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Abstract— The rapid evolution of embedded systems, along with the growing variety and complexity of AI 

algorithms, necessitates a powerful hardware/software co-design methodology based on virtual prototyping 

technologies. The market offers a diverse range of simulation solutions, each with its unique technological approach 

and therefore strengths and weaknesses. Additionally, with the increasing availability of remote on-demand computing 

resources and their adaptation throughout the industry, the choice of the host infrastructure for execution opens even 

more new possibilities for operational strategies. This work explores the dichotomy between local and cloud-based 

simulation environments, focusing on the trade-offs between scalability and privacy. We discuss how the setup of the 

compute infrastructure impacts the performance of the execution and security of data involved in the process. 

Furthermore, we highlight the development workflow associated with embedded AI and the critical role of efficient 

simulations in optimizing these algorithms. With the proposed solution, we aim to sustainably improve trust in remote 

simulations and facilitate the adoption of virtual prototyping practices. 

Keywords—Virtual Prototyping; Simulation; HW/SW Co-Design; Cloud Computing; Containerization; Application 
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I. INTRODUCTION 

The advent of on-demand computing services has revolutionized how organizations approach their working 

methods and IT infrastructure. By providing scalable resources, cloud platforms enable businesses to deploy 

computation tasks flexibly and access powerful processing hardware. This shift has significant implications also 

for simulation methodologies, particularly in the context of embedded systems development, which traditionally 

relied on on-site setups derived from working methods that utilized physical hardware. As trust in simulation-based 

methods for embedded systems has increased, development based on Virtual Prototypes (VPs) has gained traction, 

gradually replacing physical hardware prototypes while still relying on local setups. To improve set up times and 

execution performance, utilizing remote compute resources is the next logical step. This transition catches up to the 

working methods in other domains, like the area of AI algorithms, where developers have ever embraced cloud 

computing more naturally, in particular for model training. 

From a technical perspective, the initial setup of simulation frameworks, which are typically intended for local 

desktop use, poses challenges when transitioning to a cloud environment. Legally, ensuring the security of protected 

intellectual property (IP) involved in the simulation - whether in the form of models or the data being processed - 

becomes critical. Commercially, if compute performance is required for extended periods, investing in local 

resources may prove more economically efficient than relying solely on cloud services. These aspects further 

emphasize the need for organizations to evaluate their simulation strategies in the light of available local and remote 

resources. 

In this paper, we extend SUNRISE [1], the scalable unified RESTful infrastructure for system evaluation, a 

framework that simplifies access to virtual prototyping methodologies. By exploring variations of infrastructure 

back-ends, we analyze the trade-offs between local and cloud-based simulation and we provide insights to enhance 

the effectiveness and trustworthiness of simulation practices in embedded systems development. 

II. RELATED WORK 

The growing importance of simulations, particularly virtual prototypes of embedded systems, is consistently 

reported by parties of the industry [2]. This trend is increasingly driven by extended usage beyond the early phases 
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of semiconductor development to the post-silicon phase [3], as in the context of digital twins and in combination 

with physical models. While the shift to cloud-based execution of simulations in hardware/software co-design was 

predicted early on [4], market-ready solutions have lagged behind. In contrast, the domain of physical simulation, 

where compute intensive computer-aided engineering (CAE) poses significant challenges, has seen a quicker 

transition to remote resources [5]. Hybrid approaches have also been proposed, using local resources for simpler 

tasks while leveraging the cloud for peak requirements, thereby highlighting the need for flexible deployment 

concepts [6]. With the new diverse infrastructure setups, the deployment of workloads has become a critical area 

of research. The execution of simulation tasks in heterogeneous environments, with containers or virtual machines 

and communication between these components are actively discussed in academia [7]. 

In our work, we deploy simulations as monolithic workloads to hybrid compute back-ends. This must not be 

confused with the Hybrid Simulation scenario, which has been the subject of various discussions in recent years. In 

contrast to our approach, these solutions split simulations either by running models on different hosts or connecting 

multiple simulators [8]. The primary goal of these methods is to speed up simulations by improving execution of a 

single simulation platform, e.g. by combining parts of a classic VP on a desktop computer with emulation on FPGAs 

for other parts [9] [10]. The Accellera Federated Simulation Standard Working Group (FSSWG) [11] focuses on 

developing methods for connecting simulations and models across different standards, which requires APIs for time 

synchronization, communication, and data exchange. 

