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Abstract—As UVM-based verification environments grow in complexity and flexibility, the connection between the 

testbench and the DUT remains a critical concern—particularly in projects where the DUT may support multiple 

protocols or protocol versions.  In most verification projects we can find an implementation of a generic or common 

agent. However, these classes will still be required to be extended to add protocol/interface specific functionality. 

This paper introduces GAP (Generic Agent Pattern). GAP provides a reference base implementation of a generic 

agent that requires no extension. GAP builds on previous literature on connecting the testbench to the DUT that avoids 

using virtual interfaces. Instead of requiring each agent to be tailored to specific protocols or interface variants, GAP 

enables a single, reusable agent to support multiple use cases through object-oriented encapsulation and dynamic 

behavior injection. 
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I.  INTRODUCTION 

The traditional approach to connecting UVM testbenches to DUTs involves virtual interfaces, which allow 

class-based drivers and monitors to control signal-level interfaces. While effective, this model creates strong 

structural dependencies and requires careful management of interface instances and parameterization. These issues 

are particularly pronounced in designs where the DUT may be configured to operate with different protocols (e.g., 

APB vs. AHB) or protocol versions (e.g., AXI3 vs. AXI5).  

In the paper "Abstract BFMs Outshine Virtual Interfaces for Advanced SystemVerilog Testbenches" [1], an 

alternative approach is proposed that uses abstract classes to define protocol APIs. This approach decouples the 

testbench from the DUT interface allowing for cleaner layering. However, the driver and monitor classes still 

contain significant driving and monitoring logic, which involves calling multiple APIs implemented in the abstract 

BFM. 

Another complementary solution is presented in [2], which addressed the integration of parameterized interfaces 

to reusable UVM environments. Their approach employs virtual accessor classes that abstract away 

parameterization, allowing class-based access to DUT signals without modifying the UVM components. 

Building on the same goals of abstraction and modularity, the GAP methodology takes this further by 

embedding protocol behavior directly into one or more classes defined within the interface. These classes are then 

passed to the agent, allowing its sub-components to handle all driving and monitoring activities. As a result, the 

UVM driver and monitor are effectively reduced to minimal wrappers.  

This design enables dynamic behavior injection, supports full runtime flexibility, and offers a unified testbench 

architecture suitable for multi-protocol and highly configurable designs. 

II. METHODOLOGY 

GAP utilizes abstract BFMs, these will be responsible for implementing all protocol logic, including drive() 

and monitor() tasks, as well as optional pre and post hooks and helper methods. 

The UVM driver and monitor classes simply call bfm_h.drive() and bfm_h.monitor() respectively 

in their run phase, delegating all transaction logic to the interface. During the build and configuration phases, the 
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testbench creates an instance of the appropriate BFM class based on the target protocol or DUT configuration and 

passes it to the interface. 

A. Abstract Bus Functional Model Declaration 

These will form the foundation of the new agent model, where protocol behavior is implemented externally 

and injected into a generic agent structure.  

 SystemVerilog's interface class construct introduces the concept of pure abstraction at the behavioral 

level. The interface class defines a behavioral contract through abstract methods. This enables polymorphism and 

decouples implementation from specification [3].  

 Through the interface class, we can support multiple inheritance and pure behavior-based interfaces, 

allowing SystemVerilog to model software design patterns more cleanly. If working with older simulators or with 

test benches where supporting the interface class is not possible, we can use a virtual class. 

B. Abstracting the Driver and Monitor 

We implement the generic driver and monitor classes to rely solely on these abstract interface classes. The 

driver now delegates all low-level transaction behavior to an injected generic_driver_bfm implementation, 

and likewise for the monitor.  

 

 

interface class generic_driver_bfm; 

  // This task is responsible for driving the signals based on the request 

  pure virtual task drive_transaction (uvm_sequence_item req); 

  // Declare any common helper methods needed for the common base BFM 

  // ... 

endclass 

 

interface class generic_monitor_bfm; 

  // This task is responsible for monitoring the signals 

  pure virtual task monitor_transaction (output uvm_sequence_item req); 

  // Declare any common helper methods needed for the common base BFM 

  //... 

endclass 

class generic_driver extends uvm_driver #(uvm_sequence_item); 

  generic_driver_bfm driver_bfm; 

 

  virtual task run_phase (uvm_phase phase); 

    forever begin 

      seq_item_port.get_next_item(req); 

      driver_bfm.drive_transaction(req); 

      seq_item_port.item_done(); 

    end 

  endtask 

endclass 

 

Figure 1 An interface class definition of the abstract BFM classes. 

