
Next-Gen Verification with Python:
Driving Hardware Tests with Pytest and Cocotb

Tymoteusz Błażejczyk, Abhiroop Bhowmik, Ronahi Halitoglu,
Shrinivas Naik, Reinier Bodemeijer

Qblox B.V

History and change of verif infrastructure (reinier)
Hard selling points (shri) - Done but can add more points to it
Analytic info about verif eng shortage (ronahi)
Slide number for each slide - Done

Less text (all)
More support material (images) (abhi)

Time for Slides + Time for demo + time for questions

2

• Difficulty in getting experienced

SV/UVM verification engineers

• Difficulty onboarding to custom

verification environment

• Wish to migrate smoothly to

something easier?

• Something scalable and open source

3

Verification trends

Source : “2024 Siemens EDA and Wilson Research Group FPGA functional verification
trend report,” White Paper, Siemens EDA, 2024

• Difficulty in getting experienced

SV/UVM verification engineers

• Difficulty onboarding to custom

verification environment

• Wish to migrate smoothly to

something easier?

• Something scalable and open source

4

Verification trends

We have an open-source solution!

5

Rapid adoption of python in testbenches in recent years

Python adoption?

Source : “2024 Siemens EDA and Wilson Research
Group FPGA functional verification trend report,”
White Paper, Siemens EDA, 2024

Why Python?

• Productivity boost
• Easy to learn

• Faster reading, writing and debug

6

• Ecosystem
• Huge collection of libraries, tools, frameworks

• Development
• Code auto-completion integrated with editor (Jedi)

https://pypi.org/
https://jedi.readthedocs.io/en/latest/

• Modern development ecosystem:
• Dependency management (pip, uv)

7

Why Python?

• Documentation generation (Sphinx)

• Test frameworks (pytest)

• Code quality: formatters, linters , auto-completion

WRITE LESS, VERIFY MORE !

https://pip.pypa.io/en/stable/
https://docs.astral.sh/uv/
https://www.sphinx-doc.org/en/master/
https://docs.pytest.org/en/stable/

Why Pytest?

• Test framework
• Parametrization: One test, multiple

runs, reduce code redundancy

8

• Test management (discovery, running, filtering)
• Easy test discovery with “test_” functions (no explicit adding of tests)

• Filter tests using strings, regex

• Fixtures: set up test prerequisites,
reuse, teardown

• Parallelization: distribute test
across cores

Why Pytest?

• Concise syntax of writing tests, easy to use
• Very well documented with good

community support
• Easy to extend with plugin framework:

• Rich free collection of existing external plugins
(~1641)

• Suit yourself, write own plugin! (integration)

• Integration with IDE and text editors
(running tests)

9

https://docs.pytest.org/en/stable/index.html
https://docs.pytest.org/en/stable/reference/plugin_list.html
https://docs.pytest.org/en/stable/how-to/writing_plugins.html

Why Cocotb?

• Using python and pytest with all

benefits in HDL verification targeting

FPGA and ASIC

• Portability - running the same tests

with different HDL simulators

(open-source and proprietary)

• Open-source, maturity, community,

well documented

10

Source : “2024 Siemens EDA and Wilson Research Group FPGA functional verification trend report,” White Paper, Siemens EDA, 2024

https://docs.cocotb.org/en/stable/

Cons? Any?

11

• Work in Progress

Cons? Any?

• Runtime performance
• Slower (without HDL simulator optimization)

• Example boost - Clock can be generated on HDL side.

