(2025

DESIGN AND VERIFICATION ™

DVGCGON

CONFERENCE AND EXHIBITION

MUNICH, GERMANY
OCTOBER 14-15, 2025

Next-Gen Verification with Python:
Driving Hardware Tests with Pytest and Cocotb

Tymoteusz Btazejczyk, Abhiroop Bhowmik, Ronahi Halitoglu,
Shrinivas Naik, Reinier Bodemeijer

Qblox B.V

SYSTEMS INITIATIVE

History and change of verif infrastructure (reinier)

Hard selling points (shri) - Done but can add more points to it
Analytic info about verif eng shortage (ronahi)

Slide number for each slide - Done

Less text (all)
More support material (images) (abhi)

Time for Slides + Time for demo + time for questions

2025

DESIGN AND VERIFICATION

Verification trends

- Difficulty in getting experienced
SV/UVM verification engineers

- Difficulty onboarding to custom
verification environment

- Wish to migrate smoothly to
something easier?

- Something scalable and open source

4.7%

Increase in design
engineers
since 2012

8.5%

Increase in verification

engineers
since 2012

2

o

2 40

2

o

e

2 3.0

I

o

o
20
1.0
0.0

2012 2018 2024

Mean Peak Number of Engineers on FPGA Projects

m Design Engineers

Source : “2024 Siemens EDA and Wilson Research Group FPGA functional verification
trend report,” White Paper, Siemens EDA, 2024

2025

DESIGN AND VERIFICATION

DVCON

CONFERENCE AND EXHIBITION

EUROPE 3

Verification trends

Difficulty in getting experienced
SV/UVM verification engineers
Difficulty onboarding to custom
verification environment

Wish to migrate smoothly to
something easier?

Something scalable and open source

We have an open-source solution!

2025

DESIGN AND VERIFICATION

Python adoption? &

50%

40%
2 s
o Source : “2024 Siemens EDA and Wilson Research
o Group FPGA functional verification trend report,”
a White Paper, Siemens EDA, 2024
c
o 20%
]
@
o

10%

0%
Verilog System C SystemVerilog CIC++ Accellera PSS Python OTHER
Testbench

FPGA Verification Language Adoption
=2016 ®=2020 w2024

Rapid adoption of python in testbenches in recent years

2025

DESIGN AND VERIFICATION

DVCON

CONFERENCE AND EXHIBITION 5

Why Python? @ S i

pytest
* Productivity boost matpl: tlib ﬁ’:’l NumPy
* Easytolearn |
e Faster reading, writing and debug pg’[hon
: Package
e Ecosystem A’ index

 Huge collection of libraries, tools, frameworks

 Development
e Code auto-completion integrated with editor (Jedi)

https://pypi.org/
https://jedi.readthedocs.io/en/latest/

Why Python? @

* Modern development ecosystem:
 Dependency management (pip, uv)

§SPH|HX

Python Documentation Generator

 Documentation generation (Sphinx)

e Test frameworks (pytest)
pytest

e Code quality: formatters, linters , auto-completion

WRITE LESS, VERIFY MORE !

https://pip.pypa.io/en/stable/
https://docs.astral.sh/uv/
https://www.sphinx-doc.org/en/master/
https://docs.pytest.org/en/stable/

W h y P yt e St ? pytest tests/test_basic_example.py: :test_square[1]

tests/test_basic_example.py: :test_square[2]
tests/test_basic_example.py: :test_square[3]

* Test framework
- Parametrization: One test, multiple Sl
runs, reduce code redundancy S
- Fixtures: set up test prerequisites,
reuse, teardown .
. Parallelization: distribute test rogect crested = creste_projectld
across cores
e Test management (discovery, running, filtering)

- Easy test discovery with “test " functions (no explicit adding of tests)

- Filter tests using strings, regex

2025

DESIGN AND VERIFICATION

Why Pytest? pyZSt

* Concise syntax of writing tests, easy to use
* \Very well documented with good
community support

e Easy to extend with plugin framework:

* Rich free collection of existing external plugins
(~1641)
e Suit yourself, write own plugin! (integration)

* Integration with IDE and text editors
(running tests)

https://docs.pytest.org/en/stable/index.html
https://docs.pytest.org/en/stable/reference/plugin_list.html
https://docs.pytest.org/en/stable/how-to/writing_plugins.html

Why Cocotb?