Figure 2 An example of the generic driver implementation. 
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It is important to note that while the example implementations provided in this paper extend directly from the 

base UVM classes, most verification environments already include their own customized base classes derived 

from UVM. The reader is encouraged to and can easily adapt GAP to use these existing base classes instead. 

C. Creating the Concrete BFMs 

 We implement concrete classes (adapters) that conform to the interface class definitions. These classes 

encapsulate all protocol-specific signal activity, binding to virtual interface instances and performing the required 

transactions.  

This approach that embeds the protocol adapter directly within the signal interface, proposed in [1], allows for 

the encapsulation of both the protocol signals and their driving semantics in one location. 

 

An important advantage of this encapsulation style is its native support for parameterized interfaces. In 

traditional UVM environments, the most straightforward approach typically requires parameterizing all classes 

interface apb_if(input clk); 

  // signal definitions ... 

   

  class apb_driver_adapter implements generic_driver_bfm; 

    // Implement the drive method 

    virtual task drive_transaction(uvm_sequence_item item); 

      // Driving logic goes here 

    endtask 

  endclass 

 

  class apb_monitor_adapter implements generic_monitor_bfm; 

    // Implement the monitor adapter 

    //... 

  endclass 

 

  apb_driver_adapter  driver_bfm  = new(); 

  apb_monitor_adapter monitor_bfm = new(); 

endinterface 

 

Figure 4 A concrete implementation of a protocol BFM. 

class generic_monitor extends uvm_monitor #(uvm_sequence_item); 

  generic_monitor_bfm monitor_bfm; 

  uvm_analysis_port #(uvm_sequence_item) monitor_ap; 

 

  virtual task run_phase(uvm_phase phase); 

    forever begin 

      monitor_bfm.monitor_transaction(my_item); 

      monitor_ap.write(my_item); 

    end 

  endtask 

endclass 

 
Figure 3 An example of the generic monitor implementation. 
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that interact with the interface. Passing a parameterized virtual interface across multiple components often results 

in cumbersome, error-prone, and fragile code structures. 

 

By embedding the adapter class directly within the interface, parameter handling becomes fully localized to the 

interface scope. This eliminates the need to propagate parameters manually across the testbench and ensures that 

the adapter automatically inherits any parameters declared in the enclosing interface. As a result, verification 

components become more robust, easier to maintain, and highly reusable, especially when dealing with variations 

such as data width, address size, or timing configurations. 

 

It is worth noting that in a previous study [2], the authors reported issues when accessing interface signals from 

a class defined inside an interface, particularly when multiple interface instances were used. The authors of that 

study observed that signals were not driven properly at runtime despite successful compilation. However, based 

on our experiments with modern simulators, this approach works reliably. We believe the earlier observations 

were likely due to tool limitations or bugs in older simulator versions, which have since been addressed. 

D. Supporting Generic Subscribers 

 To make the agent extensible for subscribers such as; scoreboards and functional coverage components, we 

introduce a generic subscriber mechanism. This follows the same abstraction principles, using an interface class, as 

shown in Figure 5 . 

This implementation relies on the TLM analysis ports to connect the subscribers to the monitors. This connection 

is done in the agent. Another implementation, presented in [4], relies mostly on the interface class implementation. 

We will explore this implementation next and it is up to the reader to decide which approach to choose. 

interface class generic_subscriber_bfm; 

  // This will be responsible for the subscriber behavior. 

  // checkers, coverage collection, etc. 

  pure virtual function void write_transaction(uvm_sequence_item req); 

  // Declare any common helper methods needed for the common base BFM 

endclass 

 

interface apb_if(input clk); // ...   

  class apb_checker_adapter implements generic_subscriber_bfm; 

    // Implement the checker method 

    virtual function void write_transaction(uvm_sequence_item item); 

      // Checking logic goes here 

    endfunction 

  endclass 

 

  apb_checker_adapter  checker_bfm  = new(); 

endinterface 

 

class generic_subscriber extends uvm_subscriber#(uvm_sequence_item); 

  apb_checker_bfm bfm; //Bus functional model 

 

  virtual function void write(uvm_sequence_item t); 

    bfm.write_transaction(t) 

  endfunction 

endclass : generic_subscriber 

 

 

Figure 5 A concrete implementation of the generic subscriber. 
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E. Putting all together (the Generic Agent) 

 The resulting system is modular, maintainable, and protocol-agnostic. Adding a new protocol requires only the 

definition of a signal interface, and adapter classes.  

