
 

1 

 

A Novel Configurable UVM Architecture To 

Unlock 1.6T Ethernet Verification
 

Sameh El-Ashry, Cadence Design Systems, Cork, Ireland (sameha@cadence.com) 

 

Abstract—Verification of high-speed Ethernet controllers poses significant challenges due to the increasing 

complexity of designs that must support a wide range of configurations and data rates, from 10Mb to 1.6T. This paper 

presents a novel, fully automated, and configurable UVM-based verification environment tailored for a generic 

Ethernet controller RTL. The RTL design supports various features sets and configurations, including optional Ultra 

Ethernet Consortium (UEC) layers, variable SerDes widths, and diverse data rates, all driven by RTL defines generated 

via a builder tool. To address testbench customization overhead and avoid manual rework for each RTL variant, a 

Python-based flow was developed to parse RTL defines and dynamically generate a configuration-specific UVM top-

level using Jinja2 templates. This produces a testbench-matching Device Under Test (DUT), supporting full-controller 

and PCS-only modes, with parameterized interface connections and module instantiations. The UVM components—

agents, environments, and scoreboards are implemented using a flexible, parameter-driven architecture, enabling 

rapid adaptation to new RTL builds. Integrated with a Makefile-based flow, the methodology supports one-command 

generation of both DUT and testbench. Results show a significant reduction in bring-up time, full reuse of verification 

components, and successful deployment across multiple DUT variants with zero manual edits.                

 

Keywords—Ethernet; UVM; SystemVerilog; Constrained-Random; Jinja2; Python. 

I.  INTRODUCTION 

As data bandwidth demands grow exponentially in cloud computing, AI accelerators, and high- performance 

networking, Ethernet technology continues to evolve beyond traditional limits. Modern Ethernet controllers are 

expected to support a wide spectrum of speeds, ranging from legacy 10Mb up to emerging 1.6T rates, while 

remaining flexible enough to adapt to diverse application requirements. This introduces significant complexity in 

both the design and verification of such controllers [1]. 

An Ethernet controller typically integrates multiple layers, including Application FIFO (AF), UEC layers [2], 

the Media Access Control (MAC), Physical Coding Sublayer (PCS), Forward Error Correction (FEC) or Reed 

Solomon Forward Error Correction (RS-FEC), and Physical Medium Attachment (PMA). Depending on the use 

case, these layers may be enabled or bypassed. Additionally, configurations may vary in the number of Serdes 

lanes, data bus widths, protocol features, and interface standards. As a result, the RTL is implemented as a generic, 

highly configurable codebase, with final design instances generated via a builder tool that sets configuration-

specific defines. 

From a verification perspective, this variability poses a serious challenge: testbenches must either be reworked 

for every new configuration or built to adapt dynamically without sacrificing maintainability or accuracy. The 

industry trend is moving toward reusable and parameterized UVM environments, but the top-level testbench 

remains one of the least automated and most configuration-sensitive components [3]. 

Building a robust UVM environment is an essential step in verifying any IP, as it enables the development of 

complex, randomized, and top-level test scenarios that are often portable across projects. In industry practice, it is 

common for Design Verification (DV) teams to apply a mix of methodologies, including formal verification, UVM-

based block-level verification, and even Python or C-based directed tests, depending on the verification scope and 

IP complexity. Regardless of the strategy, the ultimate objective remains consistent: to implement a comprehensive 

test plan and close functional and code coverage. Given the resource constraints that most DV teams face, there is 

a strong push toward automation. Automating repetitive or configuration-dependent infrastructure-such as top-level 

UVM environments, not only saves significant effort but also frees up engineers to focus on test development, 

debug, and coverage analysis, all of which are critical to timely and high-quality tapeouts. 



 

2 

 

This paper addresses this gap by proposing a novel flow that automates the generation of UVM testbench top 

level based on design-time configuration data, specifically tailored for high-speed Ethernet controllers supporting 

up to 1.6T. 

