

1

Advancing Open-Source Verification: Enabling

Full Randomization in Verilator

Yilou Wang, Verification Engineer, PlanV GmbH, Munich, Germany (yilou.wang@planv.tech)

Abstract—As open-source verification gains momentum, Verilator has become a key tool for SystemVerilog-based

simulation. However, the lack of full support for constrained randomization, a cornerstone of UVM-based verification,

has remained a major limitation. This paper presents our extension to Verilator’s randomization capabilities, adding

support for aggregated data types such as structs, unions, and arrays, with both basic and constrained randomization.

We introduce an optimized, template-based architecture that handles these complex types efficiently without

compromising performance. To validate the implementation, we developed three UVM testbenches with varying

structures and complexities, all verified on QuestaSim and then tested on Verilator. The results highlight both the

current capabilities and remaining limitations of Verilator in supporting UVM environments. This work closes a

critical gap, advancing Verilator toward a fully capable open-source solution for UVM-based verification.

Keywords—Verilator; SystemVerilog; Randomization; Open-Source Verification

I. INTRODUCTION

Verilator is a widely used open-source simulator known for its high-performance, cycle-accurate simulations.

It is used by many semiconductor companies for early-stage simulation, verification, and linting. However, its

limited support for randomization, particularly for complex data types like structs, unions, and arrays, has been a

major barrier to fully supporting SystemVerilog features and, by extension, UVM-based verification.

 Randomization is essential in functional verification, enabling the generation of constrained stimulus to

uncover design edge cases. Commercial simulators like QuestaSim, support full randomization for all data types,

whereas Verilator only supports primitive types, which restricts its use in advanced and comprehensive verification

environments.

As open-source verification gains wider traction, efforts to close this feature gap have become increasingly

relevant. This paper presents our work to extend Verilator’s randomization capabilities, enabling support for

aggregated data types in both basic and constrained randomization cases. These improvements bring Verilator

significantly closer to becoming a comprehensive open-source solution for UVM verification. All contributions

have been fully upstreamed to the official Verilator repository and are publicly available.

II. BACKGROUND AND RELATED WORK

A. General Randomization Process

In SystemVerilog, randomization is essential for generating diverse input stimuli during functional verification.

It comes in two forms: basic and constrained. The process begins by declaring variables as rand/randc, making

them eligible for randomization process.

In basic randomization, values are assigned directly from a random number generator (RNG), without enforcing

any restrictions. Constrained randomization, on the other hand, introduces user-defined constraints that shape the

range of legal values. These constraints, often expressed as inline conditions, are passed along with the variables to

a constraint solver. The solver computes a solution space that satisfies all specified constraints, and the RNG picks

values from this space. If no valid solution exists, the randomization fails.

Figure 1 illustrates the full process, covering both basic and constrained flows. It outlines the key steps from

variable declaration to value assignment and includes pseudocode to clarify the implementation.

2

B. Existing Efforts for Randomization in Verilator

Since 2020, Antmicro and other contributors have made significant progress in improving Verilator’s

randomization features. Key developments include:

• Internal RNG: Verilator now includes a random number generator for randomize method [1].

• CRAVE for Constrained Randomization: An external library, CRAVE was integrated to support simple

constrained randomization [2].

• SMT-LIB2 Solver: The adoption of the SMT-LIB2 solver replaces CRAVE and enables more advanced

constraint solving and better performance [3].

C. Limitations

 Despite these advancements, Verilator’s basic and constrained randomization remain limited to primitive types

and does not support aggregated data types, like all kinds of arrays, unions, and structs.

III. EXISTING RANDOMIZATION SUPPORT IN VERILATOR

To provide context for our work on aggregated data types, we begin by summarizing the existing randomization

mechanisms in Verilator. Although these features are not part of our contributions, they form the essential

foundation for the extensions described in the next section.

A. Basic Randomization for Primitive Types

Verilator includes a built-in RNG that enables basic randomization of rand and randc variables. For primitive

types such as integers and enums, the process is straightforward: the tool determines the variable’s bit width, masks

a long random value to match that width, and assigns the result.