* Using python and pytest with all
benefits in HDL verification targeting
FPGA and ASIC

e Portability - running the same tests
with different HDL simulators
(open-source and proprietary)

* (Open-source, maturity, community,
well documented

50%

40%

0%

w
=]
=2

Design Projects
N
o

-
o
=2

‘ocotb

Accellera UVM OSVVM cocotb None/Other
FPGA Methodologies and Testbench Base-Class Libraries
uY2016 uY2020 Y2024
Source : “2024 Siemens EDA and Wilson Research Group FPGA functional verification trend report,” White Paper, Siemens EDA, 2024

2075

DESIGN AND VERIFICATION

https://docs.cocotb.org/en/stable/

Cons? Any? =
PYUVM ’

Y

/
(I TTTTIITITIIIITIIY
o e

 Workin Progress

Cons? Any?

4

e Runtime performance B[
* Slower (without HDL simulator optimization)
 Example boost - Clock can be generated on HDL side.

* Debugging
 Two separate debuggers (Python, HDL simulator)

e Dynamic part of Python may not be aligned with HDL code

Pytest <-> Cocotb Architecture Overview

pytest

4 pytest)

controller

[test 1]—

[test 2]

[test N]

L 4

Parent process

HDL Simulator
7 5
| | pytest
—compile/run— worker
[test 1.A]
< IPC —VPI/VHPI
| test1.X |
L J
_ Cocotb)
Child process

DUT
(HDL)

Pytest <-> Cocotb Architecture Overview

e Similar architecture to pytest-xdist

* Pytest functions called on pytest controller side can compile HDL
project and run HDL simulator as separate subprocess

e Pytest functions called on pytest worker side will run from HDL
simulator to verify DUT using Cocotb

 From user and pytest perspective, controller and worker are
transparent

e Distinguished using pytest markers (pytest.mark.*)

https://pytest-xdist.readthedocs.io/en/stable/

Pytest <-> Cocotb Architecture Overview

*_test.py

import pytest
from qtb import HDL

@pytest.mark.hd1("1lib1.dutA")

def test_*(hdl: HDL) -> None:
"""Test DUT A (dutA_tb.py)."""
hdl.test()

@pytest.mark.hdl("1ib2.dutB")

def test_*(hdl: HDL) -> None:
"""Test DUT B (dutB_tb.py)."""
hdl.test()

‘ocotb

import cocotb

HDL

@cocoth.test
def *(dut) -> None:
Build HDL ""URun DUT testcase 1."""
Run simulation
Cocotb @cocotb. test
def *(dut) -> None:
"""Run DUT testcase 2."""

HDL Simulator

@035
DESIGN AND VERIFICATION

DVCON

CONFERENCE AND Elesmo 5

Hands-On: Cocotb and Pytest in Action

* Agenda
* Will look at simple RTL designs -
 8b10b encoder/decoder
* Pseudo-random binary sequence (PRBS) generator
* Python project layout and writing a cocotb testbench, running with
pytest framework
* Test discovery, filtering, parametrization, plug-in capabilities, command
line arguments
* View reports, coverage results
* Pytest in validation, integration with IDEs (VSCode)
e Conclusion

Project layout, folder structure

* Working out-of-box with Python project in
editable mode (development mode)

e Using python namespace packages (different
HDL modules) into single common

Namespace:
e gblox/hdl/

e Combining and merging distributed HDL

modules from different HDL libraries into:
e gblox/hdl/<library>/<module>/

v 8B10B
> CONFIG
> INTERFACE
> RTL
v src/gblox/hdl/common/codec
v tests
> __pycache__
@ codec_8b10b_decoder_tb.py
@ codec_8b10b_encdec_test.py
@ codec_8b10b_encoder_tb.py
@ _init__.py
@ codec.py
@ decoder.py
@ encoder.py
¢ .gitignore
¥ .gitlab-ci.yml
£ pyproject.toml
@ README.md

2025

DESIGN AND VERIFICATION

Design under Test (DUT) - 8b10b

encoder/decoder
o_stat
i_clk & i clk (ggsdpe_eer:r,
; > (code_err) _ > valid) ,
' Lct_rl) 8b10b SR ' Lc'FrI) 8b10b I
i_rst,i_en i_rst,i_en
> encoder > decoder
i_word — i_symbol — >
(k, 8-bit d) o_symbol (10-bit symbol) o_word
—> (10-bit symbol) — (k, 8-bit d)

8b10b testbench structure

* First step in writing the testbench -

e Universal Verification Component (UVCs) to

create helper functions to drive and monitor

e init .pyfileinitializes the top level
package (required to make Python treat

directories containing this file as packages)

 codec.py contains the base UVC (used in

encoder and decoder TBs)