II. RELATED WORK 

The growing complexity of high-speed interfaces such as Ethernet, PCIe, and other advanced interconnects has 

led to increased demand for scalable and reusable UVM-based verification environments. Traditional UVM 

testbenches often require manual configurations or duplication to accommodate design variants, especially in 

parameter rich designs like Ethernet controllers. 

Approaches such as those presented in [4], propose using templates to generate consistent verification views 

and test structures from JSON-based platform descriptions. While effective at a system level, they do not 

specifically address high-speed Ethernet IP challenges such as lane-to-VIP mapping or full/partial DUT 

instantiation logic. 

The Cadence Ethernet 1.6T Verification IP (VIP) offers a solution for protocol compliance across various data 

rates. While it provides flexibility in verification, it primarily focuses on protocol adherence and does not address 

automated testbench generation based on dynamic RTL configurations [5]. 

A study proposed in [6] discusses methodologies for verifying Ethernet subsystems across different platforms. 

It emphasizes the importance of adaptable verification strategies in heterogeneous environments. However, it does 

not delve into the automation of testbench generation driven by RTL parameters. 

Tools like the Verification Template Engine (VTE) utilize Jinja2 templates to streamline the creation of UVM 

components. These tools enhance reusability but often lack integration with real-time RTL metadata, necessitating 

manual intervention for each configuration [7]. 

The authors in [8] discuss the use of Portable Stimulus Standard (PSS) in conjunction with UVM to verify a 

highly configurable, high-speed ethernet communication bridge. The approach emphasizes increasing verification 

efficiency by avoiding scenario flooding and maintaining tight control over the verification space. 

Previous work in [9] presents an approach to reduce testbench implementation efforts by automatically 

generating UVM environments for SystemC models. The methodology enables assertion-based, coverage-driven, 

and functional verification, streamlining the verification process for SystemC designs. Importantly, it does not 

address the challenges of highly configurable RTL designs, where verification architecture must adapt dynamically 

based on pre-processor `define macros. 

Few publications tackle the problem of automatically generating UVM testbenches driven by real-time RTL 

defines, particularly for complex configurations like full-controller versus PCS-only builds or varying SerDes 

topologies. To our knowledge, the methodology presented in this paper is among the first to apply a Python and 

Jinja2 flow for dynamically rendering UVM testbench top levels that reflect RTL defined structure, interfaces, and 

layer inclusion/exclusion in the context of high-speed Ethernet verification. 

III. PROPOSED DYNAMIC UVM ARCHITECTURE GENERATION METHODOLOGY 

The verification strategy is centered around building a fully configurable and automated UVM environment 

that adapts to any RTL configuration generated by the designer’s builder tool. The methodology bridges the gap 

between dynamically generated RTL and a reusable, scalable verification environment by introducing an automated 

scripting flow that configures the UVM top level based on RTL defines as shown in Figure 1. 

A. Design Side 

On the design side, the DUT is a configurable Ethernet controller designed to support a range of operational 

speeds and deployment scenarios. Depending on the implementation, the design hierarchy may include layers such 

as MAC, PCS, FEC, PMA, and other optional protocol or control layers. Based on product requirements, automated 



 

3 

 

build tools can generate RTL for various configurations, enabling flexible support for different Ethernet standards 

and topologies.  

These configurations may differ in: 

• Inclusion or exclusion of UEC and MAC layers (e.g., PCS-only builds) 

• Supported Serdes widths and lane counts. 

• Ethernet data rates. 

• AF data width and interface structure, such as number of AF ports. 

• MII data width for PCS-only configuration and the number of MII ports. 

Each configuration is captured through RTL define macros and exported in a dedicated header file. 

 

Figure 1: End-to-end automation flow for generating configuration specific UVM environment 

B. Verification Side 

      On the verification side, the key innovation lies in an automated flow consisting of the following steps: 

1. An initial (default_cfgs.json) file is added as dynamic context data (JSON) and forms a unified, accurate 

description of the current DUT configurations based on the RTL defines with default values. 