B. Constrained Randomization for Primitive Types

Verilator supports constrained randomization through integration with SMT-LIB2-compatible solvers. During

the Verilate phase [4], Verilator detects rand variables and associated constraint blocks in the SystemVerilog

source. It then translates these constraints into SMT-LIB2 expressions and emits them via dedicated internal

functions, write_var() for variable declaration and hard() for constraints. These are embedded into the

generated C++ code as part of the simulation model.

In the subsequent Simulate phase, the VlRandomizer class calls the solver, evaluates the SMT-LIB2

expressions, and retrieves a satisfiable solution if one exists. The resulting values are then assigned back to the

corresponding variables. The implementation differs between basic and constrained randomization.

Figure 2 summarizes the two flows across both Verilate and Simulate phases and includes the pseudocode to

clarify the process. This mechanism currently supports primitive types and forms the foundation for more advanced

randomization features in Verilator. Building upon this infrastructure, our work extends support to aggregate data

types and enhance the overall randomization capability.

Figure 1. General Randomization Process

3

IV. OUR CONTRIBUTION: AGGREGATED DATA TYPE SUPPORT

Building on the foundation described in Section III, we extended Verilator’s randomization capability to support

complex data structures including arrays, unions, structs, and their nested forms, to enable full randomization in

Verilator. This involved both functional extensions and performance optimizations across basic and constrained

cases.

A. Basic Randomization for Aggregated Types

Aggregated types such as arrays and structs can be nested to arbitrary depth and often involve multi-dimensional

layouts. To support basic randomization, we implemented a recursive traversal mechanism. For each variable

marked rand, Verilator traverses the type-hierarchy, identifying structs, arrays, or unions, and recursively

processes each field until it reaches a primitive type, where RNG can be applied, as shown in Figure 3.

A significant challenge in this approach is controlling the size of the generated Abstract Syntax Tree (AST).

Verilator compiles SystemVerilog source code in multiple stages. It starts by building an internal representation of

the code, the AST, and then applies a sequence of transformation passes, such as type resolution, width inference,

and randomization handling. These steps prepare the design for C++ code generation.

The problem arises because randomization is handled in an early phase of this pipeline. Fully unrolling deeply

nested aggregated types at that point can lead to a substantial increase in AST size. This bloated tree consumes

more memory and slows down every subsequent pass in the pipeline.

Figure 2. Implementation Flow of Basic vs. Constrained Randomization in Verilator

Figure 3. Flow of Basic Randomization for All Data Types

4

To mitigate this issue, we introduced a foreach node in the AST to abstract array iteration. Instead of explicitly

unrolling every element in a multi-dimensional array up front, we insert a single foreach node that acts like a loop

abstraction. It captures the traversal logic and stores metadata such as index variables and array bounds.

By doing this, we delay the actual element-wise expansion until much later in the compilation flow. This not

only keeps the AST small in the early stages but also reduces redundant computation. In practice, this change

significantly improves Verilator's compile-time performance for designs with large or complex data structures.

B. Constrained Randomization for Arrays

Unpacked arrays in SystemVerilog may be fixed-sized (arr[3][4]), dynamic (arr[]), queues (arr[$]), or

associative (arr["key"]). These types introduce two primary challenges for constrained randomization: unknown

sizes at elaboration time, and complex nested indexing with variable depths.

To address this, we implemented a recursive function record_arr_table() that traverses the array structure

and collects metadata such as indices and bit widths. This information is flattened into a dictionary, mapping each

element to a unique key. For example, a variable, declared as rand bit [7:0] arr[2][3][4], produces 24

elements in total, and the element arr[1][1][2] is mapped to arr_dict[18] with a linear index in the

dictionary. This allows constant-time access to any element without re-traversing the hierarchy.

Once the array is recorded, each constrained element is passed to the solver using QF_ABV logic. The full array

is declared, and individual elements are accessed via nested select expressions. If the solver returns a satisfiable

model, store operations are used to extract and assign the solution values. This process is repeated across all

marked elements, enabling element-wise constraint solving in a structured and efficient manner. The overall

simulation-time flow is illustrated in Figure 4. It shows how VlRandomizer performs dictionary construction,

generates SMT-LIB2 expressions, interacts with the solver, and assigns the resulting values to unpacked array

elements.