Encoder TB

Codec UVC

i

Encoder UVC

Drive signals

A

Monitor signals

\ 4

Encoder DUT

8b10b Codec UVCs

IIIIIIQVC for Codecllllll

from .encoder import Encoder
from .decoder import Decoder

https://docs.astral.sh/ruff/rules/unused-import/
https://docs.python.org/3/tutorial/modules.html#importing-from-a-package

__all__ = ["Encoder", "Decoder"]

. init .pycodedefinesalistnamed all
« itis taken to be the list of module names that should be iﬁorted when from
package import *
* In this example, does not contain any other code
* Could also contain the UVC for the toplevel DUT

2025

DESIGN AND VERIFICATION

8b10b Codec UVCs

__init__ (self, dut):
constructor function to pass DUT
instance handle to UVC class
input and output to drive and

monitor DUT input/output signals
- Set to None, can be customized
according to Encoder/Decoder UVC.

Can use standard python libraries
like encdec8b10b

class Codec:

async def send(self, data: Union[int, list[int]]) -> None:
"""Send data to codec."""
if not isinstance(data, Sequence):
data = [data]

while data:
self.input.value = data[0]
data = data[l:]
await RisingEdge(self.dut.i_clk)

async def receive(self, count: int) -> list[int]:
"""Receive data from codec."""
data = count * [0]
index = 0

while index < count:
await RisingEdge(self.dut.i_clk)
data[index] = self.output.value.integer
index += 1

return data

def encode(self, data_in, running disparity=0, ctrl=0):
"""Encode 8b value"""
Returns disparity and encoded value
return EncDec8B10B.enc_8b10b(
data_in=data_in, running disparity=running_ disparity, ctrl=ctrl

)

def decode(self, data_in):
"""Decode 10b value"""
Returns control and decoded value
return EncDec8B10B.dec_8b10b(data in=data_in)

2025

DESIGN AND VERIFICATION

DVCON

CONFERENCE AND EXHIBITIO]

8b10b Encoder UVC

class Encoder(Codec):
"""Codec 8b/10b encoder."""

def _ init_ (self, dut, active: bool = False):

Base CODEC UVC """Create new instance of 8b/10b encoder.

Args:
initialize: If True, initialize all inputs of encoder. By default is False.

super(). init (dut)

self.input = dut.i_word.d
Extends self.output = dut.o_symbol

if active:
self.initialize()

def initialize(self):
Derived ENCODER UVC ""Initialize all inputs of encoder."""
super().initialize()
self.dut.i word.k.value
self.dut.i word.d.value

nn
(<]

(2025
DESIGN AND VERIEICATION

DVCON

CONFERENCE AND EXHIBITIO 2

8b10b testbench

async def simple_ transfer _encoder(dut, count: int = 1024):
"""Test 8b/10b encoder using stream of bytes"""

Generate clock in the background

° Te St d efi n ed u Si n g generate_clock(clock=dut.i_clk)

Encoder QVC initialization
encoder = Encoder(dut, active=True)

Reset encoder DUT
await encoder.reset()

@cocotb.test decorator
- Instantiate UVC, generate clock, ,.......
drive reset sequence R—

disp = 0

° Use UVC fu nctions Or directly # Generate data of 0..255 + random bytes. This will allow to increase code coverage hits

expected = list(range(256)) + [random.randint(0, 255) for _ in range(count)]
expected = expected[:count]

drive DUT Signals in TB random.shuffle(expected)

Generate reference data for encoder output
encoded expected = len(expected) * [0]

for index, value in enumerate(expected):
disp, encoded_expected[index] = encoder.encode(value, disp)

2025

DESIGN AND VERIFICATION

DVCON

CONFERENCE AND Elesmo 3

8b10b testbench

b Test deflnEd USIng async def simple transfer encoder(dut, count: int = 1024):
One clock cycle delay between input and output of encoder, hence one extra receive
@cocotb.test decorator tasks = (

cocoth.start_soon(encoder.send(expected)),
cocotbh.start_soon(encoder.receive(len(expected) + 1)),

- Instantiate UVC, generate clock,

Wait for tasks to finish

drive reset sequence avait Conbine(+tasks)

encoded_captured = tasks[1].result()[1:]

