
Christoph Hazott, Daniel Große
Institute for Complex Systems (ICS)

Web: jku.at/ics

Email: christoph.hazott@jku.at

DSA Monitoring Framework
for HW/SW Partitioning of
Application Kernels leveraging VPs

2

Agenda

• Motivation, Domain Specific Architectures & Background on VPs

• Ingredients of Proposed approach

• Solution:

◦ Host-to-SW Memory Hierarchy

◦ Proposed Framework

• Experiments

• Conclusion

3

Motivation and DSAs

• Moore’s Law
◦ Still driving electronic industry

◦ Permanent innovation on all levels necessary to keep speed

• Domain Specific Architectures (DSAs)
◦ Fall into class of heterogeneous architectures

◦ Integrate specific HW accelerators extracted

from SW to meet system performance requirements

◦ HW/SW partitioning through application kernels
▪ Hotspot functions invoked frequently in loops

HW

SW

Display

Application

Kernel

4

Background: Virtual Prototypes

A Virtual Prototype (VP) is an

executable SW model of a HW system

that runs on a host computer.

A VP is binary compatible to the

physical HW.

• Industrial-proven, widely used by semiconductor global players

• VPs are modeled in SystemC
◦ C++ class library

◦ IEEE1666-2011 Standard

◦ Transaction Level Modeling (TLM) for abstraction

5

Background: Why Virtual Prototypes?

Traditional

Development Flow

Parallel

HW and SW Development

based on VP

Source: Synopsys

6

Profiling with Virtual Prototypes?

Traditional

Development Flow

Source: Synopsys

• Classical Profiling
• HW and SW separately

• Joined in later processing of result

• Changes to source code or binary

• Proposed Approach

• Taking external perspective that

encompasses HW and SW, facilitating

a holistic view as unified system

7

Ingredients of Proposed Approach

• Framework leveraging observability of VPs

• Monitoring via runtime code manipulation of VP binary running on host
◦ Maintain high simulation performance

• Specialized monitors for SW kernels
◦ Low data amount

• Requirements:
◦ No modification of SW running on VP

◦ No modification of VP source

• Idea:
◦ Understand Host-to-SW memory hierarchy

8

Solution: Host-to-SW Memory Hierarchy

Host HW SW

registersHost

…
PCHost

…

registersHW

…
PCHW

…

imemHost

…
load_word

…

dmemHost

…
PCHW

…

0x373ec

0xf33c88

iss.c

switch(op){

case ADDI:

rd = rs1 + imm;

break;

...

case SW: {

addr = rs1 + imm;

mem->store_word(

addr,

rs2);

}

break;

case LW: {

addr = rs1 + imm;

rd = mem->load_word(

addr);

}

break;

...

}

imemHW

…
image[i]

…

dmemHW

…
…

…

canny.c

for(int i = 1; i < cols; i++){

deltaX[i] =

image[i] –

image[i-1];

}

…

movq -2064(%rbp), %rdi

movl %eax, -3188(%rbp)

…

…

lw a0, -16(s0)

lw a2, -12(s0)

…

9

Proposed Framework

Framework

Configuration

Source Code

Translator
Address Table

DSA Monitor

DynamoRIO

HW SW

Monitoring

Dataset
DSA Analyzer

<<Debug Information>>

<<Debug Information & Source Code>>

10

Source Code Translator

• From configuration

• To address table

11

DynamoRIO

• DynamoRIO as runtime code manipulation system
◦ Supports code transformation while executing

◦ Exports interface for building additional tools

◦ Powerful instruction manipulation library

• Design Goals
◦ Efficient

▪ Near-native performance

◦ Transparent
▪ Match native behavior

◦ Comprehensive
▪ Control every instruction, in any application

◦ Customizable
▪ Adapt to satisfy disparate tool needs

Src: https://github.com/DynamoRIO/dynamorio/releases/download/release_6_1_0/DynamoRIO-tutorial-mar2016.pdf

12

DSA Monitor

• Instrumenting for monitoring PCHW

• Instrumenting for monitoring HW memory access

13

DSA Analyzer

• Data structure containing monitoring results used for analysis

14

Experiments: Canny Edge Detection

• SW: Canny Edge Detection
◦ Gaussian smoothing

◦ Computing derivatives

◦ Computing magnitude of gradient

◦ Performing non-maximal suppression

◦ Applying hysteresis

15

SW Application Kernel: Excerpts from Canny SW

• Nested SW kernels implementing gaussian filter for smoothing image rows

16

RISC-V

• RISC-V: Open and royalty-free ISA

• Focus on simplicity and modularity

• Base Integer Instruction Set
◦ Mandatory

◦ 32, 64 and 128 bit configurations

◦ ~40 Instructions

• Extensions:
◦ M .. Multiply/Divide

◦ A .. Atomic

◦ F, D, Q .. Floating Point (Single, Double, Quad)

◦ C .. Compressed

17

RISC-V VP++

• Open source on GitHub
◦ https://github.com/ics-jku/riscv-vp-plusplus

• Key features:
◦ SystemC TLM-2.0

◦ Bare metal configurations, including:
▪ SiFive HiFive1 - FE310

▪ GD32VF103VBT6 microcontroller (Nuclei N205) including UI

◦ Linux RV32 and RV64, single and quad-core VPs (SiFive FE540)

◦ Support for RISC-V "V" Vector Extension (RVV) version 1.0

◦ Full integration of GUI-VP, which enables simulation of interactive graphical Linux applications

◦ Based on RISC-V VP introduced in 2018*

• More information: http://www.systemc-verification.org

*Vladimir Herdt, Daniel Große, Hoang M. Le, and Rolf Drechsler.

Extensible and configurable RISC-V based virtual prototype. In FDL, 2018.

https://github.com/ics-jku/riscv-vp-plusplus
http://www.systemc-verification.org/

18

Results

• Costs and Scalability of Monitoring

◦ Results scale according to the number of pixels

◦ Starting from a resolution of ~88x72px,

overhead factor stabilizes at ~1.85

◦ Results stabilize at 88x72px

19

HW/SW Partitioning: Simulation Time

20

HW/SW Partitioning: Memory Accesses

21

HW/SW Partitioning: Acceleration

• Performance improved by a factor of ~8.67

22

Conclusions

• Novel monitoring approach
◦ Host-to-SW memory hierarchy

◦ Leveraging dynamic binary instrumentation to insert monitors

◦ Low simulation overhead

◦ Low data amount

• Framework
◦ User interaction via source code

◦ Graphs for HW/SW interactions

Christoph Hazott, Daniel Große
Institute for Complex Systems (ICS)

Web: jku.at/ics

Email: christoph.hazott@jku.at

DSA Monitoring Framework
for HW/SW Partitioning of
Application Kernels leveraging VPs