2. A python script (Defines_parser.py) parses the RTL defines and generate (updated_cfgs.json) with the 

updated configurations based on RTL defines. The parser outputs an updated JSON configuration file, 

which reflects all parameters derived from the DUT build (e.g. number of SerDes lanes, presence of UEC 

layer, AF width, MII width, etc.) as shown in Figure 2. 

3. A Jinja2- based rendering engine uses the adapted JSON file to generate all UVM top-level files, 

including: 

• DUT instantiation and bind SV assertions modules with multiple instantiations.  

• VIP and interface connections. 

• Clock/reset generators. 

• Lane-to-VIP mapping logic the templates are fully generic, and the rendering process produces a clean, 

configuration-specific top-level module tailored to the DUT. 

4. The UVM components (agents, monitors, drivers, sequences, and environment) are written using 

parameterized classes and factory overrides. This ensures that the core verification logic remains the same 

across configurations, minimizing code duplication. 

5. As part of the automated UVM infrastructure setup, the Register Abstraction Layer (RAL) model is also 

generated independently using Reg-Verifier tool. The register description, typically written in IP-XACT 

or a vendor-specific format, is parsed by Reg-Verifier to produce a complete SystemVerilog UVM RAL 

model, including register classes, block hierarchies, and access policies. This model is integrated into the 



 

4 

 

UVM testbench and connected to the DUT’s bus interface, allowing for seamless read/write access, 

register tests, register coverage, and backdoor manipulation during constrained-random sequences. The 

RAL model generation is typically part of pre-simulation setup flow and complements the top-level 

environment generation, ensuring full coverage of both datapath and control logic across all DUT 

configurations. 

6. A Makefile target automates the entire process, from RTL configuration parsing to generation of the final 

UVM top-level, enabling a one-command bring-up for any DUT variant. 

 

This methodology not only simplifies the process of adapting the testbench to new DUT configurations but also 

decouples the top-level connectivity logic from the environment layer, increasing modularity, and maintainability. 

 

 

Figure 2: Pseudo-code: updating JSON config based on Verilog defines. 

C. Templating UVM Components with Configuration Input 

      The process of templating the UVM design in this work is not limited to replacing static code fragments with 

Jinja2 placeholders. Instead, it involves a two-step coupled method: 

1. Extracting structural parameters from RTL defines 

    A Python-based parser scans the RTL define file generated by the design builder tool. These values 

represent the fixed configuration of the DUT (e.g., MII port widths). For instance, in a PCS_only 

configuration, the builder may adjust the MII interface width from a default value to a higher value based 

on performance requirements. This information is automatically translated into an intermediate JSON 

format (updated_cfgs.json). Figure 3 illustrated this change, highlighting how the RTL configuration is 

captured in JSON form.   

 

2. Rendering configuration-specific UVM files 

    Instead of hard-coded UVM code, the intermediate JSON (updated_cfgs.json) is then fed into the 

Jinja2 engine, which renders only those UVM files whose structure depends directly on RTL parameters-

primarily the top-level module, interface definitions, and connectivity wrappers. For example, a parsed 

change in MII interface width is automatically propagated into the generated UVM interface and top-

level module, as illustrated in Figure 3.   

Function parse_verilog_defines(file): 

 Initialize empty dictionary ‘defines’ 

 For each line in file: 

  IF line starts with `define: 

   Extract macro name and optional value 

   If no value provided: 

    Store as: defines[name] = True 

   Else: 

                 Convert value to int if possible, otherwise keep as string 

    Store as: defines[name] = Value 

 Return defines 

 

Function update_json_file(json_file, defines): 

 Load existing JSON config into dictionary ‘config’ 

 

 For each define in ‘defines’: 

  If key exists in config: 

   Override config[key] = defines[key] 

 

 Generate new file name by appending “_updated.json” 

 Save ‘config’ to this new file 

 

Main: 

 Parse command-line arguments: Verilog file, json file 

 Defines = parse_verilog_defines (Verilog file) 

 Update_json_file (json file, defines)  



 

5 

 

 
Figure 3: Verification flow of auto-generated UVM snippet showing MII interface width. 

