. 9, no. 5, pp. 947-950, 2015.
[4] The DCCT Research Group, “The effect of intensive treatment of diabetes on the development and progression of long-term complications in
insulin-dependent diabetes mellitus,” New England Journal of Medicine, vol. 329, no. 14, pp. 977-986, 1993.
[5] Siemens Digital Industries Software, “Simcenter amesim: System simulation software,” https://plm.sw.siemens.com/en-US/simcenter/
systems-simulation/amesim/, 2024, accessed: 2025-07-02.
[6] DejaVu Runtime Monitor, “Dejavu runtime monitor,” https://github.com/moraneus/TP-DejaVu, [Online; accessed 18-June-2025].
[7] C. Gomes, C. Thule, D. Broman, P. G. Larsen, and H. Vangheluwe, “Co-simulation: State of the art,” arXiv preprint arXiv:1702.00686, 2017.
[8] T. Blochwitz et al., “Functional mockup interface 2.0: The standard for tool independent exchange of simulation models,” in Proceedings of the
9th International Modelica Conference, 2012, pp. 173-184.
[9] Siemens EDA, “Innexis virtual system interconnect (vsi),” https://eda.sw.siemens.com/en-US/ic/hav/innexis/virtual-system-interconnect/, [Online;
accessed 18-June-2025].
[10] R. N. Bergman, Y. Z. Ider, C. R. Bowden, and C. Cobelli, “Quantitative estimation of insulin sensitivity,” American Journal of Physiology, vol.
236, no. 6, pp. E667-E677, 1979.
[11] J. T. Sorensen, “A physiologic model of glucose metabolism in man and its use to design and assess improved insulin therapies for diabetes,” Ph.D.
dissertation, Massachusetts Institute of Technology, 1985.
[12] C. Cobelli and A. Mari, “A physiological model for glucose and insulin control in man,” Mathematical Biosciences, vol. 58, no. 1, pp. 27-60, 1982.
[13] C. D. Man et al., “The uva/padova type 1 diabetes simulator: New features,” Journal of Diabetes Science and Technology, vol. 8, no. 1, pp. 26-34,
2014.
[14] R. Hovorka, F. Shojace-Moradie, P. V. Carroll et al., “Partitioning glucose distribution/transport, disposal, and endogenous production during ivgtt,”
American Journal of Physiology-Endocrinology and Metabolism, vol. 282, no. 5, pp. E992-E1007, 2002.
[15] F. Rivas-Echeverria, A. Rios-Bolivar, and J. Casales-Echeverria, “Neural network-based auto-tuning for pid controllers,” Neural Network World,
vol. 11, pp. 2-4, 2001.
[16] C. Marling and R. Bunescu, “The ohiotldm dataset for blood glucose level prediction: Update 2020,” in CEUR Workshop Proceedings, vol. 2675,
Sep. 2020, pp. 71-74.


https://plm.sw.siemens.com/en-US/simcenter/systems-simulation/amesim/
https://plm.sw.siemens.com/en-US/simcenter/systems-simulation/amesim/
https://github.com/moraneus/TP-DejaVu
https://eda.sw.siemens.com/en-US/ic/hav/innexis/virtual-system-interconnect/

	Introduction
	Background: Standards & Tools for Co-simulation
	Related Work
	Architecture and Workflow
	System Overview
	Virtual Patient Model (FMU)
	Neural Network-Tuned PID Insulin Controller
	Mobile Application Dashboard
	Runtime Monitoring using TP-DejaVu
	Safety Property Definitions

	Experimental Results
	Conclusion and future work
	References