The following figure shows a UML class diagram of the resulting generic agent (right), alongside the traditional 

protocol-specific implementation of the agent (left). 

 

Figure 7 UML diagram of the generic agent pattern and the traditional agent. 

Figure 6 An alternative concrete implementation of the generic subscriber using interface class. 

class generic_monitor extends uvm_component; 

  local generic_subscriber subscribers_h[$]; 

  generic_monitor_bfm      monitor_bfm; 

  

  function void add_subscriber(generic_subscriber subscriber_h); 

    subscribers_h.push_back(subscriber_h); 

  endfunction 

 

  virtual task run_phase(uvm_phase phase); 

    //... 

    forever begin 

      monitor_bfm.monitor_transaction(req); 

      foreach(subscribers_h[i]) 

        subscribers_h[i].write_transaction(req); 

      end 

  endtask 

endclass 

 

class apb_checker_adapter extends uvm_component implements 

generic_subscriber_bfm; 

  virtual function void write_transaction(uvm_sequence_item item); 

    //... 

  endfunction 

endclass 

 

 

 

                                                            

         

          

                     

       

                  

                   

             

              

                        

       

              

                   

          
Driving Logic is implemented here Calls m_bfm.drive_transaction() 



 

6 

 

It is important to note that since the BFMs here are now class based, they can be dynamically assigned to the 

UVM components. The BFMs can be assigned to the components at any point in the simulation. In this example, 

we chose to use the connect phase just because this is how it is traditionally done.  

 

 

 

class generic_agent extends uvm_agent; 

  generic_driver     driver_h; 

  generic_monitor    monitor_h; 

  generic_subscriber subscriber_h[]; 

 

  // The build_phase will construct all the agent components 

  // This approach assumes that all components will be passed/constructed with 

the name "parent"+"_type" 

  virtual function void build_phase(uvm_phase phase); 

    if(!uvm_config_db#(CFG)::get(this, "", {get_name(),"_cfg"}, cfg_h)) begin 

      `uvm_fatal("NO_CFG", $sformatf("Failed to fetch %0s from CGFDB", 

{get_name(),"_cfg"})) 

    end 

 

    if (cfg_h.is_active == UVM_ACTIVE) begin 

      driver_h    = generic_driver::type_id::create({get_name(),"_drv"}, this); 

      //... 

    end 

 

    if (cfg_h.sub_en != 0) begin 

      string mode_s; 

      subscriber_h = new[cfg_h.sub_en]; 

      foreach (subscriber_h[i]) begin 

        subscriber_h[i] = generic_subscriber::type_id::create({get_name(), 

"_sub"}, this); 

      end 

    end 

 

    monitor_h = generic_monitor::type_id::create({get_name(),"_mon"}, this); 

    //... 

  endfunction: build_phase 

 

  // The connect phase will pass all the BFMs to the components 

  virtual function void connect_phase(uvm_phase phase); 

    if (cfg_h.is_active == UVM_ACTIVE) begin 

      driver_h.driver_bfm = cfg_h.driver_bfm; 

      //... 

    end 

    monitor_h.monitor_bfm = cfg_h.monitor_bfm; 

 

    if (subscriber_h.size() != 0) begin 

      foreach (subscriber_h[i]) begin 

        subscriber_h[i].bfm = cfg_h.bfm[i]; 

        // Connect the subscribers to producers 

        this.connect_subs(subscriber_h[i]);  

        //... 

      end 

    end 

  endfunction: connect_phase 

endclass : generic_agent 
 

Figure 8  Complete implementation of the generic agent. 
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III. USE CASES 

Dynamically Configurable Protocols in the same DUT 

A DUT may need to switch between different protocol versions depending on its configuration. In traditional 

approaches, this is often handled by a single agent containing large conditional branches to manage the variations, 

which can make the code complex and difficult to maintain. In contrast, GAP allows different BFM classes to be 

plugged into the same agent dynamically, the driving logic is simpler, readable, and maintainable. 