12

• Debugging
• Two separate debuggers (Python, HDL simulator)

• Dynamic part of Python may not be aligned with HDL code

Pytest <-> Cocotb Architecture Overview

13

Pytest <-> Cocotb Architecture Overview

• Similar architecture to pytest-xdist
• Pytest functions called on pytest controller side can compile HDL

project and run HDL simulator as separate subprocess
• Pytest functions called on pytest worker side will run from HDL

simulator to verify DUT using Cocotb
• From user and pytest perspective, controller and worker are

transparent
• Distinguished using pytest markers (pytest.mark.*)

14

https://pytest-xdist.readthedocs.io/en/stable/

Pytest <-> Cocotb Architecture Overview

15

Hands-On: Cocotb and Pytest in Action

• Agenda
• Will look at simple RTL designs -

• 8b10b encoder/decoder
• Pseudo-random binary sequence (PRBS) generator

• Python project layout and writing a cocotb testbench, running with
pytest framework

• Test discovery, filtering, parametrization, plug-in capabilities, command
line arguments

• View reports, coverage results
• Pytest in validation, integration with IDEs (VSCode)
• Conclusion

16

Project layout, folder structure
• Working out-of-box with Python project in

editable mode (development mode)

• Using python namespace packages (different

HDL modules) into single common

namespace:
• qblox/hdl/

• Combining and merging distributed HDL

modules from different HDL libraries into:
• qblox/hdl/<library>/<module>/

17

Design under Test (DUT) - 8b10b
encoder/decoder

18

8b10b testbench structure

• First step in writing the testbench -
• Universal Verification Component (UVCs) to

create helper functions to drive and monitor

• __init__.py file initializes the top level

package (required to make Python treat

directories containing this file as packages)

• codec.py contains the base UVC (used in

encoder and decoder TBs)

19

8b10b Codec UVCs

• __init__.py code defines a list named __all__
• it is taken to be the list of module names that should be imported when from

package import *
• In this example, does not contain any other code

• Could also contain the UVC for the toplevel DUT

20

8b10b Codec UVCs
• __init__ (self, dut):

constructor function to pass DUT

instance handle to UVC class

• input and output to drive and

monitor DUT input/output signals
• Set to None, can be customized

according to Encoder/Decoder UVC.

• Can use standard python libraries

like encdec8b10b

21

8b10b Encoder UVC

22

8b10b testbench

• Test defined using

@cocotb.test decorator

• Instantiate UVC, generate clock,

drive reset sequence

• Use UVC functions or directly

drive DUT signals in TB

23

8b10b testbench

24

• Test defined using

@cocotb.test decorator

• Instantiate UVC, generate clock,

drive reset sequence

• Use UVC functions or directly

drive DUT signals in TB

• Finish test with

checkers/assertions

Checkers/assertions

• Can define checkers inside the UVC
• Async function running till test end

• Can write cycle accurate models and check signals at every clock cycle

using assertions

• Can also define assertions/checkers directly in the TB

25

Writing pytest for testbench (fixtures,
markers)

• Usage of HDL fixture in our
pytest plugin (QTB)

• Contains information about
HDL environment

• HDL source files, libraries, HDL
define macros, information
about HDL simulator

• Usage of markers to provide
metadata information to tests

26

Writing pytest for testbench

• Our pytest plugin (QTB) provides own

predefined list of markers
• @pytest.mark.hdl() allows to pass

additional metadata to the QTB fixture

hdl
• @pytest.mark.parametrize(argnames,

argvalues)

• Defined args used to parameterize test

function.

27

Tests discovery
• The pytest framework will automatically discover all tests based on

Python file names and Python function names.
• Python file name, by default, MUST start from the test_* prefix

or end with the *_test.py suffix
• codec_8b10b_encdec_test.py - Pytest that will build HDL

and run Cocotb testbench
• codec_8b10b_encoder_tb.py - Cocotb testbench executed from

HDL simulator

• Python function must start with test_* prefix

28

https://docs.pytest.org/en/stable/

Tests discovery

• To collect all tests
• pytest --collect-only
• pytest --co (shorthand)

• pytest searches for tests
everywhere in current
working directory

• Unless defined in
pyproject.toml or using
cmdline args

29

Test filtering and selection

• Include or exclude tests based on their names and markers
• Using -k EXPRESSION cmdline option. By default, pytest utility will run all tests.