® Use UVC fU nCtiOnS Or dirECtly # Assert captured encoder output with expected encoded data

assert (
drive DUT Signals in TB), "Ezggﬁigae:rﬁigzzg ;:t:nzgdigzczgzz{e:o expected encoded data"
- Finish test with
checkers/assertions

2025

DESIGN AND VERIFICATION

Checkers/assertions

async def checker(self):
"""Checkers for module"""

while True:
await FallingEdge(self.dut.i_clk)

Write model for calculating expected outputs
exp_output = 0x145

Compare against DUT values
assert self.dut.o_status.value == exp_output, "Status not matching"

- Can define checkers inside the UVC
« Async function running till test end
- Can write cycle accurate models and check signals at every clock cycle
using assertions

. Can also define assertions/checkers directly in the TB

2025

DESIGN AND VERIFICATION

EEEEEEEEEEEEEEEEEEE

Writing pytest for testbench (fixtures,
markers)

"""Pytest for 8blOb encoder decoder"""

- Usage of HDL fixture in our RS —
pytest plugin (QTB) from qtb import HDL
. Contains information about
. @pytest.mark.hdl("common lib.codec 8b10Ob encoder")
HDL environment def test encoder(hdl: HDL):
- HDL source files, libraries, HDL ;;{T‘:Stt?‘)’mb encoder DUT""*
« LES

define macros, information

about HDL simulator
. @pytest.mark.hdl("common lib.codec 8b10b decoder")
- Usage of markers to provide def test decoder(hdl: HDL):

metadata information to tests ;;{T:Et?t;l@b decoder DUT"""

2025

DESIGN AND VERIFICATION

Writing pytest for testbench

"""Pytest for 8blOb encoder decoder"""

- Our pytest plugin (QTB) provides own

import pytest

predefined list of markers from qtb import HDL

+ Q@pytest.mark.hdl () allows to pass ,
@pytest.mark.hdl("common lib.codec 8b10b encoder")

additional metadata to the QTB fixture def test encoder(hdl: HDL):
"""Test 8b1lOb encoder DUT"""

hdl hdl.test()

e (@pytest.mark.parametrize (argnames,
@pytest.mark.hdl("common lib.codec 8b10b decoder")
def test decoder(hdl: HDL):

- Defined args used to parameterize test """Test 8b10b decoder DUT"""
hdl.test()

argvalues)

function.

2025

DESIGN AND VERIFICATION

DVCON

EEEEEEEEEE ND EXHIBITI

Tests discovery

The pytest framework will automatically discover all tests based on
Python file names and Python function names.

Python file name, by default, MUST start from the test * prefix
or end with the * test.py suffix

codec 8bl0b encdec test.py - Pytest that will build HDL
and run Cocotb testbench

codec 8b1l0b encoder tb.py - Cocotb testbench executed from
HDL simulator

Python function must start with test * prefix

https://docs.pytest.org/en/stable/

Tests discovery

- To collect all tests
- pytest --collect-only
- pytest --co (shorthand)
- pytest searches for tests
everywhere in current

working directory
« Unless defined in
pyproject.toml oOr using
cmdline args

S pytest --collect-only

platform linux -- Python 3.12.5, pytest-8.4.1, pluggy-1.6.0

rootdir: /home/abhiroop/gblox/projects/standalone/fpga/HDL_Design/common_1lib/8b10b
configfile: pyproject.toml

testpaths: src/gblox/hdl/common/codec/tests

plugins: qtb-0.2.3

collected 12 items

<Dir 8b10b>
<Dir src>
<Dir gblox>
<Dir hdl>
<Dir common>
<Package codec>
<Dir tests>
<Module codec_8b10@b_encdec_test.py>
<Runner test_encoder>
<Testbench codec_8b10b_encoder_tb.py>
<Test simple_transfer_encoder>
<Test simple_transfer_encoder[count:1]>
<Test simple_transfer_encodexr[count:16]>
<Test simple_transfer_encoder[count:1024]>
<Test simple_transfer_encoder[count:2048]>
<Test simple_transfer_encodexr[count:4096]>
<Runner test_decoder>
<Testbench codec_8b10b_decoder_tb.py>

<Test simple_transfer_decoder>
<Test simple_transfer_decoder[count:1]>
<Test simple_transfer_decodexr[count:16]>
<Test simple_transfer_decoder[count:1024]>
<Test simple_transfer_decoder[count:2048]>
<Test simple_transfer_decoder[count:4096]>

