
Evaluating the Usability of pyuvm with cocotb for UART
Verification

Mihir Ashvinbhai Donga, MINRES Technologies GmbH,
Regensburg, Germany (mihir@minres.com)

Eyck Jentzsch, MINRES Technologies GmbH, Munich, Germany (eyck@minres.com)
Prof. Dr. Juergen Mottok, OTH Regensburg,

Regensburg, Germany (juergen.mottok@oth-regensburg.de)

Abstract— As SoC and IP designs grow increasingly complex, the demand for flexible and maintainable verification
methodologies continues to rise. While SystemVerilog UVM remains the industry-standard verification framework of-
fering constrained-random testing, functional coverage, and scalable environments, its steep learning curve and limited
interoperability with modern software tools present notable challenges. This study explores an alternative approach
using Python-based verification integrated with commercial simulators and compares it against a traditional UVM
methodology.
We implement two functionally equivalent verification environments for a UART IP core with an APB interface: a
conventional SystemVerilog UVM testbench, and a Python-based solution combining pyuvm’s structured verification
components with cocotb’s co-simulation capabilities. Both environments utilize industry-standard licensed simulators,
ensuring a fair and practical comparison. Our evaluation focuses on four key metrics: simulation performance, func-
tional coverage efficiency, testbench maintainability, and component reusability across projects.
Generally, results shows that Python-based verification can effectively complement traditional UVM flows, especially in
unit-level verification scenarios, where rapid development, dynamic stimulus generation, and seamless integration with
modern software stacks offer significant advantages. Although UVM remains favorable for large-scale SoC verification
due to performance and maturity, the Python-based approach presents a compelling alternative for targeted use cases
in commercial verification environments.

Keywords—Python-based verification; cocotb; pyuvm; SystemVerilog UVM; unit-level verification; functional cover-
age; RTL verification; UART; IP verification; simulation performance; verification methodology

I. INTRODUCTION

Modern hardware verification faces increasing complexity as designs become more sophisticated, demanding
methodologies that balance thoroughness with efficiency [1][2]. SystemVerilog with UVM has long served as the
industry standard for ASIC/FPGA verification due to its structured and reusable methodology. Our experimental
results, however, highlight a practical challenge: a conventional UVM testbench utilizing a static constrained-
random approach plateaued at approximately 87% functional coverage. While it is possible to achieve full cov-
erage in UVM by manually authoring a comprehensive set of directed tests, this process requires significant
engineering effort and a priori knowledge of the design’s corner cases.

In contrast, our implementation using cocotb and pyuvm - a Python-based verification flow - achieves 100%
functional coverage through dynamic and adaptive test generation. Specifically, the Python-based environment
could analyze intermediate coverage results and iteratively adjust the stimulus to target uncovered scenarios, rather
than relying solely on static constraint solving. This suggests that Python-based verification, once considered
primarily a prototyping tool, is maturing into a practical alternative for rigorous verification tasks [3].

To evaluate these approaches, we used a UART IP core integrated with an APB interface as the Design Under
Test (DUT). This configuration is commonly used in embedded systems, where the APB interface provides a low-
complexity mechanism for accessing peripheral registers. The DUT is ideal for comparative analysis due to its
well-defined behavior and verification requirements. We compare two distinct verification methodologies:

• A traditional UVM testbench using constrained-random stimulus generation

• A Python-based approach leveraging cocotb’s co-simulation and pyuvm’s UVM-like structure

Our study yields three key findings:

1. Functional Coverage Completeness: SV UVM coverage plateaus at 87% regardless of sample size (200
to 12,800), while cocotb + pyuvm consistently reaches 100% through adaptive dynamic stimulus.

2. Verification Efficiency: Python’s runtime flexibility allows testbenches to make smart, real-time decisions
and adapt tests without recompilation. This leads to faster convergence toward coverage goals. At the same

1

time, manual effort is reduced because writing, running, and debugging tests is much simpler and faster
than with traditional UVM [4][3].

