
Co-Developing IP and SoC Bring-up Firmware with PSS

Matthew Ballance, Siemens EDA

Verification at IP and SoC
• Common to use UVM for IP-level verification

• Sequences interact with device registers
• Use directed and constrained-random tests to exercise key cases

• SoC assembled from RTL delivered by IP teams

• Use processor cores to verify SoC integration
• Need to write low-level firmware (driver) to interact with device registers
• Need to write embedded-software tests

PSS: Constrained-Random Testing for SoC

• Writing SoC-level tests is challenging
• Coordinating multi-core tests and managing concurrency

• Large number of cases to cover

• Directed-test techniques are labor-intensive

• PSS offers a compelling alternative
• Model test scenarios in terms of actions, resources, and data-flow

• Generate multiple randomized test scenarios

• Constrain model to focus scenarios

Two Pieces of a PSS Model

• Test Intent – What is to be tested
• Models scenarios to be tested

• Captures rules around resource utilization and dataflow

• Test Realization – How that is carried out
• Interacts with IP

• Reads/writes registers

• Waits for interrupts

• PSS helps create more tests more quickly

• But, low-level driver code is still required to implement test realization

Test Model
• Scenario
• Resources
• Dataflow

Test Realization
• UVM
• C firmware

Objective: Expand IP-level Deliverables
• Much of the IP-level verification process remains the same

• Still use UVM for functional correctness

• Add creation of low-level driver code
• Leverage design/verification team’s knowledge of device programming

• Add creation of leaf-level PSS actions
• Provide test ‘user interface’ to low-level driver code

• IP deliverable now includes
• RTL
• Low-level driver code
• PSS reusable test fragments

Adding firmware to simulation is simple

• At least relatively so
• And, there’s a fair amount of prior art here

• Define a DPI interface between testbench and firmware

• Wrap firmware as a DPI library

• Call firmware from SystemVerilog, and testbench from firmware

• So, we’re done right? Ship it!

• Well, not quite…

• Firmware for our IP must integrate with other firmware

Problem: combining firmware isn’t simple

• At SoC level, our low-level driver is just one of many

• It will need to be configured along with other drivers
• What is the register base address?

• Which interrupt is it sensitive to?

• It must co-exist with other drivers

• We need an interoperability framework

• How can we avoid rolling our own?

Where have we seen this before?

• An OS has the same driver-integration requirements
• Support integration of multiple drivers

• Support multiple device instances

• Configure key aspects of drivers, such as registers

• Specify connections, such as the interrupt to be used by a driver

• An OS is a heavy-weight thing – far too much overhead for bare-metal testing
• Too much memory

• Too long to start-up

• Too much complexity

An RTOS, on the other hand…

• An RTOS has many of the same requirements as an OS around driver management
• But, is designed for low-power, low-resource systems

• In this paper, we look at the Zephyr RTOS, but many others exist

• Characteristics of the Zephyr RTOS
• Modular and highly configurable

• More like a library than a traditional OS.
• OS and application create single exe

• Can be configured to be very small (~8k)

• Extremely minimal startup behavior.

• Very close to bare-metal

How does an RTOS fit at IP Level?

• Could run the RTOS on a full instruction-set simulator/virtual platform
• This adds complexity, but doesn’t necessarily help us create firmware

• Zephyr RTOS has a mode where it compiles to a host application
• Primarily intended for application developers

• But, can be re-purposed to create a co-simulation

• Zephyr integrates with the testbench as a UVM agent
• Uses the UVM register model to access DUT registers and memory

• Accepts interrupt-request events from the testbench

Creating a Driver
• Zephyr specifies a format for driver modules

• Files to specify configurable attributes and requirements

• Driver source structure

• Mechanisms for accessing configurable attributes

• APIs for standard devices (DMA, serial, timer, etc)

• Most effort can focus on implementing behavior

• Drivers are very similar to UVM utility sequences
• Program device registers

• React to interrupt events

• …

static int fw_periph_dma_reload(

const struct device *dev,

uint32_t channel,

uint32_t src,

uint32_t dst,

size_t size) {

const fw_periph_dma_cfg_t *const dma_cfg =

(const fw_periph_dma_cfg_t const*)dev->config;

uint32_t sz;