(2025
DESIGN AND VERIEICATION

DVCON

CONFERENCE AND EXHIBITIO 9

Test filtering and selection

Include or exclude tests based on their names and markers
 Using -k EXPRESSION cmdline option. By default, pytest utility will run all tests.
To run specific test(s) that will match provided expression:

- pytest -k <test-name>
With or statement:
« pytest -k '<test-name-1> or <test-name-2>'
With and and not statements:
- pytest -k '<test-name-1> and not <test-name-2>'
Use the --collect-only command line option to list all available names to be used
later with -k:
« pytest --collect-only --quiet

2025

DESIGN AND VERIFICATION

Test filtering and selection

- pytest -s -k 'test_encoder and
simple_transfer_encoder[count:1]"

0.00ns INFO cocotb.regression

20.00ns INFO cocotb.regression
20.00ns INFO cocotb.regression

1 simple_transfer_encoder[count:1]
running simple_transfer_encoder_001 (1/1)
Automatically generated test

count: 1
simple_transfer_encoder_001 passed

dhkkhhkhhkhhhhkhhkhhhkhhhhhhkhhkhhkhhkhhkhhkhhkhhkhhkhhkhhkhkkk

*® TEST STATUS SIM TIME (ns) REAL TIME (s) RATIO (ns/s) **

khkhkhkhkhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhbbhhbbhhbbhhbbhhbbhhbbhhbbhbhbbhbhbbhhhbhhbbh bbb bbb bbb bbb bbb bbb hhhhhd

** codec_8b10b_encoder_tb.simple_transfer_encoder_001 PASS 20.00 0.00 13148.95 **

khhkhkkhhhhkhhhhhhhhhhhhhhhhbhhhbhhhbhhbbhh bbb bbb bbb bbb bbb bbb bbb bbb bbb bbb bbb bbb hh b hhhhhh bbb h b hh bbb hhhhhd

** TESTS=1 PASS=1 FAIL=0 SKIP=0 20.00 0.16 122.06 **

e

@ﬁ%
DESIGN AND VERIFICATION

DVCON

CONFERENCE AND EXHIBITIO) 1

Test logging

e pytest framework can colorize logs
® add various colorful sections to increase readability
® |ot of options to configure Python logging from configuration file or
command line.
e By default, pytest hides standard output from tests
* |t will show it only for failed tests. To disable it:

pytest —--capture=no

pytest -s (shorthand)

https://docs.pytest.org/en/stable/

Test logging

hhkhkdkkhkhhkhkkhhhhhkhhhhhhhhhhhhhbhhhhhbhbhbhhbhdbhhhh bbb bbb bbb bbb bbb hhhhh bbb h bbb hhhhb bbb bdhhbhhhhhhdkdd

** TEST STATUS SIM TIME (ns) REAL TIME (s) RATIO (ns/s) **
hhkhkkhkhhkhkhkhhhkhhkhhhkhhhhhhhhhhhhhhhhhhhhhbhhhhhbh bbb bbb bbb bbbk bbb bbb h kbbb bk bbbk bbbk bbbk h bbbk bbbk hk bbbk hhhdd
** codec_8b1@b_decoder_tb.simple_transfer_decoder PASS 4112.00 0.17 24299.91 **
** codec_8b10b_decoder_tb.simple_transfer_decoder_001 PASS 24.00 0.00 16845.30 **
** codec_8b10b_decoder_tb.simple_transfer_decoder_002 PASS 84.00 0.00 23980.79 **
** codec_8b10b_decoder_tb.simple_transfer_decoder_003 PASS 4116.00 0.17 24858.22 **
** codec_8b10b_decoder_tb.simple_transfer_decoder_004 PASS 8212.00 0.33 24733.75 **
** codec_8b10@b_decoder_tb.simple_transfer_decoder_005 PASS 16404 .00 0.68 24156.70 **
khkhkhkhkhkhkhkhhkhkhkhkhhkhkhkhkhhhhkhkhhhkhhhhhhkhhdk
** TESTS=6 PASS=6 FAIL=0 SKIP=0 32952.01 1.59 20765.16 **

hhkhkhhkhkhkhkhkhkhkhhkhhkhhhhkhkhkhhkhhkhkhhhhhhhhhkhhhhhhhhhhhhhhhhhhhhhh bbbk bbbk bbbk bbbk bk kb bk kb kb hhkhhhdkk