3. Performance Tradeoffs: Although UVM delivers faster raw simulation times (e.g., 3.07 ms vs. 6.1 ms for
12,800 samples), cocotb + pyuvm demonstrates superior coverage.

These findings show that Python-based verification is not only viable but, in some cases, superior for tar-
geted verification challenges like Exhaustive Configuration Testing, Coverage Closure, Integration with Soft-
ware/Drivers, etc., especially for:

• Unit-level IP verification requiring exhaustive configuration coverage

• Complex behavior validation needing runtime stimulus adaptation

• Agile or rapid-development cycles that benefit from Python’s flexibility

This work offers empirical insight into when and how cocotb + pyuvm can not only complement but, in
some cases, outperform traditional UVM-based flows, particularly in terms of coverage scalability and verifica-
tion adaptability. Although SystemVerilog UVM remains indispensable for large-scale, performance-driven SoC
verification, our results demonstrate that Python-based verification can achieve higher functional coverage with
less complexity and faster test development. This makes cocotb + pyuvm a strong alternative for unit-level IP
verification, rapid prototyping, and agile design cycles aligned with modern development practices [5].

II. VERIFICATION METHODOLOGIES OVERVIEW

A. SystemVerilog UVM

SystemVerilog UVM (Universal Verification Methodology), developed by Accellera, forms the foundation of
modern ASIC and FPGA verification [1]. It is particularly well-suited for verifying complex SoCs due to its
hierarchical architecture and comprehensive feature set, including reusable components such as drivers, moni-
tors, sequencers, and support for constrained-random testing and functional coverage [2][6]. However, UVM’s
reliance on object-oriented SystemVerilog and its strict methodology introduces a steep learning curve [7]. Even
simple testbenches often require extensive setup and boilerplate code. Furthermore, UVM typically depends on
proprietary simulation tools due to the need for advanced debugging features, constrained-random support, and
high-performance simulation engines. Commercial tools such as Mentor Questa, Cadence Xcelium, and Syn-
opsys VCS provide these capabilities, whereas comparable open-source solutions remain limited. Despite these
challenges, UVM remains a critical standard in production environments that demand robust coverage metrics,
advanced debugging, and proven scalability.

B. cocotb + pyuvm

cocotb (Coroutine-based Co-simulation Testbench) and pyuvm represent a modern shift in hardware verifica-
tion by leveraging Python’s simplicity and expressive power [4]. These frameworks enable the development of
complete verification environments using Python, offering a flexible alternative to traditional HDL-based method-
ologies such as SystemVerilog UVM [3][5].

cocotb allows testbenches to be written in Python using coroutines to drive and monitor simulations, removing
the need for additional HDL-based stimulus generation. It supports both open-source and commercial simulators,
including Verilator, Icarus Verilog, Mentor Questa, Cadence Xcelium, Synopsys VCS and ModelSim, making it
widely accessible across different development environments. However, while cocotb excels in simplicity and
rapid prototyping, it lacks the structured components such as drivers, monitors, agents, and scoreboards that are
essential for building scalable and reusable testbenches in complex verification projects [3].

pyuvm extends cocotb’s capabilities by introducing a UVM-inspired, object-oriented architecture within
Python [5]. It provides key verification components such as uvm driver, uvm monitor, and uvm sequence,
enabling the construction of modular and reusable testbenches that align with the principles of UVM. pyuvm
retains compatibility with cocotb’s simulator interfaces, making it a natural progression for users seeking more
structure without leaving the Python ecosystem [3][5].

The goals of pyuvm are to:

• Emulate UVM’s hierarchical and modular design while preserving Python’s simplicity and readability

• Enable structured, reusable verification environments without requiring SystemVerilog or proprietary tools

2

While pyuvm is still under active development and has limited adoption in commercial flows, it shows strong
potential for academic research, prototyping, and unit-level IP verification especially where the overhead of full
SystemVerilog UVM infrastructure is impractical [3]. Ultimately, pyuvm aims to bridge the gap between Python’s
flexibility and the disciplined structure of traditional verification methodologies [5].