Not all files in the verification environment require templating. UVM components such agents, drivers, 

monitors, and scoreboards are implemented in a fully parameterized style, allowing them to adapt automatically to 

configuration changes without regeneration. This hybrid approach ensures maximum reuse of UVM code while 

reserving templates only for files where structural variations are necessary. 

D. Classification of DUT Configuration Parameters 

      A key advantage of the proposed methodology lies in the significant time saving and reliability it offers during 

UVM top-level generation. The automation flow, implemented using a combination of Python parsing the RTL 

defines and Jinja2 templating, executes in just a few seconds-making the runtime virtually negligible compared to 

traditional manual implementation. This efficiency becomes especially valuable when considering the wide range 

of RTL configurations that impact the UVM top-level structure and connectivity. 

 

      In a manual flow, each configuration variant would require a unique top-level UVM testbench. These variants 

may include different PMA SerDes interface widths, integration with a SerDes VIP model when operating in active 

mode, passive loopback scenarios where the DUT transmit path is externally looped back to its receive path, PCS-

only configurations with varying numbers of MII ports, and full-controller configurations supporting multiple AF 

ports. Each of these variations necessitates changes in interface connections, instance parameterization, and port 

mappings—leading to substantial manual rework. 

 

     In practice, implementing and debugging the top-level testbench manually for these configurations can take one 

or two days per variant, due to human errors, syntax mismatches, or misaligned connectivity with VIP interfaces. 

With at least ten distinct configuration scenarios verified in our flow, this translates to approximately twenty 

engineering days of effort for top-level setup alone. Through automation, this task has been reduced to a matter of 



 

6 

 

seconds, with zero manual intervention. This not only accelerates testbench generation but also eliminates human 

error, improves consistency, and enables rapid adaptation to future RTL changes or configuration additions.  

E. Applicability Beyond Ethernet IPs 

      While the presented methodology is demonstrated using a highly configurable Ethernet controller design, the 

core automation principles are generic and can be readily applied to other IP types with similar structural variability. 

The key enabler of this flexibility is decoupling of DUT configuration from testbench architecture, achieved 

through the use of a defines-driven metadata model and a templated UVM generator powered by Python and Jinja2. 

This approach is applicable to any IP block where: 

• The RTL is built using parameterization or defines (e.g., bus widths, protocol layers, number of ports, 

etc.). 

• The IP can be delivered in multiple configurations, such as standalone or integrated modes. 

• Interface connections, instantiations, or bindings at the UVM top level change with configuration. 

 Although certain IPs implement their own automation strategies, this methodology remains broadly reusable 

across: 

• Custom memory controllers (with varying data widths, burst sizes, or ECC enablement). 

• PCIe Controller (e.g., Configurable as Root Port or Endpoint with varying lane width, speed and data path 

width). 

• SoC peripherals (UART, SPI, I2C with parameterized FIFO depths, number of instances, etc.). 

• DMA engines (supporting multiple channels, memory-mapped, and streaming modes). 

• AI/ML accelerators (with changing compute array sizes, interfaces, or hierarchy depth). 

In each case, the same automation process can be reused with minimal template adjustments: parse RTL defines, 

extract relevant parameters, and render the corresponding UVM top-level structure automatically. This creates a 

consistent and scalable verification workflow, reduce duplication, and ensures that the verification environment 

always remains in sync with the RTL configuration, regardless of the IP domain. 

By generalizing this solution, teams can build a library of reusable, parameterized UVM templates that adapt to a 

wide range of design types, significantly reducing the verification ramp-up effort across new IPs. 

IV. TOP-LEVEL UVM ARCHITECTURE 

     The generated UVM top-level architecture for the full Ethernet controller configuration reflects a comprehensive 

and modular structure tailored for high configurability and coverage closure. The DUT in this step includes six 

major layers: AF, UEC, MAC, PCS, RS-FEC, and PMA. Each layer is interfaced with corresponding verification 

components through a mix of UVM Verification Components (UVCs) in active or passive mode, SystemVerilog 

models, and VIPs, all orchestrated by the generated top-level environment as shown in Figure 4. 