• To run specific test(s) that will match provided expression:
• pytest -k <test-name>

• With or statement:
• pytest -k '<test-name-1> or <test-name-2>'

• With and and not statements:
• pytest -k '<test-name-1> and not <test-name-2>'

• Use the --collect-only command line option to list all available names to be used
later with -k:

• pytest --collect-only --quiet

30

Test filtering and selection

• pytest -s -k 'test_encoder and
simple_transfer_encoder[count:1]'

31

Test logging

• pytest framework can colorize logs

• add various colorful sections to increase readability

• lot of options to configure Python logging from configuration file or

command line.

• By default, pytest hides standard output from tests

• It will show it only for failed tests. To disable it:

pytest --capture=no
pytest -s (shorthand)

32

https://docs.pytest.org/en/stable/

Test logging

• Pytest log with standard output enabled

• Log files stored in sim directory, using standard python logging

• Each test result generated under name of TB combined with test

name

33

Test parameterization

• Let’s take another example design -
Pseudo Random Binary
Sequence(PRBS) generator

• Usage of LFSR, based on standard
polynomial (defined by generics
g_poly_width, g_poly_tap), with
parallel output (based on

g_data_width)

34

Test parameterization

• Running different generics with the same test using pytest
parametrize marker

35

Pytest command line arguments

• Additional CLI arguments can be added using pytest_addoption

• Pytest is using standard Python built-in argparse module

• Only long names with double dashes -- are supported

• They will be part of pytest --help output

• They can be used in fixtures and tests

• Examples:
• --gui to start HDL simulator with GUI

• --hdl-coverage to enable HDL code coverage

•

36

https://docs.pytest.org/en/stable/reference/reference.html#std-hook-pytest_addoption
https://docs.python.org/3/library/argparse.html

Pytest plugin capabilities - pyloops

37

• Pytest plugin example for loops: https://pypi.org/project/pytest-loop

• Use the --loop command line option: pytest --loop=10
test_file.py

• Decorator:

https://pypi.org/project/pytest-loop/

Pytest for validation
Validation v/s verification tests:

• Validation relies on availability of test equipment. Simulation resources are
always present

• Functional checks performed in validation regression, similar to verification
• Stress-test a design until its limits. (temperature cycling, corner cases)
• Real-time tests

The Need for Dynamic Test Control in validation:

• Dynamic control over test variables and parameters
• "Knobs" for specific thresholds, edge cases, or critical events - pinpoint bugs

38

AWG

Pytest empowering validation

39

Parameterized Fixtures (pytest.fixture(params=...)): Running test with
diverse input data or configurations

SETUP

YIELD

TEARDOWN

Pytest empowering validation

• Pytest Hooks: Allows reading external setup files

(JSON/TOML).

• Indirect Parametrization: Similar to verification

• Interactive Mode (via Custom Hooks): Facilitates real-time

debugging and immediate feedback.
• Example: A custom hook can automatically drop the tester into a

Python Debugger.

40

VS code integration with pytest

Benefits of Integration:

• Run tests in the editor.

• Breakpoints, step through code,

inspect variables.

• Visual summary of test results.

• Test-driven development workflow.

41

Easy to enable pytest:

• pip install pytest
• Open Command Palette:

Ctrl+Shift+P

• Search for Python:

Configure Tests

• Select pytest as your test

framework.

• Specify Test Folder

VS code integration with pytest

42

Test Explorer View:

● Click the "Testing" icon in activity bar.

● See all your tests listed.

● Run test or multiple tests with a single click.

● "Debug Test" icon to start debugging.

Conclusion

• Pytest framework - unified testing approach

• Standardized but still customizable

• No need to reinvent the wheel

• Future work - pytest framework, plugins can be standardized to be

used with HDL testing, and made open-source

43

Thank you

Questions?

44