III. UART VERIFICATION ENVIRONMENT SETUP

A. Design Overview

Figure 1 shows a top-level design that integrates an APB slave interface with a UART peripheral. It connects
APB interface signals to the APB slave, which manages bus read/write operations and generates control signals
for UART configuration and data transfer. The UART module handles serial communication, using signals from
the APB slave to perform transmit and receive functions. Internal signals link the APB slave and UART blocks for
data, address, and status exchange, enabling seamless communication between the APB interface and the UART
device.

Figure 1: APB-UART Module

B. SV-UVM Testbench Environment

Figure 2 illustrates the traditional SystemVerilog UVM testbench architecture, resembling a detailed engineering
blueprint. It clearly displays all verification components - including UART and APB agents with their monitors,
drivers, and sequencers - connected in a precise, hierarchical structure [1]. This reflects SV-UVM’s strength: a
rigorously organized approach where every element has a defined place and connection before simulation begins
[2][6]. The attention to component-level details makes it ideal for complex, large-scale verification projects [8].

Figure 2: UVM-Based APB-UART Verification Environment

3

C. cocotb + pyuvm Testbench Environment

Figure 3 presents the cocotb/pyuvm approach with a same focus on simulation workflow and component hierar-
chy. It emphasizes Python’s role in controlling the verification process through virtual sequences and scheduler
interactions [3]. It better represents the dynamic, adaptable nature of Python-based verification. This streamlined
view is particularly useful when quick iterations or runtime adjustments are needed during verification.

Figure 3: cocotb + pyuvm Based APB-UART Verification Environment

The key difference between Figure 2 and Figure 3 is not the internal testbench architecture, which remains
essentially the same in both SystemVerilog UVM and cocotb/pyuvm, but rather how the testbench connects to
the simulator and the DUT. In Figure 2, the testbench communicates with the DUT through SystemVerilog in-
terfaces in a traditional HDL simulation environment. In contrast, Figure 3 shows how cocotb/pyuvm leverages
the simulator’s GPI (VPI/VHPI/FLI) interface and a Python scheduler to drive and monitor the DUT. This shift
in integration enables Python-based verification to be more lightweight and accessible for rapid prototyping and
debugging, while SystemVerilog UVM provides the maturity and robustness expected in industrial projects. Both
approaches implement the same verification components, but they cater to different development and deployment
needs.

D. KEY IMPLEMENTATION DIFFERENCES

pyuvm Based UART Agent

Listing 1: UART Agent

class UARTAgent(uvm_agent):

def build_phase(self):

self.cfg = ConfigDB ().get(None , "", "cfg", uart_config ())

self.monitor = UARTMonitor.create("monitor", self)

if self.cfg.is_active:

self.driver = UARTDriver.create("driver", self)

self.sequencer = UARTSequencer.create("sequencer", self)

def connect_phase(self):

if self.cfg.is_active:

self.driver.seq_item_port.connect(self.sequencer.seq_item_export)

As shown in Listing 1 demonstrates a modular agent implementation using pyuvm. It defines standard ver-
ification components driver, sequencer, and monitor and instantiates them during the build phase based on a
configuration object (uart cfg) retrieved from the ConfigDB, a centralized database used to store and manage con-
figuration settings across the testbench.. When the agent is active, the connect phase links the sequencer and driver
using the sequence item port. This structure mirrors the UVM methodology while leveraging Python’s simplicity
and readability for easier integration in lightweight or academic environments [3].

pyuvm UART Driver

Listing 2: UART Driver

4

class UARTDriver(uvm_driver):

def build_phase(self):

self.cfg = ConfigDB ().get(None , "", "cfg", uart_config ())

self.dut = ConfigDB ().get(None , "", "dut", cocotb.top)

self.item_collected_port_drv = uvm_analysis_port("

item_collected_port_drv", self)

async def run_phase(self):

while True:

await RisingEdge(self.dut.PCLK)

if not self.dut.PRESETn.value:

continue

req = await self.seq_item_port.get_next_item ()

self.cfg_settings ()

await self.drive_rx(req)

self.item_collected_port_drv.write(req)

self.seq_item_port.item_done ()

def cfg_settings(self):

Set line transmission cycles based on frame length

pass

async def drive_rx(self , req):

Simplified transmit logic for UART protocol

for _ in range(self.LT):

await RisingEdge(self.dut.PCLK)

self.dut.RX.value = req.start_bit

(Send data bits , optional parity , and stop bits ...)

