2025

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

OCTOBER 14-15, 2025

GAP: A Generic Agent Pattern for Reusable
Testbenches

Omar Younis, Si-Vision, Cairo, Egypt (omar.younis@si-vision.com)
Peter Gad, Si-Vision, Cairo, Egypt (peter.gad@si-vision.com)

Abstract—As UVM-based verification environments grow in complexity and flexibility, the connection between the
testbench and the DUT remains a critical concern—particularly in projects where the DUT may support multiple
protocols or protocol versions. In most verification projects we can find an implementation of a generic or common
agent. However, these classes will still be required to be extended to add protocol/interface specific functionality.

This paper introduces GAP (Generic Agent Pattern). GAP provides a reference base implementation of a generic
agent that requires no extension. GAP builds on previous literature on connecting the testbench to the DUT that avoids
using virtual interfaces. Instead of requiring each agent to be tailored to specific protocols or interface variants, GAP
enables a single, reusable agent to support multiple use cases through object-oriented encapsulation and dynamic
behavior injection.

Keywords—generic agent, BFM, UVM

. INTRODUCTION

The traditional approach to connecting UVM testbenches to DUTSs involves virtual interfaces, which allow
class-based drivers and monitors to control signal-level interfaces. While effective, this model creates strong
structural dependencies and requires careful management of interface instances and parameterization. These issues
are particularly pronounced in designs where the DUT may be configured to operate with different protocols (e.g.,
APB vs. AHB) or protocol versions (e.g., AXI3 vs. AXI5).

In the paper "Abstract BFMs Outshine Virtual Interfaces for Advanced SystemVerilog Testbenches™ [1], an
alternative approach is proposed that uses abstract classes to define protocol APIs. This approach decouples the
testbench from the DUT interface allowing for cleaner layering. However, the driver and monitor classes still
contain significant driving and monitoring logic, which involves calling multiple APls implemented in the abstract
BFM.

Another complementary solution is presented in [2], which addressed the integration of parameterized interfaces
to reusable UVM environments. Their approach employs virtual accessor classes that abstract away
parameterization, allowing class-based access to DUT signals without modifying the UVM components.

Building on the same goals of abstraction and modularity, the GAP methodology takes this further by
embedding protocol behavior directly into one or more classes defined within the interface. These classes are then
passed to the agent, allowing its sub-components to handle all driving and monitoring activities. As a result, the
UVM driver and monitor are effectively reduced to minimal wrappers.

This design enables dynamic behavior injection, supports full runtime flexibility, and offers a unified testbench
architecture suitable for multi-protocol and highly configurable designs.
Il. METHODOLOGY

GARP utilizes abstract BFMs, these will be responsible for implementing all protocol logic, including drive ()
and monitor () tasks, as well as optional pre and post hooks and helper methods.

The UVM driver and monitor classes simply call bfm h.drive () and bfm h.monitor () respectively
in their run phase, delegating all transaction logic to the interface. During the build and configuration phases, the

2025

DESIGN AND VERIFICATION™

DVLCOIN

CONFERENCE AND EXHIBITION

MU

ICH, GERMANY

OCTOBER 14-15, 2025

testbench creates an instance of the appropriate BFM class based on the target protocol or DUT configuration and
passes it to the interface.

A. Abstract Bus Functional Model Declaration

These will form the foundation of the new agent model, where protocol behavior is implemented externally
and injected into a generic agent structure.

interface class generic driver bfm;
// This task is responsible for driving the signals based on the request
pure virtual task drive transaction (uvm_ sequence item req);
// Declare any common helper methods needed for the common base BFM
//

endclass

interface class generic monitor bfm;
// This task is responsible for monitoring the signals
pure virtual task monitor transaction (output uvm sequence item req);
// Declare any common helper methods needed for the common base BFM
/...

endclass

Figure 1 An interface class definition of the abstract BFM classes.

SystemVerilog's interface class construct introduces the concept of pure abstraction at the behavioral
level. The interface class defines a behavioral contract through abstract methods. This enables polymorphism and
decouples implementation from specification [3].

Through the interface class, we can support multiple inheritance and pure behavior-based interfaces,
allowing SystemVerilog to model software design patterns more cleanly. If working with older simulators or with
test benches where supporting the interface class is not possible, we can use a virtual class.

B. Abstracting the Driver and Monitor

We implement the generic driver and monitor classes to rely solely on these abstract interface classes. The
driver now delegates all low-level transaction behavior to an injected generic driver bfmimplementation,
and likewise for the monitor.

class generic driver extends uvm driver # (uvm_sequence item);

generic driver bfm driver bfm;

virtual task run phase (uvm phase phase);
forever begin
seq item port.get next item(req);
driver bfm.drive transaction(req);
seq item port.item done();
end
endtask

endclass

Figure 2 An example of the generic driver implementation.

