
Compact AI accelerator for
embedded applications

Alexey Shchekin, Solutions Engineer
Codasip s.r.o.

Embedded AI and custom HW challenges

2022/06/23 2

Artificial
Intelligence

Machine
Learning

Deep
Learning

Embedded AI: artificial
intelligence at the device level Requirements & challenges

Strong tendency to off-load cloud
computing and run some simple
AI tasks on-device:

• Autonomy: minimize data
transfer and related energy
consumption

• Security: finish sensitive
data processing locally

• Modular device design with
embedded AI SoCs

• Reduced latency for critical
IoT/IIoT infrastructure

3 cornerstones of AI:

• Model & Algorithm
=> frameworks: Tensorflow,
PyTorch, Caffe, etc

• Data, lots of data
=> open datasets: Kaggle etc

• Computing power
=> custom-designed
accelerators that soften
embedded resource
constraints (small memory,
limited ISA, lack of DSP)

Profiling TFLite Image classification model

2022/06/23 3

• Image convolution (>89%) has a
major impact on overall performance

Convolution accelerator structure

2022/06/23 4

• Standard ISA, 2x2 convolution:
• lw: 4, mul: 4, add: 3, + cycles for pipeline stall

• Convolution accelerator with FIFO:
• Pipelined loads, 1-cycle access to all (p0,p1,p2,p3)
• Parallel multiplications

CodAL language
Processor description at the high abstraction level

5

CodAL - processor description at the high level

2022/06/23 6

Semantics Instruction Set Resources μArch(s)

Instruction
Accurate (IA)

Cycle
Accurate (CA)

CodAL Description

/* Multiply and accumulate: semantics
dst += src1 * src2 */

element i_mac {
use reg as dst, src1, src2;
assembly { “mac” dst “,” src1 “,” src2 };
binary { OP_MAC dst src1 src2 0:bit[9] };
semantics {

rf[dst] += rf[src1] * rf[src2];
};

};

• CodAL is a C/C++ - like language that
is focused on modeling a rich set of
processor capabilities

• Covers both architecture and
microarchitecture

• Instructions are described in the form
of “elements” that capture syntax,
binary encoding and implementation

• CodAL description could be converted
to RTL and used for C/C++ Compiler
generation with cycle-accurate
simulator and profiler

CodAL compactness

2022/06/23 7

module rf_gpr #(parameter xlen = 64, parameter size = 32,
 parameter resetval = 32’b0, localparam aw = $clog2(size))
(input wire clk, input wire rst, input wire w0_we,
 input wire [aw-1:0] w0_wa, input wire [xlen-1:0] w0_d,
 input wire r0_re, input wire [aw-1:0] r0_ra,
 output wire [xlen-1:0] r0_q, input wire r1_re,
 input wire [aw-1:0] r1_ra, output wire [xlen-1:0] r1_q);

reg [xlen-1:0] mem[size-1:0];
integer i;

always @(posedge clk or negedge rst)
if (~rst) begin
 for (i = 0; i < size; i = i + 1)
 mem[i] <= resetval;
end else if (w0_we) begin
 mem[w0_wa] <= w0_d;
end

assign r0_q = r0_re ? mem[r0_ra] : (xlen)'(0);
assign r1_q = r1_re ? mem[r1_ra] : (xlen)'(0);

endmodule

arch register_file bit[32] rf_gpr
{
 dataport r0, r1 {flag = R;};
 dataport w0 {flag = W;};
 size = 32;
 reset = true;
 default = 0;
};

CodAL provides many constructs facilitating standard
processor features design:
• Register files
• Memories (cache, TCM)
• On-chip debugger, trace, etc
Many tasks are automated when using CodAL.
• Automatic modules interconnect, decoder generation

CodAL-based processor design flow

2022/06/23 8

• CodAL is not limited to RISC-V, but it is where one can benefit from open-source
ISA that RISC-V provides and customization capabilities that CodAL supports

Compact Convolution
Accelerator
CodAL implementation

9

CONV accelerator in <200 lines of CodAL code

2022/06/23 10

push_conv instruction pushes image pixel from src to
fifo[], calculates the convolution result and stores it to the
dst address

Single instruction gets the convolution result (2x2 window)

// src - image pixel data, dst - address to store the result

// Image edge condition handling

// ALU*

// Assembly format
// Instruction binary pattern

// Storage and destination
address increment

// Push current pixel data to FIFO, pointer increment

element comprises convolution instruction assembly, binary
and semantics in dedicated sections

fifo[] is a hidden register file,
load and store addresses are incremented automatically,
thanks to fifo_counter and out_counter that contain the
number of input image pixels loaded and output image
pixels processed

2022/06/23 11

PPA improvement for a single convolution

- Convolution accelerator fits 200 lines of CodAL code
- Image convolution runtime reduced down to 10.7% of

the initial value (10x10 image, 3x3 conv window)
- Average energy consumption is reduced to 25.9%
- Si area cost +52.9%
- The runtime gain is expected to further scale with the

image and convolution window sizes

Direct 3x3 convolution with standard instruction set Using custom instructions for convolution acceleration

25
.9

%
+5

2.
9%

10
.7

%

Reference (100%)

• Compact accelerator fitting 200 lines of
code has been shown

• MNIST benchmark runtime has been
reduced to 17.4%, energy consumption - to
32.8%

• Si area cost is +52.9% to that of
RV32-IMCB core

2022/06/23 12

PPA improvement for image classification
Codasip L31 Codasip L31 +

CONV accelerator

Performance,
CPU cycles 16,481,715 2,868,991 (17.4%)

Power,
arb. units 100% 32.8%

Area,
arb. units 100% 153%

32
.8

%

+5
2.

9%

17
.4

%

Reference (100%)

Conclusions

2022/06/23 13

• The ability to accelerate image processing AI applications on embedded devices by 2D image
convolution boosting has been shown

• Runtime reduced to 17.4%
• Power consumption lowered to 32.8%
• 52.9% area overhead (RV32-IMCB Codasip L31 core)

• Benefits of high-level CodAL language for compact AI accelerator design:

• Fast design space exploration

• Less than 200 lines of convolution accelerator code

• SDK support of custom instructions