For the technical implementation of our workload deployment on cloud resources, we leverage well-established 

solutions. Our work can be hosted on a simple container runtime or it can be integrated into larger-scale 

environments that utilize orchestration platforms like Kubernetes [12]. The setup process can be simplified through 

an Infrastructure-as-Code approach, such as Pulumi [13]. Additionally, for running containerized tasks within a 

host-agnostic workflow model, Argo Workflows is a powerful approach [14] that addresses similar challenges. 

III. THE SUNRISE FRAMEWORK 

The SUNRISE framework is designed to simplify access to simulation technologies by introducing abstractions 

that enhance user-friendliness and flexibility. To achieve a high degree of reusability, definitions are made agnostic 

to the type of simulation workload executed and independent of the underlying compute infrastructure. Therefore, 

the framework uses a structured approach to represent a generic simulation workflow, encompassing the essential 

steps: configure, build, run and analyze. 

A. Overview 

The foundation of SUNRISE is the employment of defined APIs (Application Programming Interfaces). The 

REST interface Evaluation API (EvalAPI) is the entry point for virtual prototype users. Simulation models are 

integrated through the System API (SysAPI), which is especially focused in this work. Figure 1 gives an overview 

of the components of the SUNRISE framework. 

 

Figure 1: SUNRISE framework overview 

Simulation platforms, including all required tools and dependencies, are bundled as so-called Systems and stored 

in the System Storage, which can be seen as a library or even a marketplace. The Runtime Manager is the central 

engine that keeps track of the available simulation platforms in the system storage and brings them to execution on 

a Compute Back-End through the SysAPI. The workload execution is logically realized in the form of Experiments 
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with an underlying state-machine for each, according to the generic concept of the simulation workflow. For the 

users of the framework, the Runtime Manager provides the EvalAPI, which can be connected to custom Front-

Ends. The framework is designed as a hosted service platform, allowing multiple users to utilize the infrastructure 

for different systems and run numerous experiments in parallel. 

B. Roles 

The SUNRISE methodology distinctly separates the roles of three perspectives: the simulation user, the system 

integrator and the infrastructure operator. Separating these responsibilities allows each specialist to focus on their 

specific domain, thereby enhancing overall efficiency in the virtual prototyping ecosystem. 

The user implements application-specific front-ends against the EvalAPI with no need to know about the 

technical details related to the setup of the simulation model, tools and environment. This significantly reduces the 

effort and time overhead for running simulations with a virtual prototype. The realization of a front-end can be 

rather generic, providing options to modify any configuration parameter available in the system and run through 

the execution workflow, or it can be designed specifically for a use case by only accessing a subset of parameters 

and visualizing the relevant experiment results and metrics. Separate solutions for front-ends can be used in parallel 

for multiple users with different scopes [1]. 

The system integrator is responsible for implementing the SysAPI to make simulations accessible and 

executable in a defined manner that is fully independent of the application it is used for. This role involves 

structuring the models in the specified way and setting up a container image with all runtime dependencies, allowing 

the system to be seamlessly integrated into the SUNRISE framework. As the interface is standardized and common, 

there is no need for the integrator to train users on specific simulation technologies. 

The overall hosting of the framework is managed by an operator, who is responsible for enabling containerized 

workload deployment and ensuring that the necessary computational resources are available. In this perspective, 

neither the details of the simulation tools nor the specific use case are relevant, as all components are encapsulated 

within containers. 

C. System Integration 

The SysAPI plays the key role in extending the SUNRISE framework towards enabling execution of systems 

on both on-premise and remote back-ends. A central paradigm is the independence of the API from the specific 

implementation of the functionality inside the system, to support a wide range of virtual prototyping solutions 

available on the market and even use cases beyond VPs in other domains. Note that the SysAPI for system 

integration is independent of the EvalAPI for the front-end, which is hosted by the Runtime Manager. It can also 

be used standalone and locally by the user to run simulations, but this is not within the scope of this work. 

 

Figure 2: System Components and Integration 

 

Figure 3: Action Execution (Build or Run) 

The SysAPI definition comprises a sequence of actions and a set of definitions for files. The API concept is 

interpreted in a wider sense than just a function interface or communication protocol. The specification of the API 

includes to the definition of the interface of systems and their functional encapsulation. Structurally, a system in 
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SUNRISE consists of two components (see Figure 2): A git repository that holds the System Definition (SysDef) 

JSON file and the components which are provided in source code and compiled during the build step of the 

workflow, and a Docker image that provides the runtime environment of the system, such as the simulation tool 

along with its dependencies and linked pre-compiled models. 