A. UVM Environment Structure 

    On the transmit side, an AF interface is connected to a UVM AF agent, which drives traffic into the DUT, 

emulating real-world application input behavior. The PMA output interface is first connected to a SerDes 

SystemVerilog model, which models the serialization behavior before interfacing with the active Ethernet VIP. 

This setup closely mimics the actual physical connection, ensuring protocol-level validation from logical layers 

down to serialized bitstreams. 

 

    A passive VIP agent is also instantiated and looped back with the active agent VIP to validate correct 

synchronization and locking behavior. This loopback mechanism is crucial to ensure that the active VIP maintains 

protocol lock in the presence of both clean and corrupted traffic. Additionally, the architecture supports a fully 

external loopback mode, where the DUT’s TX path is internally looped back to its RX path, bypassing the VIP, 

which is set to passive monitoring mode. This allows testing of DUT internal loopback logic and path latency 

without external traffic injection. 

 

    Two independent scoreboards are implemented to verify transmit (TX) and receive (RX) paths. The TX 

scoreboard checks the correctness of packet framing, timing, and integrity as data leaves the DUT. The RX 

scoreboard validates complete end-to-end correctness, including packet reconstruction after passing through all 

DUT layers and VIPs or through the internal loopback. 

 



 

7 

 

 
 

Figure 4: Parameterized UVM top level environment 

    The environment supports positive and negative test scenarios. Using advanced callback mechanisms in the VIP, 

the testbench can inject controlled protocol violations such as Start Frame Delimiter (SFD) errors or Alignment 

Marker (AM) corruptions to evaluate the DUT’s resilience and error-handling logic. 

 

    Furthermore, the environment includes support of latency measurement, allowing for monitoring of TX latency, 

RX latency, and round-trip latency, depending on the test scenario. These metrics are essential for performance 

validation and can be dynamically enabled per test configuration. 

 

   The environment is built entirely through the automated template-rendering flow described earlier, which 

generates the top-level UVM file, interface bindings, and structural connectivity based on the specific DUT 

configuration. While the top-level structure is fully auto-generated, all UVM components, such as agents, monitors, 

drivers, and scoreboards are implemented using a highly parameterized architecture. This design allows each 

component to adapt dynamically to any DUT configuration (e.g., number of SerDes lanes, interface widths, or 

presence of specific blocks), even though the components themselves are not regenerated per configuration. This 

hybrid approach ensures scalability and flexibility across a broad set of use cases, without the need to rewrite or 

duplicate verification components. 

 

    In configurations where the DUT is compiled as PCS-only, excluding the AF, MAC, and UEC layers, the same 

UVM environment is reused with minimal adjustments. Instead of connecting to the AF interface and AF agent, 

the testbench connects a UVM MII agent to the MII interface of the DUT. This allows packetized Ethernet traffic 

to be injected directly at the PCS layer. Stimulus is designed with parameterized sequences and virtual sequences; 

although not auto-generated from templates, adaptation to configuration is achieved through runtime parameters. 

The majority of the UVM sequences developed for the full controller, including randomized stimulus, latency 

measurement, and error injection remain applicable and are reused via a virtual sequencer that coordinates between 

AF-based and MII-based sequences depending on the configuration. This reuse significantly reduces duplication, 

while maintaining consistent test objectives across DUT variants. The environment’s architecture ensures that 

whether the DUT is a full controller or PCS-only variant, the verification flow remains robust, automated, and 

efficient.    

B. Case Study Highlights 

• Case Study 1: Full Controller Configuration. 

 

A verification task involved a full-controller DUT configured for 400G Ethernet, with two ethernet ports, MAC, 

PCS, and PMA layers, and a wide SerDes interface. The verification goal was to test complex traffic sequences, 

error conditions (e.g., Start Frame Delimiter corruption), and measure TX/RX latency. Using the automated flow, 

the UVM top-level was generated with accurate interface wiring between the AF agent, the SerDes model, and 



 

8 

 

the active/passive VIP instances. All functional sequences were reused without modification. Error injection 

scenarios were applied via VIP callbacks. Latency measurement features built into the monitor and scoreboard 

components validated performance. The entire bring-up took minutes, compared to the three to four days typically 

required for manual setup. 

