

1

Improving Flexibility in Hardware-Software

Co-Development with Remote Virtual Prototypes

Przemysław Mikluszka (Przemyslaw.Mikluszka@imgtec.com)

Patryk Górniak (Patryk.Gorniak@imgtec.com)

Imagination Technologies, Wrocław, Poland

Abstract— This paper proposes a method for remote integration of GPU Virtual Prototypes (VPs) into QEMU-

based full-system simulations, aimed at improving flexibility and reducing setup overhead in hardware-software co-

development workflows. The solution employs a client-server architecture layered over a proprietary API to enable

seamless switching between VP implementations. While local testing showed minimal performance degradation, real-

world scenarios with moderate network latency revealed significant overhead due to high-frequency memory

transactions. To mitigate this, optimizations such as server-side memory management, deferred batched writing, and

dynamically sized chunked reading were introduced. These enhancements improved performance for compute-bound

workloads, though limitations remain for interactive applications.

Keywords— hardware-software co-development, Virtual Prototypes, full-system simulation, QEMU, remote execution

I. INTRODUCTION

The increasing competitiveness of the industry and the pressure to reduce time-to-market have made hardware-

software co-development a key aspect of modern engineering workflows. A common practice is the use of Virtual

Prototypes (VPs) - simulation models that replicate hardware functionality at a chosen level of abstraction. This

concept extends to full-system simulation through system virtualizers such as QEMU or Gem5, enabling interaction

with VPs as if they were physical devices, typically within a Linux-based environment.

From a software development perspective, this approach provides a practical and efficient means for early

testing and validation. It aligns with the growing trend of leveraging virtual prototyping as a core methodology for

developing drivers and application software prior to the availability of the final IP design [1]. As the IP design

matures, these models can be refined to increase accuracy, enabling more thorough validation. This is particularly

important for debugging device drivers, which play a critical role in operating system stability. Faulty drivers can

lead to significant issues post-deployment, making early detection and resolution both technically and economically

essential. Moreover, as VPs become more accurate, they can serve not only as debugging tools but also as platforms

for analyzing the performance and resource utilization of the designed IP under performance-critical workloads.

As the number of available models continues to grow, a significant challenge arises in integrating each of them

into a full-system virtualizer. One effective approach is to design these models to conform to a unified API, which

serves as a standardized communication interface. This ensures that the virtualizer’s communication layer remains

consistent, regardless of which specific model is being used. As long as VPs remain purely software-based, they

can typically be swapped out with relative ease throughout various IP development phases, allowing for the gradual

introduction of more accurate models. However, when more advanced modeling techniques are employed—such

as hardware emulation using platforms like Cadence Palladium—integration becomes considerably more complex.

These setups often require substantial configuration effort, which must be repeated each time a new developer needs

access.

To address this, minimizing the frequency of such setups becomes a clear objective. Consequently, the potential

for remote access to these models was explored, aiming to streamline development workflows and reduce setup

overhead. This paper presents a method for remotely utilizing VPs within full-system virtualizers, enabling

seamless transitions between different models of the same hardware design. By adopting this approach, the

overhead typically associated with reconfiguring environments when switching between models can be

2

significantly reduced or eliminated. Furthermore, it allows for the application of a consistent validation

methodology across all IP model variants, regardless of their level of abstraction or implementation platform.

II. APPLICATION

The solution has been developed primarily for a QEMU-based simulation environment, which provides a Linux

system equipped with our software components (e.g., drivers) and one or more GPU Virtual Prototypes (VPs).

From the perspective of the virtual system, these VPs behave as if they were real hardware devices. Communication

between the system and the models is handled through Imagination’s proprietary API, which remains consistent

across all VP types. This API defines a set of functions that facilitate interaction between the simulator and the rest

of the system. Specifically, these functions enable the system to read from and write to device registers, allow the

device to request data from device memory (which is modeled and managed outside the simulator), and support the

generation of interrupt signals by the device. As a result, the communication model must accommodate

bidirectional, stateful interactions. This requirement rules out the use of common remote procedure call mechanisms

such as gRPC, which are typically designed for stateless, client-initiated communication.

The initial approach involved introducing an additional communication layer on top of the existing proprietary

API. A client-server architecture was adopted, where the QEMU-based system acts as the client, packages the API

function calls into Protocol Buffers (Protobuf) messages, and sends them to the server. Upon receiving messages,

server unpacks function calls and forwards them to the GPU simulator for processing. Communication is handled

over TCP sockets using the ZeroMQ (ZMQ) library. Given that the proprietary API requires bidirectional

communication—allowing both the host and the device to initiate function calls—the ZMQ Dealer-Router socket

pattern was selected. This pattern supports many-to-many bidirectional communication, although only one-to-one

communication has been used during development.