Another common scenario is pin multiplexing, where the same physical pins are shared across multiple 

protocols depending on the DUT configuration. Traditionally, this requires creating separate agents for each 

supported protocol, increasing overhead and code duplication. With GAP, a single agent can be used, and only the 

BFM implementation needs to be swapped when the protocol changes. The following diagram illustrates this: on 

the right, the conventional approach enables or disables different agents as the DUT reconfigures its I/O registers; 

on the left, GAP uses a single agent and simply replaces the BFM whenever a reconfiguration occurs.  

IV. RESULT AND FINDINGS 

A. Advantages 

This approach offers a cleaner separation between structure and behavior, following principles similar to the 

Strategy Pattern. By breaking functionality into smaller, focused classes, the resulting architecture is easier to 

maintain and modify. The methodology also enables faster bring-up for small and mid-scale projects, as the modular 

design reduces integration complexity.  

Additionally, it is easy to extend for new protocols or variants by simply adding new adapter implementations, 

without modifying the core agent logic. Finally, GAP supports both dynamic and static DUT configurability, 

allowing the same framework to be used across a wide range of designs and configuration scenarios. 

B. Disadvantages 

While GAP offers significant flexibility, it also introduces certain trade-offs. The indirection introduced through 

interface classes can make debugging more difficult without proper tooling or comprehensive logging support. To 

mitigate this, teams should invest in strong transaction-level logging, standardized debug hooks, and consistent 

simulation checks. These practices help improve traceability, enhance clarity, and make the overall system’s 

behavior easier to understand during debugging and analysis.  

For simple or one-off protocols, the extra abstraction might be unnecessary and even counterproductive, 

introducing indirection where a direct implementation would suffice. In these cases, using traditional UVM agents 

without additional layering is more practical and recommended to keep things simple. 

 

Figure 9 Simplified environment comparison — traditional agents versus GAP single-agent design for reconfigurable I/O. 
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Moreover, using a single, highly generic agent to support many diverse use cases—such as pipelining, reactivity, 

or incorporating specialized behaviors needed only in a few blocks—can become counterproductive and lead to 

significant maintenance challenges. A more sustainable solution is to define separate generic agents for each major 

use case or protocol family. This approach balances generalization with clarity, prevents overcomplicating shared 

agents, and enables easier maintenance and scalability as the design evolves.  

C. A comparison between traditional agents and GAP 

Table I. A comparison between Traditional Agents and GAP 
Feature Traditional Agents GAP 

Supports dynamic behavior 

injection 

Limited Fully dynamic via BFM class 

Code reuse across protocols One agent per protocol One agent, multiple BFMs 

Testbench-DUT decoupling Partial (via virtual interfaces) Full (class-in-in-interface binding) 

Follows OOP principles Virtual interfaces can limit traditional agents Fully compliant with OOP principles 

Use in Single-protocol and/or 
low complexity environments 

Traditional agents offer faster bring-up time in 
cases where GAP needs to be developed from 

scratch 

GAP truly shines in environments where multiple 
related protocols are in use. For single protocol   

environments, the case for using GAP is not strong 

Statically configurable DUTs  Factory overrides can be superior to GAP. While GAP can be used here, it does not offer any 
advantage as the DUT itself is statically 
configurable. 

V. CONCLUSION & FUTURE WORK 

GAP provides a clean, modular, and flexible method for connecting UVM testbenches to DUTs without relying 

on virtual interfaces. By embedding class-based behavioral models inside interfaces, GAP enables object-oriented, 

strategy-driven verification components that are easy to build, extend, and maintain. This approach is especially 

well-suited for designs that support multiple interface protocols or runtime configurations. GAP simplifies agent 

development, enhances reusability, and aligns closely with modern software design best practices while remaining 

fully UVM-compliant. 

It is important to emphasize that GAP is not intended as a replacement for the traditional UVM agent approach. 

Instead, GAP offers an alternative methodology that can provide significant advantages in scenarios where greater 

flexibility, reusability, or configurability is required. In many cases, traditional agents remain simpler and perfectly 

suitable, and the choice between approaches should be guided by the project's specific requirements and complexity. 

Future work may explore the use of automation tools for generating BFM templates and extending GAP to 

cover more expansive agent use case scenarios.  
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