 

• Case Study 2: PCS-Only Configuration. 

 

This configuration targeted a 100G PCS-only DUT variant with two MII ports, no AF or MAC layer, and featuring 

a wide PMA interface. The UVM environment automatically switched to connect MII interfaces and instantiated 

MII agents in place of AF. The same environment supported external loopback, where DUT TX output was routed 

back to its RX input, and the VIP agent operated in passive mode. Sequences from the full-controller verification 

were reused through the virtual sequencer, and coverage was collected from both MII ports. This scenario was 

validated and regression-tested within a single working day, compared to the typical two to three days of manual 

effort required to adapt a manually built environment. 

 

• Case Study 3: UEC Congestion-based Flow Control (CbFC) Verification. 

 

An advanced testbench scenario involved a full-stack DUT configured for 800G with UEC CbFC enabled. The 

design included multiple AF ports and protocol layers such as MAC, PCS, and PMA. The UVM flow 

automatically generated a top-level with the correct AF, PMA, and UEC bindings and instantiated the VIP in 

active mode. The scenario required stress-testing CbFC behavior under varying congestion and latency conditions. 

Using VIP callbacks, dynamic pause frame sequences were injected to simulate congestion scenarios. The 

scoreboard compared UEC pause response latency and verified frame drops and retry behavior. The flexibility of 

the environment allowed rapid iteration and parameter tuning without any rework to the testbench. This complex 

scenario, previously estimated to take a full week, was set up and executed within two days. 

V. RESULTS  

A. Results and Metrics 

• As shown in Table I, the manually written UVM top-level file typically spans 800-1000 lines per 

configuration. The automated solution replaces this with ~150 lines or reusable Jinja2 template code, 

reducing code duplication by over 85%. 

• A single Jinja2 template supports over 10 distinct DUT configurations, compared to 10+ separate hand-

coded files in the manual flow. 

• Manual top-level implementation resulted in an average of 5 to 7 syntax or connectivity errors per 

configuration. The automated approach reduced this to zero. 

• Bring up time dropped from 2-3 days to less than one hour for new configurations. 

• Initial regressions are prone to errors on new configurations due to setup mismatch. With the automated 

flow, all regressions passed UVM build phase without interface errors. 

• The same automated testbench generation framework was reused across rates 10Mb, 100G….to 1.6T 

projects with the same template structure.  

• Instead of tracking multiple static top-level files in version control, only a single set of templates and a 

configuration file are maintained, reducing review scope by over 70%. 

Table I. Results: Manual vs. Automated Flow 

Metric        Manual Flow Proposed Automated 

Flow 

Top-level testbench creation time (per config) 1–2 days seconds 

Human errors in port/interface connections High (frequent debug cycles) Negligible 

Effort to switch between full and PCS-only 

mode 

Manual rework Zero rework 

Number of supported DUT configurations 1–2 feasible manually 10+ handled with ease 

Reuse of sequences between configurations Partial High, via virtual sequencer 

Required testbench maintenance High (per variant) Centralized and minimal 

Parameterized UVM agent/scoreboard support Manual setup per config Pre-built and reusable 

 



 

9 

 

B. Challenges of the Proposed Methodology 

    While the proposed methodology delivers substantial gains in scalability, automation, and configuration 

accuracy, a few implementation challenges merit discussion. The flow is optimized for compile-time RTL 

configurations driven by defines and static JSON context, which may not fully capture dynamic behavior, but all 

dynamic DUT configurations will be handled using the UVM testbench configuration implemented by the 

developer. As the number and complexity of supported configurations increase, the Jinja2 template base may 

require ongoing maintenance, and errors coming from outdated templates or misaligned defines could impact 

reliability. Additionally, the current flow lacks deep RTL semantic parsing, which might lead to missed wiring 

errors if a new block is added in RTL but not reflected in the defines file. Generated files might be difficult to 

debug, especially when failures are due to incorrect template logic. Users may find it harder to trace a UVM 

connection issue back to the source define or template block.   