// Updates the source/dest/size for a transfer, while leaving

// the rest of the configuration as-is

// Configure source and destination addresses

sys_write32(src, &dma_cfg->regs->channels[channel].src);

sys_write32(dst, &dma_cfg->regs->channels[channel].dst);

sz = sys_read32(&dma_cfg->regs->channels[channel].size);

// Configure the transfer size in the channel-specific registers

sz &= ~(0xFFFF);

sz |= (size & 0xFFFF);

sys_write32(sz, &dma_cfg->regs->channels[channel].size);

return 0;

}

Back to PSS – Creating Test Content

• Writing bare-metal C tests – even at IP – isn’t easy

• PSS can help us in creating (at least) two types of content
• ‘building blocks’ that can be assembled into SoC-level tests

• IP scenario-level tests using firmware

• Note: We’re augmenting, not replacing, standard UVM verification
• Use coverage-driven constrained-random UVM flow to verify functional correctness

• Create simple PSS tests focus on verifying firmware and Hw/Sw interation

• Create more-complex PSS tests exercise scenarios

PSS Building Blocks
• Provide a PSS ‘interface’ to IP

• Capture key behaviors as actions

• Capture key parameters that can be constrained

• Capture core validity rules

• Connect PSS to driver firmware

• Useful at IP level for simple and complex scenarios

• Critical productivity-enabler at SoC level
• Allows verification engineer to easily compose multi-IP scenarios

component fwperiph_dma_c {

// Bring in memory-claim types

import addr_reg_pkg::*;

resource channel_r { }

pool[4] channel_r channels;

bind channels *;

// id points to the appropriate driver instance

int id;

action mem2mem_a {

lock channel_r channel;

input data_b dat_i;

output data_b dat_o;

rand addr_claim_s<> dst;

constraint dat_i.size > 0;

constraint dat_o.size > 0 && dat_o.size <= dat_i.size;

constraint dst.size == dat_o.size;

exec body {

fwperiph_dma_mem2mem(comp.id, channel.instance_id,

addr_value(dat_i.data), addr_value(dat_o.data), dat_o.size);

}

}

Moving to SoC
• IP package supports PSS-based test creation

• Firmware (C source)

• Device Schema

• IP-specific actions

• SoC-level RTOS view described using a DeviceTree specification
• Specifies which IPs are present, and how they’re configured

• Used by Linux, Zephyr RTOS, and others

• Leverage DeviceTree information to support PSS

/dts-v1/;

#include <posix/posix.dtsi>

#include <dt-bindings/i2c/i2c.h>

#include <dt-bindings/gpio/gpio.h>

/ {

model = "Tiny SoC";

compatible = "zephyr,riscv";

dma1: fwperiph_dma@80000000 {

compatible = "fwperiph_dma";

label = "dma1";

reg = <0x80000000 0x00000100>;

};

dma2: fwperiph_dma@80000100 {

compatible = "fwperiph_dma";

label = "dma2";

reg = <0x80000100 0x00000100>;

};

// …

};

SoC-Level Scenarios

• Data from DeviceTree automates creation of PSS component tree
• Captures PSS representation of available IPs

• PSS building blocks simplify scenario assembly

• Driver firmware automatically connected to PSS actions

• Verifying firmware at IP level reduces bug sources

• PSS language features simplify creating rich SoC-level scenarios

component tiny_soc_c {

// IP-specific components

tiny_soc_brd_c board;

// Send data to SPI and UART simultaneously

action mem2spi_uart_c {

fwuart_c::xmit_a uart_xmit;

fwspi_c::xmit_a spi_xmit;

parallel {

uart_xmit;

spi_xmit;

}

}

}

Conclusion
• SoC integration testing is enabled by having test content delivered along with IP

• PSS can provide reusable test content
• But, PSS test content depends on having firmware as well

• Show a flow in which PSS+firmware developed alongside IP
• IP can now deliver RTL, firmware, and test content building blocks to SoC

• Show using Zephyr RTOS as the common software env between IP and SoC

Q&A