The server and client exchange messages using the request-reply communication pattern; however, as

previously mentioned, either side can initiate the exchange. Upon establishing a connection, a session is created,

reserving a single VP instance for the exclusive use of the connected client until disconnection. This behavior is

repeated for each new client that connects. Since the communication is stateful, a mechanism is required to

distinguish between clients. In the ZMQ Dealer-Router pattern, each new dealer (client) is assigned a unique

identifier upon sending its first message to the router (server). This identifier is used to differentiate between clients

and must be prepended to each reply message to ensure it is routed correctly. The initial design is illustrated in

Figure 1.

Initial testing, with both the server and client running on the same machine, yielded promising results,

suggesting that communication overhead was negligible. The observed performance penalty ranged from 281% to

347% of the original execution time, depending on the workload. However, when transitioning to a real-world

scenario—where the server and client operated on separate machines with a network latency of approximately 60

milliseconds —the approach became impractical. Simple workloads that typically completed in a matter of seconds

began taking over an hour, often without producing any results. These findings highlighted the need for significant

optimization, as the original implementation was not viable under realistic network conditions.

Figure 1. Initial architecture of the solution

3

Upon further analysis, it was identified that the primary performance bottleneck stemmed from the use of overly

narrow data containers within the API's data transfer mechanisms. As a result, even during GPU firmware

initialization, the system generated tens of thousands of individual requests. While this produced negligible

overhead in local (localhost) testing, it led to severe performance degradation in real-world scenarios involving

separate machines and a moderate network latency. In such conditions, each request incurs a minimum delay equal

to the round-trip latency, meaning that the cumulative effect of these high-frequency, small-payload transactions

results in infeasible execution times.

To make the remote execution approach viable, it was concluded that the server must independently manage

the device memory. To support this, a mechanism available in QEMU was leveraged, which allows interception of

all memory transactions directed to device memory issued by the driver. This enabled direct forwarding of memory

writes from the driver to the server, allowing it to maintain and manage the memory state. However, this solution

only partially addressed the problem. The mechanism initially supported transfers of up to 8 bytes per transaction,

which inadvertently increased the number of memory operations and, consequently, the communication overhead.

This exacerbated the performance issues rather than resolving them.

Further analysis revealed that device memory write requests could be deferred and sent in batches, triggered by

the initiation of another memory transaction by the host. This insight led to a significant reduction in the number of

network transactions, resulting in improved execution times. Nevertheless, the overall volume of requests remained

too high for practical use.

Inspired by data synchronization techniques used in large file transfers—particularly, the Delta Transfer

Algorithm employed by tools like rsync [2]—a more efficient strategy was introduced. The core idea involves

partitioning data into larger blocks or chunks and transferring them as a whole, rather than sending small fragments

individually. This concept was applied to device memory read operations: upon receiving a read request, the server

responds with a substantially larger memory chunk containing the requested data. If the host subsequently accesses

data within that chunk, it can do so locally without issuing additional memory requests. However, the chunk is

invalidated as soon as the host attempts any memory operation other than a read. This optimization significantly

reduced the total number of memory transactions required during execution.

Lastly, it was observed that a common execution pattern involves the driver writing data to device memory,

followed by validation of specific portions of that data. These memory accesses often span regions larger than the

default chunk size. To address this, a mechanism was introduced to track contiguous memory regions written in a

single batch. When a subsequent memory read request originates from the same starting address, a chunk of the

previous write size is returned. In all other cases, a default chunk size—configurable via a command-line

parameter—is used. This technique, referred to as dynamic chunk sizing, further optimizes memory access patterns

by adapting chunk sizes to match recent write activity. The changes in the number of memory transactions required

to execute a simple test application are presented in Table 1. The final system design is illustrated in Figure 2.

Table 1. Changes in the number of memory transactions during optimisation process

Approach version Number of transactions Portion of baseline

Initial (baseline) 95409 100 %

Server-side memory 937876 983 %

Batched writes 126448 132 %

Chunked reads 2430 2.54 %

Dynamic chunk sizing 2233 2.34 %

4

III. RESULTS

The final solution was evaluated within a QEMU-based environment, with the server and client operating on

the same local network and a measured latency of approximately 60 milliseconds between the two machines. A

purely software-based functional GPU model was used as the underlying simulator.

Three types of applications were selected for testing:

• A simple 3D application utilizing the OpenGL API (referred to as OGL).

• A simple 3D application utilizing the OpenGL ES API, including shader compilation (referred to as

OGLES).

• A compute application utilizing the OpenCL API to perform FFT calculations on a large image (referred

to as IMGFFT).

For the 3D applications, execution time was measured for rendering 1, 10, and 50 frames. Additionally, the

OGL application was tested for rendering a single frame both with and without GPU firmware initialization, to

assess the overhead introduced by that operation. The results of these experiments are presented in Table 2.