Associative arrays present a unique challenge: their keys may have arbitrary bit widths, including types such as

bit[5:0], shortint, or even string. Facing this variability, one natural solution is to use larger containers to

accommodate wide keys. However, uniformly enlarging the storage width would waste resources, especially since

most keys in practice are still int or other small-width types. Therefore, we retain a 32-bit chunk format for internal

storage to preserve performance for the common case and introduced a chunk-based encoding scheme, as shown

in Figure 5. Keys are first examined for their bit width. If the width is less than or equal to 32 bits, such as in

shortint or int, the key is stored directly in a single 32-bit chunk. For wider keys, like a custom logic [79:0]

or long string-based indices, the key is split into multiple 32-bit chunks. Alongside the chunks, we record the

number of chunks associated with each key to retain information about the original key structure. For example, an

80-bit key is encoded into three chunks: two full 32-bit values and one 16-bit remainder. This chunked encoding

scheme supports efficient indexing and allows seamless translation into SMT-LIB2 expressions under QF_ABV

logic, while retaining compatibility with existing array handling infrastructure.

Figure 4. Constrained Randomization for Unpacked Arrays in Simulate Phase

5

C. Constrained Randomization for Structs

Structs in SystemVerilog fall into two categories: packed and unpacked. Packed structs are treated as contiguous

bitvectors, allowing them to be randomized like primitive types using QF_BV logic in SMT-LIB2. Verilator can

directly generate constraints for these variables and solve them as a whole.

Unpacked structs, however, are more complex. Unlike arrays, which benefit from QF_ABV logic for element-

wise access, SMT-LIB2 offers no dedicated bitvector-level logic extension for hierarchical named fields in structs.

As such, there is no straightforward way to “extend” the existing logic to support structs in the same manner. This

absence has been a key obstacle to implementing constrained randomization for structs in Verilator.

Despite this difference, the underlying idea is the same: both arrays and structs are aggregates. For arrays, our

approach is to decompose them into elements, track their dimensions and indices, and pass each element

individually to the solver. Applying the same logic to structs, we decompose them into individual members (fields).

The only difference is that instead of using index-based access as in arrays, struct fields are accessed using the dot

(.) operator, which allows us to preserve hierarchical naming. Table I summarizes how we handle different

aggregate types in relation to SMT-LIB2 capabilities in Verilator:

Table I. Comparison of aggregate types in SystemVerilog and their SMT-LIB2 handling

Category
Packed Struct /

Packed Array
Unpacked Array Unpacked Struct

Behavior
Continuous

bitvector
Indexed collection
with dimensions

Loosely grouped named members
(fields)

SMT-LIB2

Support
QF_BV

QF_BV + array logic

(QF_ABV)

No dedicated bitvector-level logic

extension

Randomization
Treated as a single

variable

Element-level access

via select/store

Needs member-level flattening into

separate variables

Our Solution Direct pass to solver
Flatten, track indices,

element-wise solve

Decompose via dot (.) operator-based

naming, register each member

To support unpacked structs in this context, we introduced a flattening strategy during the Verilate phase. Structs

are recursively traversed, and each randomizable member is extracted and assigned a dot-connected hierarchical

name (e.g., struct_a.mem1.a). These flattened names are used to individually emit SMT-LIB2 variable

declarations and constraints.

An important distinction with structs, unlike other data types mentioned earlier, is that the IEEE 1800-2023

standard [5] allows two styles of randomization:

• If the whole struct is marked rand, all its members are randomized.

• If only some members are individually marked rand, only those are considered in randomization process.

Figure 5. Chunked Encoding Scheme for Associative array’s Index

6

This flexibility is essential for real-world verification environments. As shown in the left part of Figure 6, struct

data_s is flattened into data_s.a and data_s.b, while the member c is ignored because it is not marked with

the rand qualifier. Originally, Verilator had only coarse-grained detection for rand annotations. To support

unpacked structs with finer granularity, we introduced two helper member functions:

• markConstrainedRand() – to collect all fields that should participate in constraint solving.

• isConstrainedRand() – to query whether a particular field should be randomized.