2025

DESIGN AND VERIFICATION™

DVLCOIN

CONFERENCE AND EXHIBITION

MUNICH, GERMANY
OCTOBER 14-15, 2025

class generic monitor extends uvm monitor #(uvm_ sequence item);
generic monitor bfm monitor bfm;

uvm_analysis port #(uvm sequence item) monitor ap;

virtual task run phase (uvm phase phase);
forever begin
monitor bfm.monitor transaction(my item);
monitor ap.write(my item);
end
endtask

endclass

Figure 3 An example of the generic monitor implementation.

It is important to note that while the example implementations provided in this paper extend directly from the
base UVM classes, most verification environments already include their own customized base classes derived
from UVM. The reader is encouraged to and can easily adapt GAP to use these existing base classes instead.

C. Creating the Concrete BFMs

We implement concrete classes (adapters) that conform to the interface class definitions. These classes
encapsulate all protocol-specific signal activity, binding to virtual interface instances and performing the required
transactions.

interface apb if (input clk);

// signal definitions

class apb driver adapter implements generic driver bfm;
// Implement the drive method
virtual task drive transaction(uvm sequence item item);
// Driving logic goes here
endtask

endclass

class apb monitor adapter implements generic monitor bfm;
// Implement the monitor adapter
/...

endclass

apb driver adapter driver bfm = new();
apb monitor adapter monitor bfm = new();

endinterface

Figure 4 A concrete implementation of a protocol BFM.

This approach that embeds the protocol adapter directly within the signal interface, proposed in [1], allows for
the encapsulation of both the protocol signals and their driving semantics in one location.

An important advantage of this encapsulation style is its native support for parameterized interfaces. In
traditional UVM environments, the most straightforward approach typically requires parameterizing all classes

2025

DESIGN AND VERIFICATION™

DVLCOIN

CONFERENCE AND EXHIBITION

MUNICH, GERMANY
OCTOBER 14-15, 2025

that interact with the interface. Passing a parameterized virtual interface across multiple components often results
in cumbersome, error-prone, and fragile code structures.

By embedding the adapter class directly within the interface, parameter handling becomes fully localized to the
interface scope. This eliminates the need to propagate parameters manually across the testbench and ensures that
the adapter automatically inherits any parameters declared in the enclosing interface. As a result, verification
components become more robust, easier to maintain, and highly reusable, especially when dealing with variations
such as data width, address size, or timing configurations.

It is worth noting that in a previous study [2], the authors reported issues when accessing interface signals from
a class defined inside an interface, particularly when multiple interface instances were used. The authors of that
study observed that signals were not driven properly at runtime despite successful compilation. However, based
on our experiments with modern simulators, this approach works reliably. We believe the earlier observations
were likely due to tool limitations or bugs in older simulator versions, which have since been addressed.

D. Supporting Generic Subscribers

To make the agent extensible for subscribers such as; scoreboards and functional coverage components, we
introduce a generic subscriber mechanism. This follows the same abstraction principles, using an interface class, as
shown in Figure 5 .

interface class generic subscriber bfm;
// This will be responsible for the subscriber behavior.
// checkers, coverage collection, etc.
pure virtual function void write transaction(uvm sequence item req);
// Declare any common helper methods needed for the common base BFM

endclass

interface apb if (input clk); //
class apb checker adapter implements generic subscriber bfm;
// Implement the checker method
virtual function void write transaction(uvm_ sequence item item);
// Checking logic goes here
endfunction
endclass

apb checker adapter checker bfm = new();
endinterface

class generic subscriber extends uvm subscriber# (uvm_sequence item);
apb_checker bfm bfm; //Bus functional model

virtual function void write(uvm sequence item t);
bfm.write transaction(t)
endfunction
endclass : generic_ subscriber

Figure 5 A concrete implementation of the generic subscriber.

This implementation relies on the TLM analysis ports to connect the subscribers to the monitors. This connection
is done in the agent. Another implementation, presented in [4], relies mostly on the interface class implementation.
We will explore this implementation next and it is up to the reader to decide which approach to choose.