    

   It is important to note that while the automation flow reduces the per-configuration bring-up time from several 

days to seconds, there is an up-front investment in developing and validating the templates. In practice, this effort 

is limited to a one-time activity during environment bring-up and was completed within approximately two to 

three days for the controller. Once validated, the same templates were reused across all subsequent DUT 

configurations without modification. Therefore, while the error-free automation results from the fact that 

templates themselves are tested, this testing effort is orders of magnitude smaller than testing each independent 

UVM instantiation manually.    

 

VI. CONCLUSION 

This paper presents a novel and fully automated methodology for generating configuration specific UVM 

testbenches tailored to highly parameterized Ethernet controller RTL. By integrating a Python-based parser with 

Jinja2 templating system, the proposed flow dynamically adapts to RTL build outputs, including defines and 

contextual metadata, to render a complete UVM top-level environment that matches the DUT configuration. The 

approach supports a wide range of design variants from full controller to PCS only modes with different Serdes 

widths, AF widths, and optional protocol layers, all while maintaining a reusable and scalable UVM component 

architecture. By decoupling top-level connectivity from the environment layer and driving testbench generation 

directly from design configuration file, this methodology reduces bring-up time, minimizes human error, and 

maximizes reusability across projects. The proposed flow has been successfully deployed on multiple DUT 

configurations, demonstrating its robustness, flexibility, and suitability for verifying state-of-the-art 1.6T Ethernet 

IP.  

REFERENCES 

[1] "IEEE Standard for Ethernet," in IEEE Std 802.3-2022 (Revision of IEEE Std 802.3-2018) , vol., no., pp.1-7025, 29 July 2022, doi: 

10.1109/IEEESTD.2022.9844436. 

[2] UEC Credit-Based Flow Control Specification, v0.5, Ultra Ethernet Consortium. [Online]. Available: https://ultraethernet.org/. 

[3] El-Ashry, Sameh, et al. "On error injection for NoC platforms: a UVM-based generic verification environment." IEEE Transactions on 

Computer-Aided Design of Integrated Circuits and Systems 39.5 (2019): 1137-1150. 

[4] Alberto Allara, Rinaldo Franco, " Web Template Mechanisms in SOC Verification," in Proceedings of Design and Verification 

Conference (DVCON), Munich, Germany, 2015. 

[5] Ethernet Accelerated VIP User Guide”. 2025. [Online]. Available: https://support.cadence.com/. 

[6] Tijana Misic, “SoC Verification of Ethernet Subsystem in Multi-Platform Environments,” CDNLive, Silicon Valley, USA, 2023. 

[Online]. Available: https://www.thevtool.com/wp-content/uploads/2023/09/SoC_Verification_of_Ethernet_Subsystem_in_Multi-

Platform_Environments_CDNLive-2023.pdf. 

[7] https://github.com/fvutils/vte. 

[8] Vintila, Andrei, et al. "Portable Stimulus Driven SystemVerilog/UVM verification environment for the verification of a high-capacity 

Ethernet communication endpoint." Proceedings of the 2018 DVCON Conference and Exhibition Europe, Munich, Germany. 2018. 

[9] Mefenza, Michael, Franck Yonga, and Christophe Bobda. "Automatic uvm environment generation for assertion-based and functional 

verification of systemc designs." 2014 15th international microprocessor test and verification workshop. IEEE, 2014. 

 

 

https://ultraethernet.org/
https://support.cadence.com/
https://www.thevtool.com/wp-content/uploads/2023/09/SoC_Verification_of_Ethernet_Subsystem_in_Multi-Platform_Environments_CDNLive-2023.pdf
https://www.thevtool.com/wp-content/uploads/2023/09/SoC_Verification_of_Ethernet_Subsystem_in_Multi-Platform_Environments_CDNLive-2023.pdf