Table 2. Execution times for experiments using 3 types of workloads

Application
Non-remote

baseline

Remote run with min. chunk size of

512 bits 2048 bits 4096 bits 8192 bits

OGL 1 frame (cold start) 3 s 236 s 165 s 151 s 159 s

OGL 1 frame 2 s 96 s 96 s 94 s 95 s

OGL 10 frames 21 s 125 s 123 s 122 s 125 s

OGL 50 frames 103 s 253 s 243 s 239 s 430 s

OGLES 1 frame 4 s 512 s 515 s 506 s 509 s

OGLES 10 frames 21 s 539 s 536 s 530 s 533 s

OGLES 50 frames 103 s 683 s 661 s 649 s 659 s

IMGFFT 296 s 424 s 377 s 355 s 392 s

The first key observation is the existence of an optimal minimum chunk size when using dynamic chunk sizing.

This parameter must still be defined for cases where memory read requests target addresses that were not previously

recorded during write operations. The collected data supports the initial intuition: setting the chunk size too low

Figure 2. Final architecture of the solution

5

results in a higher number of memory requests, which increases overall execution time. Conversely, setting it too

high leads to the transmission of large data blocks, which can saturate network bandwidth—especially when much

of the transmitted data is never actually accessed. These findings suggest that selecting a moderate, balanced chunk

size is likely to yield the best performance, minimizing both the number of transactions and unnecessary data

transfer. In this case, the most favorable results were observed with a minimum chunk size of 4096 bytes.

The second observation is that the compute workload exhibited proportionally lower overhead compared to the

3D rendering workloads. A similar trend was observed in tests where multiple frames were rendered. This indicates

that the proposed solution is better suited for compute-bound workloads or scenarios where minimal additional data

is written between successive frame renders.

Additional experiments were conducted to evaluate the impact of network latency on execution time. To

simulate varying conditions, similar tests were repeated while artificially increasing latency using Linux kernel

traffic control mechanisms. The experiments were rerun with latencies set to 90 milliseconds and 120 milliseconds,

while maintaining a minimum chunk size of 4096 bytes. The observed increase in network overhead—measured

as the difference in execution time between using the remote mechanism on different machines and running it

locally—appears to be linearly dependent on network latency. A similar analysis was performed to examine the

relationship between overhead and the number of memory transactions, which also confirmed a linear dependency.

These trends are visualized in Figure 3.

In its current form, the solution shows potential, though it may require further refinement to fully support

interactive or graphics-based applications. The most promising use case appears to be compute-bound workloads,

where the relative performance overhead is significantly lower. In contrast, for simpler applications—such as those

typically used during debugging—the solution proves less effective due to the high volume of memory transactions

required.

The primary performance bottleneck was identified as the frequency and volume of memory synchronization

operations between the client and server. Addressing this limitation will be the focus of future work, with an

emphasis on developing more efficient mechanisms for synchronizing device memory.

A key challenge moving forward will be maintaining compatibility with the proprietary API, as ease of

integration remains one of the core advantages of this approach. Balancing performance improvements with API

conformance will be essential to enhancing the solution’s viability in real-world scenarios.

Figure 3. Analysis of network overhead as a function of (a) the number of memory transactions and (b) network latency

6

IV. CONCLUSION

This paper presented a method for enabling remote access to GPU Virtual Prototypes within a QEMU-based

simulation environment, aiming to reduce setup overhead and improve flexibility in hardware-software co-

development workflows. By introducing a client-server architecture layered over a proprietary API, the solution

allows seamless switching between different VP implementations without modifying the surrounding system.

Initial results showed that while the approach is functionally correct and performs well in local environments,

it suffers from significant performance degradation under realistic network conditions. The primary bottleneck was

identified as the high volume of fine-grained memory transactions, which led to excessive communication overhead

when latency was introduced. To address this, several optimizations were implemented, including server-side

memory management, deferred batching of memory writes, and a dynamic chunk sizing mechanism inspired by

delta transfer algorithms. These improvements significantly reduced the number of memory transactions and

improved execution times, particularly for compute-bound workloads.

The solution currently encounters limitations when applied to interactive or graphics-heavy applications,

primarily due to its sensitivity to network latency. Future work will focus on further reducing synchronization

overhead while maintaining compatibility with the proprietary API. Achieving this balance will be key to making

the approach viable for a broader range of use cases, including early-stage driver development and performance

analysis across diverse VP implementations.

REFERENCES

[1] M. J. Renzelmann, A. Kadav, and M. M. Swift. SymDrive: Testing drivers without devices. In Proc. of OSDI, 279–292, 2012.

[2] A. Tridgell and P. Mackerras, “The rsync algorithm,” Australian National University, Technical Report TR-CS-96-05, 1996.