2025

DESIGN AND VERIFICATION™

DVLCOIN

CONFERENCE AND EXHIBITION

MUNICH, GERMANY
OCTOBER 14-15, 2025

class generic monitor extends uvm component;
local generic subscriber subscribers h[$];
generic monitor bfm monitor bfm;

function void add subscriber (generic subscriber subscriber h);
subscribers h.push back (subscriber h);
endfunction

virtual task run phase (uvm phase phase);
/e
forever begin
monitor bfm.monitor transaction(req):;
foreach (subscribers h[i])
subscribers h[i].write transaction(req);
end
endtask
endclass

class apb checker adapter extends uvm component implements
generic subscriber bfm;
virtual function void write transaction(uvm sequence item item);
/).
endfunction
endclass

Figure 6 An alternative concrete implementation of the generic subscriber using interface class.

E. Putting all together (the Generic Agent)
The resulting system is modular, maintainable, and protocol-agnostic. Adding a new protocol requires only the
definition of a signal interface, and adapter classes.

The following figure shows a UML class diagram of the resulting generic agent (right), alongside the traditional
protocol-specific implementation of the agent (left).

Traditional UVM Agent Pattern \ Generic UVM agent Pattern (GAP) \

@ apb_agent @ generic_agent

| T

@ apb_driver @ generic_driver @generic driver bfm
virtual interface vif generic_driver_bfm m_bfm >
drive() drive() drive_transaction()
_V
. .) . implements
Driving Logic is implemented here ‘ ‘ Calls m bfm.drive transaction() ‘

@ apb_driver_bfm

drive_transaction()

Figure 7 UML diagram of the generic agent pattern and the traditional agent.

2025

DESIGN AND VERIFICATION™

DVLCOIN

CONFERENCE AND EXHIBITION

MUNICH, GERMANY
DCTOBER 14-15, 2025

It is important to note that since the BFMs here are now class based, they can be dynamically assigned to the
UVM components. The BFMs can be assigned to the components at any point in the simulation. In this example,
we chose to use the connect phase just because this is how it is traditionally done.

class generic agent extends uvm agent;
generic driver driver h;
generic monitor monitor h;
generic subscriber subscriber h[];

// The build phase will construct all the agent components
// This approach assumes that all components will be passed/constructed with
the name "parent"+" type"
virtual function void build phase (uvm phase phase);
if (!uvm_config db# (CFG) ::get (this, "", {get name()," cfg"}, cfg h)) begin
‘uvm_fatal ("NO _CFG", S$sformatf("Failed to fetch %0s from CGFDB",
{get name()," cfg"}))

end

if (cfg h.is active == UVM ACTIVE) begin
driver h = generic driver::type id::create({get name()," drv"}, this);
Y

end

if (cfg h.sub en != 0) begin

string mode s;
subscriber h = new[cfg h.sub en];
foreach (subscriber h[i]) begin
subscriber h[i] = generic subscriber::type id::create({get name(),
" sub"}, this);
end
end

monitor h = generic monitor::type id::create({get name()," mon"}, this);
/)

endfunction: build phase

// The connect phase will pass all the BFMs to the components
virtual function void connect phase (uvm phase phase);

if (cfg h.is active == UVM ACTIVE) begin
driver h.driver bfm = cfg h.driver bfm;
VA

end

monitor h.monitor bfm = cfg h.monitor bfm;

if (subscriber h.size() != 0) begin
foreach (subscriber h[i]) begin
subscriber h[i].bfm = cfg h.bfm[i];

// Connect the subscribers to producers

this.connect subs(subscriber h[i]);

/]
end
end
endfunction: connect phase
endclass : generic_agent

Figure 8 Complete implementation of the generic agent.

2025

DESIGN AND VERIFICATION™

DVLCOIN

CONFERENCE AND EXHIBITION

MUNICH, GERMANY
DCTOBER 14-15, 2025

I1l. Use CASES

Dynamically Configurable Protocols in the same DUT

A DUT may need to switch between different protocol versions depending on its configuration. In traditional
approaches, this is often handled by a single agent containing large conditional branches to manage the variations,
which can make the code complex and difficult to maintain. In contrast, GAP allows different BFM classes to be
plugged into the same agent dynamically, the driving logic is simpler, readable, and maintainable.

Another common scenario is pin multiplexing, where the same physical pins are shared across multiple
protocols depending on the DUT configuration. Traditionally, this requires creating separate agents for each
supported protocol, increasing overhead and code duplication. With GAP, a single agent can be used, and only the
BFM implementation needs to be swapped when the protocol changes. The following diagram illustrates this: on
the right, the conventional approach enables or disables different agents as the DUT reconfigures its 1/O registers;
on the left, GAP uses a single agent and simply replaces the BFM whenever a reconfiguration occurs.