The SysDef file, as shown in Listing 1, contains the name and version to identify the system and the link to the 

runtime image on a Docker registry. The strings in build_command and run_command define the action that will be 

called inside the container to build and run the simulation. The remaining entries define user-configurable 

parameters that are active for the build and run actions, along with default values for each. Finally, the result objects 

that are produced by the system during the run action are declared. 

To keep track of the systems that are available, it is sufficient for the Runtime Manager to maintain a list of 

links to repositories, from each of which it can retrieve all information about the system from the included SysDef 

file. To prepare the workflow execution, when the user requests a new experiment for a system, such as ’System 

3’, the Runtime Manager clones the repository and pulls the Docker image referenced in the SysDef file. Then for 

the experiment, a Docker volume is created to transfer data into the Docker container and keep result files 

afterwards. The following directories are defined for the SysAPI: 

• ’repository/’ contains the system repository that was cloned from the git server 

• ’inputs/’ is used for additional data that is provided to the system, like file parameters (’app’ in Listing 1) 

• ’outputs/’ recommended directory for the system to provide data back to the user 

 

Listing 1: System Definition JSON (SysDef) 

 

Listing 2: System Configuration JSON (SysCfg) 

The execution of the build and the run action for the system is performed in the same way, as shown in Figure 

3. Derived from the SysDef, a System Configuration (SysCfg) JSON file is created. As shown in Listing 2, it holds 

user-modified configuration parameters to be used during the build and run actions. For parameters not present in 

the SysCfg, the default value from the SysDef will be used. The Runtime Manager copies the SysCfg file into the 

experiment volume under the ’inputs/’ directory. 

After these preparation steps, the Docker container can be started to perform an action. The working directory 

is set to the repository directory in the mounted volume (‘/sysapi/repository‘) and the action call (build_command / 

run_command) from the SysDef file is appended as command to docker run call, followed by the absolute path of 

the SysCfg JSON file. The complete command line to perform a simulation run like the Runtime Manager does, 

looks as follows: 

 

{ 

  "name": "System 3", 

  "version": "1.2", 

  "docker_image": "my_registry.com/image-b:demo", 

  "build_command": "python build.py", 

  "run_command": "source run.sh", 

  "build_parameters": { 

    "compile_args": "-O3 -Wall" 

  }, 

  "run_parameters": { 

    "run_time_ms": 1000, 

    "app": { 

      "default_value": "demo_sw/demo_app", 

      "is_file": true 

    }, 

    "simulator_args": "--verbose" 

  }, 

  "results": { 

    "signal_trace": { 

      "path": "vp/output/sim_trace.vcd", 

      "type": "vcd" 

    } 

  } 

} 

{ 

  "system": { 

    "name": "System 3", 

    "version": "1.2" 

  }, 

  "build_parameters": { 

      "compile_args": "-Os" 

  }, 

  "run_parameters": { 

    "run_time_ms": 20, 

    "app": "/sysapi/inputs/myApp.elf" 

  } 

} 

docker run --rm  -v <experiment-volume>:/sysapi \ 

                 -w /sysapi/repository \ 

                  my_registry.com/image-b:demo \ 

                  source run.sh /sysapi/inputs/syscfg.json 
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If any result files which are produced during the simulation run shall be available to the user for analysis, they 

must reside in the mounted volume, as after executing a containerized action, the container itself is removed. 

The described system integration and execution is realized fully containerized, allowing it to be performed on 

almost any host system. The storage of systems relies on common, open-source friendly and industry standard 

technologies like git and Docker. All of this enables the flexible deployment of the simulation workload, as 

described in the following chapter. 

IV. NOVEL DEPLOYMENT CONCEPTS 

Traditionally, the deployment of simulation workloads has been characterized by monolithic environments that 

are closely tied to specific infrastructure requirements, tools, and data formats. This approach is limited in terms of 

scalability and flexibility, making it challenging to adapt to evolving computational needs. 

To address these limitations, we propose to extend the SUNRISE framework for better scalability by enabling 

the invocation of simulations across a variety of infrastructure solutions. This includes leveraging on-premise 

systems, utilizing external cloud providers or adopting a hybrid approach that combines both. Each category will 

be elaborated upon in the subsequent sections, highlighting how they can be effectively utilized to split workloads 

between local and remote resources. In Figure 4 an overview of the new deployment concepts with the SUNRISE 

framework is shown. 

