
Exploring Token-Based Strategies to Enhance
Data Security and Memory Management in

PCIe Devices

Gopi Srinivas Deepala, Lakshya Miglani, and Sastry Puranapanda
Silicon Interfaces, Mumbai, India

Silicon Interfaces®

Abstract
• This presentation demonstrates a solution for the work-around

for race condition due to call to the configuration address and
data I/O ports CF8 & CFC resolved using higher memory
locations in PCIe

• The issues on data integrity and security is further
compounded when multiple Cores in multi-Core environment
are connected to the Bus0 of the Root Complex and may
attempt to access them at the same time!

• By using PSS memory management using Address
Space/Regions as well as Byte Addressability, Resources and
Traits, it is possible to successfully address data integrity and
security issues for PCIe

2024/9/10 2

Challenges
• In a multi-threading system where

multiple CPUs interact with a PCIe
endpoint

• The Data Send process can pose
the risk of a Race Condition.

• This simultaneous access from
multiple CPUs or Cores can
compromise the integrity of the
data being written to the
configuration space, necessitating
measures to prevent conflicts and
ensure proper synchronization
during/post the enumeration and
other communication processes.

2024/9/10 3

Safeguard device data

• To prevent such issues and safeguard device data, we
leveraged the features of PSS v2.0
• using Address Space, Address Regions and Traits

• allocation of the Address Space region (Contiguous Byte Addressable) for TYPE0
or TYPE1 Configuration memory space (256 bytes to 4Kbytes extended
configuration space) is achieved using Byte Addressability.

• Like replicate and repeat, constraint for all and many more
constructs it is possible to implement access to CF8 and
CFC addresses and data signals when multiple devices
access CPU system memory for data threading, and use
parameterized traits, resource sharing and locking to ensure
proper synchronization and preventing race conditions

2024/9/10 4

PSS 2.0 Advancements
With the release of PSS 2.0, significant advancements have been
made in addressing these complexities.

• PSS 2.0 introduces enhanced mechanisms for defining test intents,
addressing concerns regarding address relationships and memory
overlap more effectively, like Address Space, Region and Byte
Addressability.

• Additionally, PSS 2.0 leverages improved scalability, maintainability,
and overall robustness in managing concurrent access to PCIe
devices by using PSS 1.0 share and lock resources also helped.

• While PSS 1.0a laid the groundwork for addressing portability and
reusability concerns, PSS 2.0 builds upon this foundation by offering
more comprehensive solutions to challenges related to data integrity
(by using parameterized Traits), conflicts, and scalability in
contemporary computing environments.

2024/9/10 5

Generic Address Space
• The introduction of the Address Space

concepts, which represents a uniquely
addressable space and comprises
individual atoms.

• Address Space, Regions, and Atoms
serve as the fundamental components of
memory modeling within the PSS
framework.

• Within these allocable address spaces,
individual addresses are treated as
atoms.

• These features centered on memory
modeling

2024/9/10 6

Address Regions
//=======================

//ADD SPACE DECLARATION

//=======================

//This is the base type for all address space regions

extend struct addr_region_base_s {

array<bit[31:0],16> pcie_addr_region_t0_cs_head;
array<bit[31:0],48> pcie_addr_region_t0_cs_cam;
array<bit[31:0],960> pcie_addr_region_t0_cs_ext_cam;};

//The addr_region_s type represents a region in contiguous address
space

struct empty_addr_region_s{};

//================

// ADDRESS REGION

//================

struct addr_region_s <struct TRAIT : addr_trait_s =
empty_addr_trait_s> : addr_region_base_s {

TRAIT pcie_cs_id_trait; };

2024/9/10 7

• This allocation process utilizes
allocation traits, which PSS tools
leverage to define regions.

• When a PCIe device aims to
access and operate the traits
within the Configuration Space
region, it must assert a claim for
allocation.

• Subsequently, data can be
written to these registers using
generic operations facilitated
through address handles.

Address Space Defined
// Built-in library component for contiguous address space

component contiguous_addr_space_c <struct TRAIT : addr_trait_s =

empty_addr_trait_s> : addr_space_base_c {

 // add_region is the function of contiguous address space components

which is used to add allocatable address space regions to a contiguous

address space.

function addr_handle_t add_region(addr_region_s <TRAIT> r);

function addr_handle_t add_nonallocatable_region(addr_region_s <> r);

bool byte_addressable = true; };

 // Transparent address spaces are used to enable transparent claims—

constraining and otherwise operating on concrete address values on the

solve platform

component transparent_addr_space_c

contiguous_addr_space_c<TRAIT> {};

component pcie_ip_c { struct pcie_struct { rand int a; };

action pcie_op { rand pcie_struct s; };

 }

2024/9/10 8

• Within the contiguous and transparent
address spaces the address handles are
employed to claim matching traits

• In PCIe endpoint devices, the allocation
of address space for Contiguous Byte
Addressable regions in TYPE0 or TYPE1
Configuration space is enabled through
Byte Addressability.