Listing 2 illustrates a pyuvm implementation of a protocol-specific driver for UART verification. It extends
the base uvm driver class and manages stimulus generation by asynchronously fetching transactions from the
sequencer in the run phase. Configuration parameters are retrieved from ConfigDB during build phase and guide
signal driving behavior. The driver models UART transmission by toggling the RX line according to start bits,
data payload, parity, and stop bits in the transaction. This Python-based coroutine approach enables fine-grained
control of stimulus timing, leveraging cocotb triggers for cycle-accurate simulation in a more accessible, high-
level language environment.

pyuvm UART Monitor

Listing 3: UART Monitor

class UARTMonitor(uvm_monitor):

def build_phase(self):

self.cfg = ConfigDB ().get(None , "", "cfg", uart_config ())

self.dut = ConfigDB ().get(self , "", "dut", cocotb.top)

self.item_collected_port_mon = uvm_analysis_port("

item_collected_port_mon", self)

async def run_phase(self):

while True:

await RisingEdge(self.dut.PCLK)

Wait for start bit (Tx goes low)

while int(self.dut.Tx.value) == 1:

await RisingEdge(self.dut.PCLK)

Sample bits (simplified)

reg = 0

for _ in range(self.cfg.frame_len):

Wait one bit period (simplified)

await Timer(int(1e9 / self.cfg.bRate), units=’ns’)

reg = (reg >> 1) | (int(self.dut.Tx.value) << (self.cfg.

frame_len - 1))

Send captured data transaction

txn = UARTTransaction ()

5

txn.transmitter_reg = reg

self.item_collected_port_mon.write(txn)

Listing 3 observes serial transmission from the UART DUT and reconstructs received data frames [3]. In
the run phase, the monitor detects the start bit, samples data bits based on the configured baud rate, optionally
accounts for parity, and verifies stop bits. It calculates the frame content and publishes each received transaction
via an analysis port, enabling further checking or scoreboard comparison [3]. This monitor adheres to pyuvm’s
passive component model, focusing on protocol observability without interfering with DUT operation.

pyuvm UART Transactions and Sequences

Listing 4: UART Transaction

class UARTTransaction(uvm_sequence_item):

def __init__(self):

super().__init__ ()

self.payload = vsc.rand_uint32_t ()

self.bad_parity = vsc.rand_bit_t ()

self.bad_parity_frame = vsc.rand_bit_t (7)

self.payld_func = 0

def calc_parity(self , frame_len , even_parity):

self.payld_func = self.payload & 0xFFFFFFFF

parity_result = 0

for i in range (7):

chunk = (self.payld_func >> (i * frame_len)) & ((1 << frame_len) -

1)

parity = self._calc_single_parity(chunk , even_parity)

if self.bad_parity and ((self.bad_parity_frame >> i) & 1):

parity = not parity

parity_result |= (parity << i)

return parity_result & 0x7F

def _calc_single_parity(self , chunk , even_parity):

bits_set = bin(chunk).count(’1’)

return (bits_set % 2) != even_parity

This Listing 4 defines the UARTTransaction class as a customizable data container for UART stimulus and
response, extending uvm sequence item [3]. Several sequence classes generate test scenarios targeting specific
UART error conditions such as stop bit corruption, frame errors, and parity errors operation [3][5]. These se-
quences demonstrate pyuvm’s support for asynchronous stimulus generation using Python’s async/await syntax,
enabling clear and flexible test case creation [3].

APBUART Sequencer

The apb sequencer class extends the base uvm sequencer component in pyuvm. It serves as the transaction gen-
erator and driver interface, sequencing APB transactions during verification.