 

Figure 4: SUNRISE Infrastructure Deployment Concepts 

A. On-Premise Resources 

On-premise resources provide users with full control over local host systems, albeit at the price of continuous 

operational expenses. This option ensures absolute privacy for confidential data belonging to users but assumes that 

models developed by suppliers are delivered to the user and can be run in his environment. The initial 

implementation of the SUNRISE framework was based on this scenario, necessitating the hosting and maintenance 

of the infrastructure, as well as the acquisition of appropriate server machines and management of access rights. 

B. External Resources 

External resources, such as the major large scale cloud computing platforms, promise an increase in compute 

power. Nevertheless, single-core performance, which is crucial for e.g. for SystemC based virtual prototypes, is 

often even lower compared to on-premise workstation computers. The performance benefits in this context are 

primarily realized through parallelization. The SUNRISE framework utilizes a cloud provider back-end through a 

vendor agnostic wrapper based on an Infrastructure-as-Code approach [13]. 

A key benefit of on-demand services is that costs will only incur during the active simulation, as all necessary 

resources are provisioned exclusively for its duration. Upon completion, these resources are decommissioned, while 

the simulation data is retained, enabling subsequent repetitions or variations of the simulation with different 
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parameters. The dedicated resource allocation for each experiment facilitates significant performance 

improvements when multiple simulations are executed in parallel. While SUNRISE incorporates cloud resources, 

it is not designed as an orchestration system itself. Instead, our focus is on developing interfaces, workflows, and 

data formats in the context of VP simulation. 

C. Cascaded EvalAPI 

The cascaded EvalAPI represents an innovative method for integrating systems within the SUNRISE 

framework. The core idea is to use the front-end EvalAPI also in the back-end to connect another Runtime Manager, 

as an alternative solution to providing a system based on the SysAPI. It is important to highlight that the EvalAPI 

can be utilized as specified without modifications. Used as back-end API, it allows effectively abstracting and 

concealing the systems provided by vendors. In contrast to integrating systems with the SysAPI, this approach 

ensures complete isolation of the back-end implementation and the data involved from the Runtime Manager, 

guaranteeing that IP vendors maintain full privacy and control over their provided systems. 

In summary, the cascaded EvalAPI offers significant benefits for system integrator, but also introduces 

challenges: 

• Vendor Control: All system artifacts remain with the system integrator, eliminating the need to share or 

expose them, which enhances security and confidentiality. 

• Resource Utilization: The cascaded EvalAPI allows vendors to use their chosen resources for running and 

executing systems (e.g. internal servers), providing flexibility in resource management. 

• Implementation Flexibility: System vendors can select their own internal operation concepts, allowing the 

use of alternatives to Docker images and Git repositories. 

• Custom Hardware Selection: Vendors can choose custom or specialized hardware to execute their systems, 

such as FPGAs, prototyping boards or emulators, enhancing performance and adaptability. 

• Hosting Responsibility: This approach necessitates hosting a dedicated REST API server, which requires 

competencies to provide and secure an internet-facing API 

D. Hybrid Compute Infrastructure 

The previously presented concepts discussed the static deployment of experiments to a specific type of 

computation back-end. A major improvement for SUNRISE in this work, compared to initial concepts [1], is the 

support of a hybrid compute infrastructure. Experiments can be assigned to one of multiple back-end options based 

on user selection or system requirements at the time an experiment is created. The EvalAPI at the front-end is used 

the same way for any back-end, ensuring that users can interact with the systems seamlessly, regardless of the 

underlying infrastructure. 

Moreover, the hybrid compute infrastructure supports concurrency through the Runtime Manager that can 

handle multiple infrastructures simultaneously. This capability allows for the parallel execution of experiments 

across multiple back-ends, optimizing resource utilization and reducing overall processing time. The ability to 

choose a back-end not only enhances operational flexibility but also addresses privacy requirements for both users 

and system integrators. By allowing model execution to shift between internal and external resources on a per-

experiment basis, the SUNRISE framework ensures that sensitive data and models are handled in compliance with 

privacy regulations whereas uncritical experiments can benefit from a free choice of the compute back-end. 

V. CASE-STUDY: OPTIMIZING AI WORKLOADS FOR EMBEDDED HARDWARE 

Bringing inference of AI based algorithms on embedded devices is a challenging task due to the growing 

complexity and variety of neural networks and microcontroller architectures. This task is addressed by AI 

deployment toolchains [15], that compile a trained neural network to source-code that can be included in software 

projects for embedded systems, typically including optimizations to enhance execution performance and minimize 

memory footprint. 