• Configuration Spaces possessing traits
that align with the constraints specified
by the claim become eligible candidates
for matching regions.

Address Space claim
/*=======================

ADDRESS SPACE CLAIM USING TRAITS

=======================*/

struct addr_claim_s<mem_trait_s> {};

struct addr_claim_s{}

extend struct addr_claim_s{

 TRAIT trait_claim;

}

buffer data_buff {

 rand addr_claim_s mem_seg;

}

action pcie_op {

 rand pcie_struct s;

 };

 }

struct transparent_addr_claim_s <struct TRAIT : addr_trait_s = empty_addr_trait_s> :

addr_claim_s<TRAIT> {

 }

struct transparent_addr_region_s <struct TRAIT : addr_trait_s = empty_addr_trait_s> :

addr_region_s<TRAIT> {

 }

2024/9/10 9

• A claim specifies a trait, mapping it
to Configuration Spaces within the
address space.

• Data can be written to these
registers using generic operations
facilitated through address
handles.

• Constraint the Address Space
claims to get the Configuration
Space from the Base Address
claim within a Contiguous Address
Space.

Traits for Data Integrity
• To prevent data loss and

maintain data integrity we have
leverage the concept of
parameterized Traits.

• These traits are utilized to identify
Configuration Spaces, enabling
check to see the correct
Dev/Function.

2024/9/10 10

//=========================

//STRUCT TRAITS DECLARATION
//==========================

struct TRAIT{};

extend struct TRAIT

{

bit[15:0] device_id;

bit[15:0] vendor_id;

bit[15:0] subsystem_device_id;
bit[15:0] subsystem_vendor_id;

};

Resource Declaration
• The critical elements such as ports

0xCF8 and 0xCFC are associated
with multiple devices accessing CPU
memory for data threading.

• By addressing a solution, we
implemented utilizing the lock and
share property of the PSS data flow
object as a resource.

• This ensures proper synchronization
by facilitating resource sharing and
locking, thereby preventing race
conditions.

2024/9/10 11

//=======================

//RESOURCE DECLARATION

//=======================

resource pcie_addr_port_r{

 bit[31:0] CF8;

};

resource pcie_data_port_R{

 bit[31:0] CFC;

};

Data Security & Memory Management
component make_handle_c{

 function addr_handle_t make_handle_from_claim
(addr_claim_base_s claim, bit[64] offset = 0);

 function void write32(addr_handle_t hndl, bit[32]
data);

 action create_handle_a{

 exec body {

 bit[64] offset = 16;

 bit[32] data = 128;

 comp.addr_handle_t =
make_handle_from_claim(claim, offset);

 comp.write32(hndl, data);

 }

 }

 action trait_move:trait{}

 }

2024/9/10 12

• The PCIe address space
management by providing essential
functions for handle creation and
data writing.

• Action "create_handle_a", which
initiates a handle creation process
based on a claim and offset.

• By encapsulating these operations,
the component simplifies PCIe
device communication and
configuration, boosting system
efficiency and reliability

Conclusion

• This research presentation presents a robust solution for
mitigating race conditions

• Preventing data loss (security) in the PCIe endpoint
configuration space/other data transmission.

• By leveraging PSS v2.0, it harmonizes memory management
across various IPs.

• Improves PCIe Configuration Space modeling using Address
Space, facilitating seamless communication.

2024/9/10 13

2024/9/10 14

THANK YOU

	Slide 1: Exploring Token-Based Strategies to Enhance Data Security and Memory Management in PCIe Devices
	Slide 2: Abstract
	Slide 3: Challenges
	Slide 4: Safeguard device data
	Slide 5: PSS 2.0 Advancements
	Slide 6: Generic Address Space
	Slide 7: Address Regions
	Slide 8: Address Space Defined
	Slide 9: Address Space claim
	Slide 10: Traits for Data Integrity
	Slide 11: Resource Declaration
	Slide 12: Data Security & Memory Management
	Slide 13: Conclusion
	Slide 14