- Pytest log with standard output enabled

- Log files stored in sim directory, using standard python logging

- Each test result generated under name of TB combined with test
name

2025

DESIGN AND VERIFICATION

DVCON

CONFERENCE AND EXHIBITIO 3

Test parameterization

Let’s take another example design -

Pseudo Random Binary
Sequence(PRBS) generator

Usage of LFSR, based on standard
polynomial (defined by generics
g_poly_width, g_poly_tap), with
parallel output (based on
g_data_width)

i_clk

irst

i_load

i_data

Y

g_poly_width

g_poly_tap
g_data_width

PRBS

0_data

Test parameterization

- Running different generics with the same test using pytest
parametrize marker

Parametrizing different core widths and taps
@pytest.mark.hdl("common lib.prbs")
@pytest.mark.parametrize(
"g poly width,g poly tap", [(9, 5), (15, 14), (23, 18), (31, 28)]
)
def test prbs parametrized(hdl: HDL, g poly width, g poly tap):
"""Test PRBS with different cores"""
hdl["g poly width"] = g_poly width
hdl["g poly tap"] = g poly tap
hdl.test()

2025

DESIGN AND VERIFICATION

Pytest command line arguments

Additional CLI arguments can be added using pytest addoption
Pytest is using standard Python built-in argparse module

Only long names with double dashes -- are supported
They will be part of pytest --help output
They can be used in fixtures and tests

Examples:

-—-gui to start HDL simulator with GUI
--hdl-coverage to enable HDL code coverage

https://docs.pytest.org/en/stable/reference/reference.html#std-hook-pytest_addoption
https://docs.python.org/3/library/argparse.html

Pytest plugin capabilities - pyloops

- Pytest plugin example for loops: https://pypi.org/project/pytest-loop

. Usethe --1oop command line option: pytest --loop=10
test_file.py
- Decorator:

import pytest
@pytest.mark.test_creation
@pytest.mark.loop(25 if PYLOOPS_ENABLED else 0)
def test_scope_acq_inp_cal(my_dut, awg):

Pass

2025

DESIGN AND VERIFICATION

https://pypi.org/project/pytest-loop/

Pytest for validation AT N7 L

Validation v/s verification tests:

/w2y

Validation relies on availability of test equipment. Simulation resources are
always present

Functional checks performed in validation regression, similar to verification

Stress-test a design until its limits. (temperature cycling, corner cases)
* Real-time tests

The Need for Dynamic Test Control in validation:

* Dynamic control over test variables and parameters
* "Knobs" for specific thresholds, edge cases, or critical events - pinpoint bugs

2025

DESIGN AND VERIFICATION

Pytest empowering validation

Parameterized Fixtures (pytest.fixture(params=...)): Running test with
diverse input data or configurations

@pytest.fixture (scope="session")
def my_dut():
return My_gblox_module(IP = "101.101.101.101", slot = "2")

@pytest.fixture(scope="session")
def signal_generator():
"""Setup signal generator, then close."""

print("\n--- Setting up signal generator connection---") SETUP
signal_gen = set_sig_gen.SignalGeneratorDriver('101.101.101.101', 2020)

signal_gen.set_power_state(0)
yield signal_gen # The object is given to the test. YIELD
print("--- Tearing down signal generator connection ---")

signal_gen.set_power_state(0) TEARDOWN

signal_gen.close() # Cleanup, close connection, etc.

2025

DESIGN AND VERIFICATION

DVCON

CONFERENCE AND EXHIBITI! [o]

Pytest empowering validation

* Pytest Hooks: Allows reading external setup files
(JSON/TOML).

* Indirect Parametrization: Similar to verification

* Interactive Mode (via Custom Hooks): Facilitates real-time

debugging and immediate feedback.
 Example: A custom hook can automatically drop the tester into a

Python Debugger.

VS code integration with pytest

Benefits of Integration: Easy to enable pytest:

e Run tests in the editor. * pip install pytest

* Open Command Palette:
inspect variables. Ctrl+Shift+P

e Visual summary of test results. * Search for Python:

e Test-driven development workflow. Configure Tests
e Select pytest as your test

e Breakpoints, step through code,

framework.
e Specify Test Folder

VS code integration with pytest

Test Explorer View:

Click the "Testing" icon in activity bar.
See all your tests listed.
Run test or multiple tests with a single click.

) test_first_browser_test

"Debug Test" icon to start debugging.

2025

DESIGN AND VERIFICATION

Conclusion

Pytest framework - unified testing approach

Standardized but still customizable

No need to reinvent the wheel

Future work - pytest framework, plugins can be standardized to be

used with HDL testing, and made open-source

Thank you

Questions?