APBUART Scoreboard

Listing 5: APBUART scoreboard

from pyuvm import *

class APBUARTScoreboard(uvm_scoreboard):

def __init__(self , name , parent):

super().__init__(name , parent)

self.pkt_queue = []

self.coverage = SomeCoverageClass () # Replace with your coverage class

instance

def write(self , pkt):

self.pkt_queue.append(pkt)

6

Sample coverage with relevant transaction fields

self.coverage.sample(pkt.some_field)

def report_phase(self):

cov = self.coverage.get_coverage ()

self.logger.info(f"Coverage: {cov :.2f}%")

Listing 5 implements a uvm scoreboard for verifying APB-UART integration. It subscribes to analysis ports
from APB and UART monitors and drivers, storing received transactions in internal queues. The scoreboard
compares APB configuration register accesses and data transactions against UART transactions to ensure correct
operation. It validates configuration register values, transmit and receive data integrity, and checks for correct error
signaling. Additionally, the scoreboard uses coverage components to track functional coverage of configuration,
transmission, and reception, reporting the coverage results at the end of the simulation [5].

APBUART Environment

Listing 6: APBUART environment

class APBUARTEnv(uvm_env):

def build_phase(self):

super().build_phase ()

self.apb_agnt = APBAgent("apb_agnt", self)

self.uart_agnt = UARTAgent("uart_agnt", self)

self.scoreboard = APBUARTScoreboard("scoreboard", self)

def connect_phase(self):

super().connect_phase ()

self.apb_agnt.monitor.item_collected_port_mon.connect(

self.scoreboard.item_collected_export_monapb)

self.uart_agnt.monitor.item_collected_port_mon.connect(

self.scoreboard.item_collected_export_monuart)

self.uart_agnt.driver.item_collected_port_drv.connect(

self.scoreboard.item_collected_export_drvuart)

Listing 6 instantiates and connects all key UVM components for the APB-UART testbench, including APB
and UART agents, a combined scoreboard, and a virtual sequencer. In the build phase, it creates these components,
while in the connect phase it links the agents’ analysis ports to the scoreboard’s analysis exports to facilitate trans-
action collection and checking. It also sets sequencers in the UVM configuration database for virtual sequencer
access.

APBUART config test

Listing 7: APBUART configuration test

class apbuart_config_test(apbuart_base_test):

def build_phase(self):

super().build_phase ()

self.apbuart_config_sq = apbuart_config_seq.create("apbuart_config_seq"

)

async def run_phase(self):

self.raise_objection ()

for i in range(self.cfg.loop_time):

self.set_config_params (9600, 8, 3, 1, 1) # last arg=1 means

randomize

self.logger.info(f"Iteration {i+1}: UART Config :\n{self.cfg}")

self.set_apbconfig_params (2, 1) # last arg=1 means randomize APB

config

self.logger.info(f"Iteration {i+1}: APB Config :\n{self.apb_cfg}")

await self.apbuart_config_sq.start(self.env_sq.v_sqr)

self.drop_objection ()

await Timer(20, "ns")

7

This Listing 7 inherits from apbuart base test, where the APBUART environment (APBUARTEnv) is in-
stantiated. In the build phase, it creates the configuration sequence. During the run phase, it runs multiple iter-
ations where UART and APB configurations are randomized and applied. Each iteration starts the configuration
sequence on the virtual sequencer, verifying the APB-UART interface behavior under varying configurations. The
test manages UVM objections to control simulation flow and includes logging for configuration details.

cocotb Top-Level Testbench

Listing 8: Top-level cocotb testbench for APBUART

@cocotb.test()

async def tbench_top(dut):

Start 50 MHz clock

Apply reset (active low)

ConfigDB ().set(None , "*", "dut", dut)

await uvm_root ().run_test(apbuart_config_test)

This Listing 8 initializes the DUT clock and reset signals using cocotb coroutines, setting a 50 MHz clock and
an active-low reset pulse. It leverages ConfigDB to store references to DUT signals and buses, enabling access
to these signals from pyuvm components such as drivers, monitors, and sequencers without explicit interface
wrappers. The UVM test starts by invoking uvm root().run test() asynchronously, integrating cocotb’s coroutine
scheduler with the UVM test execution.