Together, these functions enable a structured and hierarchical decomposition of unpacked structs. The

pseudocode summarizes this process during the Verilate phase, as shown in the right part of Figure 6. Each marked

field is individually registered using write_var(), preserving its hierarchy via dot-connected naming. Constraints

are translated to SMT-LIB2 and passed via hard().

This flattening strategy treats each struct field as an independent variable while maintaining its structural context.

As a result, Verilator seamlessly supports unpacked structs in a solver-compatible way.

D. Constrained Randomization for Nested Aggregated Data Types

After establishing support for structs and arrays, we extended our framework to handle nested combinations of

these types. Two common patterns were addressed, struct with array fields and array of structs.

For cases where a struct contains array fields, our existing logic remains largely applicable. During the Verilate

phase, the struct is decomposed using dot-connected naming, and the array member is passed as a complete unit.

Relevant metadata, such as dimensions and widths, is extracted during this step to ensure correct downstream

handling. In the Simulate phase, the array field is randomized using the same mechanisms developed for standalone

arrays. This approach allows seamless integration of array types within struct definitions without introducing

additional complexity.

More complexity arises when arrays contain structs as elements. Since struct decomposition occurs during

Verilate phase, but arrays are processed during Simulate phase, a timing mismatch exists: the struct cannot be

flattened before the array is known. To resolve this, we shifted the decomposition of Array’s struct elements into

the Simulate phase. During runtime, we detect whether an array element is a struct, and if so, dynamically traverse

and register its fields. Each field is assigned a dot-connected name like arr[1][3].a and arr[1][3].b. These

fields are then individually registered and randomized.

To support this mechanism, we implemented a new recursive utility that mirrors our earlier

record_arr_table() function. This new handler, record_struct_arr(), ensures proper traversal and

registration of all struct members, even in multi-dimensional or mixed-type array contexts. As a result, Verilator

Figure 6. Handling Structs in Verilator's Constrained Randomization Flow

7

now supports constrained randomization for deeply nested aggregated data types, covering both directions of

nesting.

V. RESULTS: THREE UVM TESTBENCHES RUN IN VERILATOR

With the support for full randomization in Verilator, advanced open-source verification has taken another solid

step forward. To demonstrate the practical impact of our work, in this section we evaluate Verilator’s capability to

support UVM-based verification using three representative UVM testbenches with varying structures and

complexity.

To better illustrate the evaluation setup, we briefly describe the structure and intent of each testbench. Although

each testbench follows standard UVM methodology, they were deliberately chosen to reflect different levels of

integration complexity and randomization usage.

uvm_test_1, inspired by Qiang Zhang’s UVM Combat [6], adopts a basic layered architecture. It includes one

active agent (with sequencer, driver, and monitor) and one passive agent (monitor only), interfacing with the DUT

through two virtual interfaces (vif_in, vif_out). A virtual sequence inside the uvm_test component drives the

constrained random stimulus via uvm_do(). This test verifies the full flow of constrained randomization and

successfully passes both the Verilate and Simulate phases.

uvm_test_2, following the structure from Ray Salemi’s The UVM Primer [7], introduces a bus functional

model (BFM), implemented as a virtual interface that serves as a software–hardware bridge. Both the driver and

monitor call BFM functions to interact with the DUT. While this is a common pattern in SystemVerilog UVM,

Verilator currently lacks full support for dynamically generated virtual interface handles, causing the test to fail

during Verilate phase.

uvm_test_cvv, loosely modeled after the OpenHW Group’s core-v-verif repository [8], resembles a more

advanced industrial-style testbench. A key feature is the use of a configuration class (cfg), implemented as a

uvm_object with multiple rand fields controlling agent behavior, coverage collection, logging, and more. These

objects are randomized at the top level, typically in the uvm_test, and propagated through the UVM factory and

configuration database down to the env, agents, and subcomponents. This modular, reusable configuration pattern

is widely adopted in real-world UVM environments for flexibility and scalability. While the testbench passes

Verilate phase, it fails during Simulate phase due to Verilator’s incomplete support for global randomization state,

inherited class constraints, and context-sensitive configuration flows. These limitations surfaced when attempting

to randomize class objects at the test level and apply the results consistently across multiple components. Such

flows are essential for scalable, reusable testbenches and represent an important direction for future Verilator

development.