N e
MCU DUT 10 Env 10 Env MCU DUT
seq || 00000 | reeeeeeeoooons .
» m_concrete_bfm &
GPIO Agent }(—/ PRty
seq _
@ Applying GAP ”
15 UART Agent £
a seq s
°} . o)
E GAP Agent
; seq
SPI Agent }<—’
\ J \ J

Figure 9 Simplified environment comparison — traditional agents versus GAP single-agent design for reconfigurable 1/O.

IV. RESULT AND FINDINGS

A. Advantages

This approach offers a cleaner separation between structure and behavior, following principles similar to the
Strategy Pattern. By breaking functionality into smaller, focused classes, the resulting architecture is easier to
maintain and modify. The methodology also enables faster bring-up for small and mid-scale projects, as the modular
design reduces integration complexity.

Additionally, it is easy to extend for new protocols or variants by simply adding new adapter implementations,
without modifying the core agent logic. Finally, GAP supports both dynamic and static DUT configurability,
allowing the same framework to be used across a wide range of designs and configuration scenarios.

B. Disadvantages

While GAP offers significant flexibility, it also introduces certain trade-offs. The indirection introduced through
interface classes can make debugging more difficult without proper tooling or comprehensive logging support. To
mitigate this, teams should invest in strong transaction-level logging, standardized debug hooks, and consistent
simulation checks. These practices help improve traceability, enhance clarity, and make the overall system’s
behavior easier to understand during debugging and analysis.

For simple or one-off protocols, the extra abstraction might be unnecessary and even counterproductive,
introducing indirection where a direct implementation would suffice. In these cases, using traditional UVM agents
without additional layering is more practical and recommended to keep things simple.

2025

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

OCTOBER 14-15, 2025

Moreover, using a single, highly generic agent to support many diverse use cases—such as pipelining, reactivity,
or incorporating specialized behaviors needed only in a few blocks—can become counterproductive and lead to
significant maintenance challenges. A more sustainable solution is to define separate generic agents for each major
use case or protocol family. This approach balances generalization with clarity, prevents overcomplicating shared
agents, and enables easier maintenance and scalability as the design evolves.

C. A comparison between traditional agents and GAP
Table I. A comparison between Traditional Agents and GAP

Feature Traditional Agents GAP
qupqrts dynamic behavior Limited Fully dynamic via BFM class
injection
Code reuse across protocols One agent per protocol One agent, multiple BFMs
Testbench-DUT decoupling Partial (via virtual interfaces) Full (class-in-in-interface binding)
Follows OOP principles Virtual interfaces can limit traditional agents Fully compliant with OOP principles
Use in Single-protocol and/or | Traditional agents offer faster bring-up timein | GAP truly shines in environments where multiple
low complexity environments cases where GAP needs to be developed from related protocols are in use. For single protocol
scratch environments, the case for using GAP is not strong
Statically configurable DUTs Factory overrides can be superior to GAP. While GAP can be used here, it does not offer any
advantage as the DUT itself is statically
configurable.

V. CONCLUSION & FUTURE WORK

GAP provides a clean, modular, and flexible method for connecting UVM testbenches to DUTSs without relying
on virtual interfaces. By embedding class-based behavioral models inside interfaces, GAP enables object-oriented,
strategy-driven verification components that are easy to build, extend, and maintain. This approach is especially
well-suited for designs that support multiple interface protocols or runtime configurations. GAP simplifies agent
development, enhances reusability, and aligns closely with modern software design best practices while remaining
fully UVM-compliant.

It is important to emphasize that GAP is not intended as a replacement for the traditional UVM agent approach.
Instead, GAP offers an alternative methodology that can provide significant advantages in scenarios where greater
flexibility, reusability, or configurability is required. In many cases, traditional agents remain simpler and perfectly
suitable, and the choice between approaches should be guided by the project's specific requirements and complexity.

Future work may explore the use of automation tools for generating BFM templates and extending GAP to
cover more expansive agent use case scenarios.

REFERENCES

[1]1 D. Rich and J. Bromley, "Abstract BFMs Outshine Virtual Interfaces for Advanced SystemVerilog
Testbenches," in Design & Verification Conference, San Jose, CA, 2008.

[21 W. Yun and S. Zhang, "Deploying Parameterized Interface with UVM," in Desigh & Verification
Conference, San Jose, CA, 2013.

[3] IEEE, "IEEE Standard for SystemVerilog - Unified Hardware Design, Specification, and Verification
Language," IEEE Std 1800-2023, 2023.

[4] S. Sokorac, "SystemVerilog Interface Classes — More Useful Than You Thought," in Design & Verification
Conference, San Jose, CA, 2016.