IV. EXPERIMENT EVALUATION

A. Technical Comparison: SV-UVM vs. cocotb + pyuvm

Category SV-UVM Cocotb+PyUVM Technical Implications

Language Founda-
tion

SystemVerilog (IEEE 1800)
+ UVM Class Library (IEEE
1800.2)

Python 3.6+ + Cocotb
(co-simulation) + PyUVM
(UVM-like Python library)

SV-UVM is strongly typed;
PyUVM relies on dynamic typing.

Simulation Interface Direct integration with HDL
simulators via PLI/VHPI

Socket-based communi-
cation with simulators
(VPI/FLI)

SV-UVM has lower latency;
PyUVM adds Python interpreter
overhead (2–5× slower).

Importation import uvm pkg::* from pyuvm import * All UVM classes/functions become
available without referencing the
package.

Concurrency Model UVM phases (build phase,
run phase) with fork-join

Python coroutines
(async/await) with event
loop

PyUVM allows true parallelism;
SV-UVM requires careful thread
management.

Debugging Waveform-based
(Verdi/DVE) + UVM
reporting (uvm info,
uvm error)

Python debuggers (pdb) +
logging + limited waveform
access

SV-UVM enables signal-level de-
bug; PyUVM excels at testbench
logic inspection.

Randomization Native rand/constraint with
SV solver

PyVCS constraint solver
(Python-based CSP solver)

PyVCS provides SV-like con-
straints with Python syntax (e.g.,
@constraint decorators).

Configuration uvm config db with static
type checking

ConfigDB() dictionary
with dynamic types

SV-UVM catches config errors at
compile time; PyUVM may need
runtime checks.

Coverage Built-in covergroup, cover-
point, cross

PyVCS coverage collectors PyVCS enables SV-style coverage
with Python flexibility (e.g., dy-
namic bins).

TLM Ports uvm {*} port,
uvm {*} export with
strict compliance

Python method calls + deco-
rators

SV-UVM enforces protocol com-
pliance; PyUVM is flexible but
prone to errors.

Clock Domain Han-
dling

Native clocking blocks
(@(posedge clk))

Cocotb triggers (await
RisingEdge(dut.clk))

SV-UVM has precise timing con-
trol; PyUVM depends on simulator
synchronization.

Table 1: Technical Comparison: SV-UVM vs. Cocotb+PyUVM

8

B. Coverage Metrices

50 100 200 400 800 1600 3200
0

1

2

3

4

5

6

0.
05 0.
1 0.
19 0.

38

0.
76

1.
53

3.
07

0.
1 0.
19 0.

38

0.
79

1.
54

3.
07

6.
14

Transactions

Ti
m

e
(m

s)

SV-UVM PyUVM

Figure 4: Simulation time v/s number of transactions.

50 100 200 400 800 1600 3200
0

20

40

60

80

100

75
.3

5 82
.5

2 86
.4

87
.3

8

87
.5

87
.5

87
.5

82
.6

2

84
.3

8 88
.2

5 93
.3

8 97
.7

5

99
.5

10
0

Transactions

C
ov

er
ag

e
(%

)

SV-UVM PyUVM

Figure 5: Functional coverage v/s number of transactions.

9

Figure 4 & Figure 5 presents a comparison of configuration coverage, simulation time, and transaction count
between two verification methodologies: SystemVerilog UVM and cocotb with pyuvm. The data reflects results
from a configuration-driven test targeting UART features, including baud rate, frame length, parity bit, and stop
bit [7].
The SV UVM method shows consistently faster simulation times as the number of transactions increases, but the
coverage plateaus at 87.5%, even with larger sample sizes. On the other hand, cocotb + pyuvm achieves higher
configuration coverage, reaching 100%, though with increased simulation durations [2].
At lower transaction counts (50–400), both methods perform similarly in terms of coverage growth, but cocotb +
pyuvm quickly surpasses SV UVM as the sample size increases. This comparison highlights a tradeoff between
the speed efficiency of SV UVM and the coverage completeness of cocotb + pyuvm, allowing users to choose
based on verification goals whether prioritizing faster execution or thorough configuration space exploration.