Table II summarizes the results and highlights the current boundaries of Verilator’s UVM support. All three

testbenches were first validated in QuestaSim to ensure full compliance with SystemVerilog and UVM standards.

The complete testbenches and supporting files have been made publicly available [9] to encourage reproducibility

and further exploration by the community.

Table II. Running UVM Testbenches with Verilator

Testbench Verilate Phase Simulate Phase Remarks

uvm_test_1 Pass Pass Minimal structure, fully supported

uvm_test_2 Fail N/A Uses BFM handles, unsupported

uvm_test_cvv Pass Fail Advanced UVM features, runtime issues

VI. CONCLUSION AND FUTURE DIRECTIONS

This work extends Verilator to support full randomization, including both basic and constrained, for aggregated

data types. A templated framework ensures high performance while handling complex structures, and all changes

8

have been upstreamed via multiple pull requests. The complete implementation, along with all related tests and

examples, is publicly available as part of the open-source Verilator repository [10] and the PlanV verification suite

[9].

Experiments with three UVM testbenches demonstrate that Verilator can now successfully execute simple

UVM environments, particularly those relying on randomization. Key UVM constructs, such as uvm_do(), are

now fully functional with complex randomized types, including structs, arrays, and their nested forms.

By enabling full randomization and extending support beyond primitive types to arrays and structs, this work

fills a critical gap in Verilator and significantly advances the capabilities of open-source verification. However, full

UVM support remains a longer-term goal. Results with three UVM testbenches also show that many important

features, such as virtual interface handling, global randomization state, and class-based constraint inheritance, are

still limited or incomplete, and remain open for future improvement.

Our contribution lays the groundwork by expanding the scope of data types that can participate in randomization,

but achieving full UVM compatibility will require continued contributions from the open-source community and

sustained maintenance. Reaching that milestone would represent a major leap forward in enabling advanced open-

source functional verification workflows.

REFERENCES

[1] Verilator. (2020). randomize() class method. GitHub. https://github.com/verilator/verilator/pull/2607.

[2] Antmicro. (2024). Introducing constrained randomization in Verilator. Antmicro Website.

https://antmicro.com/blog/2024/03/introducing-constrained-randomization-in-verilator/.

[3] Verilator. (2023). Constrained randomization with popen and external solvers. GitHub. https://github.com/verilator/verilator/pull/4947.

[4] PlanV. (2024). Enabling UVM Support in Verilator Series — Basic Randomization Support for Aggregate data types, PlanV Website.

https://planv.tech/2024/11/07/enabling-uvm-support-in-verilator-series-basic-randomization-support-for-aggregate-data-types/.

[5] "IEEE Standard for SystemVerilog--Unified Hardware Design, Specification, and Verification Language," in IEEE Std 1800-2023

(Revision of IEEE Std 1800-2017) , vol., no., pp.1-1354, 28 Feb. 2024, doi: 10.1109/IEEESTD.2024.10458102.

[6] Qiang Zhang, UVM Combat, Machinery Industry Press, 2014.

[7] R. Salemi, The Uvm Primer: A Step-By-Step Introduction to the Universal Verification Methodology, Boston Light Press, 2013.

[8] OpenHW Group. (2024). OpenHW CORE-V Verification Strategy, OpenHW Group Website.

 https://docs.openhwgroup.org/projects/core-v-verif/en/latest/index.html#openhw-group-core-v-verification-strategy.

[9] PlanV. PlanV_Verilator_Feature_Tests, GitHub Repository. https://github.com/planvtech/PlanV_Verilator_Feature_Test, accessed June

2025.

[10] Verilator. Verilator master branch, GitHub Repository, https://github.com/verilator/verilator , accessed June 2025.

https://github.com/verilator/verilator/pull/2607
https://antmicro.com/blog/2024/03/introducing-constrained-randomization-in-verilator/
https://github.com/verilator/verilator/pull/4947
https://planv.tech/2024/11/07/enabling-uvm-support-in-verilator-series-basic-randomization-support-for-aggregate-data-types/
https://docs.openhwgroup.org/projects/core-v-verif/en/latest/index.html#openhw-group-core-v-verification-strategy
https://github.com/planvtech/PlanV_Verilator_Feature_Test
https://github.com/verilator/verilator