In this case study, we use the SUNRISE framework to improve an AI deployment toolchain for specific 

Instruction Set Architectures (ISAs), including custom ISA extensions and AI accelerator IP by conducting tests 
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on virtual prototype simulations. We utilize the hybrid compute infrastructure concepts for workload distribution 

across various back-ends to perform extensive measurements of AI model layers for several architectures using an 

external cloud platform which maximizes scalability and enables rapid prototyping. To address privacy concerns, 

a dual simulation strategy is implemented. The simulation with the full AI model is executed on an on-premise 

workstation to evaluate performance in a controlled environment, while specific components are tested on novel 

AI accelerators within the secure infrastructure of the IP vendor using the cascaded EvalAPI approach. Figure 5 

shows the utilization of the hybrid compute infrastructure concept. 

 

Figure 5: Application with an Embedded AI Toolchain 

A. Approach 

The AI algorithms consist of various neural network layers, such as fully-connected and convolutional layers, 

which are initially benchmarked separately. Performance optimizations are conducted layer-by-layer for specific 

embedded processor cores, primarily targeting RISC-V architectures including specialized packed-SIMD 

instructions to accelerate neural network operations. Given the large size of the design space that is explored, the 

measurements of individual layers on the different systems are performed using cloud infrastructure. Subsequently, 

the optimizations for each layer are integrated and tested collectively across multiple neural network models in an 

on-premise infrastructure. Concurrently, evaluations are carried out on a dedicated neural network accelerator IP, 

which can compute individual parts of the neural network or specific layers. This testing is conducted within the 

infrastructure of the accelerator IP vendor, utilizing a cascaded API approach. The accelerator features vector 

extensions that are implemented close to the core, as well as an external accelerator attached to the SoC 

interconnect. 

B. Results 

To assess the overall success of the case study utilizing the SUNRISE framework with its hybrid compute 

infrastructure concept, a Key Performance Indicator (KPI) for productivity is derived which addresses the total 

simulation time across all optimization runs. The times are recorded in a full test setup with 𝑛𝑙𝑎𝑦𝑒𝑟 = 18 network 

layers, 𝑛𝑜𝑝𝑡 = 6 optimization permutations per layer and 𝑛𝑎𝑟𝑐ℎ = 9 target hardware architectures. This setup 

results in a total of 𝑛𝑙𝑎𝑦𝑒𝑟 ⋅ 𝑛𝑜𝑝𝑡 ⋅ 𝑛𝑎𝑟𝑐ℎ = 972 simulations for each variant of the AI toolchain that is tested. Each 

simulation takes approximately two minutes in average, leading to a total compute time of around 32 hours for a 

single-core execution. To enhance efficiency, we explored various parallelization options across different compute 

environments: 

• Personal Computer: Capable of running simulations with a factor of x4 parallelization. 

• Workstation Computer: Offers a higher parallelization factor of x8. 

• Cloud Service: Theoretically allows for unbounded parallelization. We used the maximum parallelization 

of all simulations resulting in a factor of x972, while being aware of the inherent limitations imposed by 

cloud service providers regarding resource allocation and scalability. 

Table 1 summarizes the total execution times across different environments, illustrating the significant impact 

of parallelization using cloud resources. A single simulation consumes around 50% more time compared to the 
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other compute environments due to resource provisioning and slower single-core performance. The results show 

that the hybrid compute infrastructure of SUNRISE significantly speeds up and simplifies the optimizations of the 

deployment of AI based algorithms on microcontroller architectures. Regarding the performance of the deployed 

AI application on the target hardware, the deployed neural network has been significantly accelerated for the new 

RISC-V targets and external accelerators, with notable improvements in memory optimization. 

Compute Environment Execution Time 

Personal Computer 16 hours 

Workstation Computer 8 hours 

Cloud Service 3 minutes 
Table 1: Execution times for different compute back-ends 

VI. CONCLUSION 

In this paper, we have presented a hybrid compute infrastructure approach based on the SUNRISE framework, 

which enables the flexible deployment of simulation workloads across a variety of compute hosts. Based on the 

requirements of users and model suppliers, local and remote back-ends were selected. Our exploration of the trade-

offs between scalability, performance and privacy has highlighted the importance of flexible infrastructure options 

in the field of virtual prototyping. The case study on optimizing AI workloads for embedded hardware illustrated 

the practical benefits of our approach, showcasing significant reductions in both bring-up time and overall 

simulation execution time. Future work will focus on refining these deployment concepts and exploring the 

utilization of specialized hardware, such as physical prototyping boards and FPGA-as-a-Service (FaaS), to expand 

the range of applications. Additionally, we will explore the integration of encrypted computing solutions to enhance 

data protection and address evolving privacy concerns. 
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