V. CONCLUSION

This study shows that Python-based verification using cocotb and pyuvm is a viable alternative to SystemVerilog
UVM for unit-level IP verification. Using a UART IP core as a case study, we compared both approaches in terms
of coverage, development effort, and integration. While UVM offers faster simulation and mature tool support,
cocotb + pyuvm achieved 100% coverage with simpler, more flexible testbenches. Python’s ease of use, quick
development, and integration with modern software tools make it especially useful for academic, open-source, and
agile environments. These results provide practical guidance on when Python-based verification can complement
or replace traditional UVM.

References

[1] U. B V and K. Muchalambi, “Design and verification of ddr5 subsystem using uvm methodology,” pp. 1–6,
2024. DOI: 10.1109/CSITSS64042.2024.10817033.

[2] C. Liu, X. Xu, Z. Chen, and B. Wang, “A universal-verification-methodology-based testbench for the
coverage-driven functional verification of an instruction cache controller,” Electronics, vol. 12, no. 18,
p. 3821, 2023. DOI: 10.3390/electronics12183821.

[3] Abdelbaky, Dessouky, and Salem, “Python-based dram memory controller testbench: Pyuvm an early
report,” Journal of Advanced Research in Applied Sciences and Engineering Technology, vol. 52, no. 2,
176–188, Sep. 2024. DOI: 10.37934/araset.52.2.176188.

[4] D. N. Gadde, S. Kumari, and A. Kumar, “Effective design verification – constrained random with python
and cocotb,” May 2024, Published in DVCon Europe 2023. DOI: 10.48550/arXiv.2407.10312.

[5] G. Wang, N. Tan, Y. Cheng, and P. Zhang, “A comparative study of different verification platforms of ahb-
spi,” pp. 847–851, 2024. DOI: 10.1109/ICICM63644.2024.10814204.

[6] S. Marconi, E. Conti, P. Placidi, A. Scorzoni, J. Christiansen, and T. Hemperek, “A systemverilog-uvm
methodology for the design, simulation and verification of complex readout chips in high energy physics
applications,” pp. 35–41, 2017. DOI: 10.1007/978-3-319-47913-2_5.

[7] M. Dharani, M. Bharathi, B. Rajeswari, A. M. Yadav, D. Niranjan, and A. C. D. Reddy, “Design and verifi-
cation of an adder-subtractor using uvm methodology,” pp. 26–30, 2023. DOI: 10.1109/CSNT57126.2023.
10134642.

[8] Ankitha and H. V. R. Aradhya, “A python-based design verification methodology,” vol. 23, no. 06, pp. 901–
911, 2021. DOI: 10.51201/JUSST/21/05358.

10

https://doi.org/10.1109/CSITSS64042.2024.10817033
https://doi.org/10.3390/electronics12183821
https://doi.org/10.37934/araset.52.2.176188
https://doi.org/10.1109/ICICM63644.2024.10814204
https://doi.org/10.1007/978-3-319-47913-2_5
https://doi.org/10.1109/CSNT57126.2023.10134642
https://doi.org/10.1109/CSNT57126.2023.10134642
https://doi.org/10.51201/JUSST/21/05358

	INTRODUCTION
	VERIFICATION METHODOLOGIES OVERVIEW
	SystemVerilog UVM
	cocotb + pyuvm

	UART VERIFICATION ENVIRONMENT SETUP
	Design Overview
	SV-UVM Testbench Environment
	cocotb + pyuvm Testbench Environment
	KEY IMPLEMENTATION DIFFERENCES

	EXPERIMENT EVALUATION
	Technical Comparison: SV-UVM vs. cocotb + pyuvm
	Coverage Metrices

	CONCLUSION

